
Kumamoto J. Math.
Vol.22 (2009), 17–34

A characterization of the automorphism groups of
sporadic groups by the set of orders of maximal

Abelian subgroups

Behrooz Khosravi ∗

(Received April 11, 2008)
(Accepted March 21, 2009)

Abstract. In this paper as the main result we prove that the automorphism
groups of some sporadic simple groups are uniquely determined by the set of
orders of maximal abelian subgroups. Also we determine finite groups with
the same prime graph as these groups.

1 Introduction

In group theory it is usual to get information on the structure of a group G by
studying the subgroups of G. It is proved that if G is one of the following groups:
PSL(2, 2n), Sz(22m+1), An (n ≤ 10), Ap where p and p − 2 are prime numbers
or Bn(q), where n = 2m ≥ 4, then G is uniquely determined by the set of orders
of maximal abelian subgroups of G [1, 3, 30]. Chen and et. al. in [12] proved
that every sporadic simple group is uniquely determined by the set of orders of
maximal abelian subgroups. In this paper we continue this work and show that
the automorphism groups of some sporadic simple groups are uniquely determined
by the set of orders of maximal abelian subgroups. We use the notation M(G)
for the set of orders of maximal abelian subgroups of G. There is a close relation
between this result and the prime graph of G. Now we recall the definition of the
prime graph of a finite group.

If n is an integer, then we denote by π(n) the set of all prime divisors of n.
If G is a finite group, then the set π(|G|) is denoted by π(G). We construct the
prime graph of G as follows: The prime graph Γ(G) of a group G is the graph
whose vertex set is π(G), and two distinct primes p and q are joined by an edge
(we write p ∼ q) if and only if G contains an element of order pq. Let t(G) be
the number of connected components of Γ(G) and let π1(G), π2(G), . . . , πt(G)(G)
be the connected components of Γ(G). We use the notation πi instead of πi(G).
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If 2 ∈ π(G), then we always suppose 2 ∈ π1. Now |G| = m1m2 . . .mt(G), where
π(mi) = πi (1 ≤ i ≤ t(G)). The positive numbers m1, . . . ,mt(G) are called the
order components of G and m2, . . . ,mt(G) are called the odd order components
of G (see [20]). Also the set of order elements of G is denoted by πe(G). In
[2, 17, 22, 23] finite groups with the same prime graph as a CIT simple group,
2F4(q), PGL(2, p) and PSL(2, q) are determined. It is proved that if q = 32n+1

(n > 0), then the simple group 2G2(q) is uniquely determined by its prime graph
[21, 32]. Also in [24] it is proved that PSL(2, p), where p > 11 is a prime number
and p ̸≡ 1 (mod 12) is uniquely determined by its prime graph. Hagie in [11]
determined finite groups G satisfying Γ(G) = Γ(S), where S is a sporadic simple
group. In this paper, also we determine finite groups G such that their prime
graph is Γ(A), where A is the automorphism group of a sporadic simple group,
except Aut(J2). The structure of the automorphism groups of sporadic simple
groups are described in [6]. Let S be a sporadic simple group. Then the prime
graph of Aut(S) is connected if and only if S = J2 or McL.

In this paper, all groups are finite and by simple groups we mean non-abelian
simple groups. All further unexplained notations are standard and refer to [6]. If
p is a prime number, then pk∥n means that pk | n, but pk+1 ∤ n.

2 Preliminary Results

The next lemma summarizes the basic structural properties of a Frobenius group
[9, 27]:
Lemma 2.1. Let G be a Frobenius group and letH, K be Frobenius complement
and Frobenius kernel of G, respectively. Then t(G) = 2, and the prime graph
components of G are π(H), π(K). Also the following conditions hold:

(1) |H| divides |K| − 1.

(2) K is nilpotent and if |H| is even, then K is abelian.

(3) Sylow p-subgroups of H are cyclic for odd p and are cyclic or generalized
quaternion for p = 2.

(4) If H is a non-solvable Frobenius complement, then H has a normal subgroup
H0 such that |H : H0| ≤ 2, H0 = SL(2, 5)× Z, where the Sylow subgroups
of Z are cyclic and (|Z|, 30) = 1.

Also the next lemma follows from [10] and the properties of Frobenius groups
[13]:
Lemma 2.2. Let G be a 2-Frobenius group, i.e. G has a normal series 1⊴H ⊴
K ⊴ G, such that K and G/H are Frobenius groups with kernels H and K/H,
respectively. Then

(1) t(G) = 2, π1 = π(G/K) ∪ π(H) and π2 = π(K/H);
(2) G/K and K/H are cyclic, |G/K| | (|K/H| − 1) and G/K ≤ Aut(K/H);
(3) H is nilpotent and G is a solvable group.
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Definition. A group G is called a Cpp group if the centralizers in G of its elements
of order p are p−groups.

Lemma 2.3. ([5]) (a) The C13,13-simple groups are: A13, A14, A15; Suz, Fi22;
L2(q), q = 33, 52, 13n or 2× 13n − 1 which is a prime, n ≥ 1; L3(3), L4(3), O7(3),
S4(5), S6(3), O

+
8 (3), G2(q), q = 22, 3; F4(2),U3(q), q = 22, 23; Sz(23), 3D4(2),

2E6(2),
2F4(2)

′.
(b) The C19,19-simple groups are: A19, A20, A21; J1, J3, O

′N , Th, HN ; L2(q),
q = 19n, 2× 19n − 1 which is a prime, (n ≥ 1); L3(7), U3(2

3), R(33), 2E6(2).

By using Theorem A and Lemma 2.3 in [31] we have the following result:
Lemma 2.4. Let G be a finite group and A be the automorphism group of a
sporadic simple group S. If Γ(A) is not connected and Γ(G) = Γ(A), then one of
the following holds:
(a) G is a Frobenius or a 2-Frobenius group;
(b) G has a normal series 1 ⊴ H ⊴ K ⊴ G such that G/K is a π1-group, H is
a nilpotent π1-group, and K/H is a non-abelian simple group with t(K/H) ≥ 2
and |G/K| | |Out(K/H)|. Also π2(A) = πi(K/H) for some i ≥ 2 and π2(A) ⊆
π(K/H) ⊆ π(S).

Lemma 2.5. ([31, Corollary]) If G is a solvable group with at least two prime
graph components, then G is either a Frobenius group or a 2-Frobenius group and
G has exactly two prime graph components one of which consists of the primes
dividing the lower Frobenius complement.

As a corollary of Lemma 2.5, it follows that if G is a solvable finite group, then
t(G) ≤ 2.

Lemma 2.6. [3, Lemma 2] For G and M assume M(G) = M(M). Then G and
M have the same prime graph.

Lemma 2.7. [3, Lemma 3] For G and M assume M(G) = M(M). If the prime
graph of M has isolated points and the Sylow subgroups corresponding to these
primes are of prime order, then the set of odd order components of K/H in Lemma
2.4 is a subset of order components of G.

Lemma 2.8. ([4]) Let t(G) ≥ 2 and N⊴G. If N is a π1-group and let m2, . . . ,mr

are odd order components of G, then each of the order components m2, . . . ,mr is
a divisor of |N | − 1.

Lemma 2.9. [25] Let G be a finite group, N a normal subgroup of G, and
G/N a Frobenius group with Frobenius kernel F and cyclic complement C. If
(|F |, |N |) = 1 and F is not contained in NCG(N)/N , then p|C| ∈ πe(G) for some
prime divisor p of |N |.

Lemma 2.10. [28] Let G be a finite group and N a nontrivial normal p-subgroup,
for some prime p, and set K = G/N . Suppose that K contains an element x of
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order m coprime to p such that ⟨φ|⟨x⟩, 1|⟨x⟩⟩ > 0 for every Brauer character φ
of (an absolutely irreducible representation of) K in characteristic p. Then G
contains elements of order pm.

The next lemma was introduced by Crescenzo and modified by Bugeaud:
Lemma 2.11. ([7, 20]) With the exceptions of the relations (239)2− 2(13)4 = −1
and (3)5 − 2(11)2 = 1 every solution of the equation

pm − 2qn = ±1; p, q prime; m,n > 1,

has exponents m = n = 2; i.e. it comes from a unit p− q.2
1
2 of the quadratic field

Q(2
1
2 ) for which the coefficients p, q are prime.

Lemma 2.12. ([20]) The only solution of the equation pm − qn = 1; p, q prime;
and m,n > 1 is 32 − 23 = 1.

Lemma 2.13. (Zsigmondy’s Theorem) ([33])
Let p be a prime and n be a positive integer. Then one of the following holds: (i)
p = 2, n = 1 or 6; (ii) p is a Mersenne prime and n = 2; (iii) there is a primitive
prime p′ for pn − 1, that is, p′|(pn − 1) but p′ ∤ (pm − 1), for every 1 ≤ m < n.

3 Main Results

In this section we prove that the automorphism group of each finite sporadic simple
group, except Aut(J2) and Aut(McL), is uniquely determined by the set of orders
of maximal abelian subgroups of G. For the proof of these results we determine
finite groups with the same prime graph as the automorphism group of a sporadic
simple group.

If S is a sporadic simple group and A = Aut(S), then |A : S| ≤ 2 (see [6]),
so A = S or |A : S| = 2. Let S be M11, M23, M24, J1, J4, Ru, Ly, Co1, Co2,
Co3, Fi23, M , B or Th. Then Aut(S) = S [6] and for these groups Hagie in [11]
determined finite groups with the same prime graph as Γ(S). Also Chen and et.
al. in [12] proved that in this case S and so Aut(S) are uniquely determined by the
set of orders of maximal abelian subgroups. Therefore in the sequel we consider
the rest of sporadic simple groups. Hence we consider the case |A : S| = 2.

If S is one of the following groups: M12, He, Fi22 or HN , then Aut(S) ̸= S
but Γ(S) = Γ(Aut(S)). Therefore groups with the same prime graph of these
groups are determined in [11]. So in the next three theorems we prove that these
groups are uniquely determined by M(Aut(S)).

Theorem 3.1. Let G be a finite group such that M(G) = M(Aut(M12)). Then
G ∼= Aut(M12).
Proof. By using Lemma 2.6, we know that Γ(G) = Γ(M12). Now by using
Theorem 3(5) in [11] it follows that G ∼= 112n : SL2(5) for some n ∈ N; G ∼= 112n :
SL2(5).2 for some 2 ≤ n ∈ N; G/Oπ(G) ∼= L2(11), L2(11).2, where π ⊆ {2, 5};
G/O2(G) ∼= M11, where O2(G) ̸= 1; or G/O2(G) ∼= M12 or Aut(M12). Now we
consider each case.
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If G ∼= 112n : SL2(5) for some n ∈ N or G ∼= 112n : SL2(5).2 for some
2 ≤ n ∈ N, then 112 | |G| and so there is an abelian subgroup of order 112 in
G. Therefore 112 divides an element of M(G), which is a contradiction, since 112

does not divide any element of M(Aut(M12)).

If G/Oπ(G) ∼= L2(11) or L2(11).2, where π ⊆ {2, 5}, then 3∥ |G|. But we know
that Aut(M12) has an abelian subgroup of order 9, which is a contradiction.

If G/O2(G) ∼= M11, where O2(G) ̸= 1, then let Z = Z(O2(G)). Hence Z ⊴ G
and so 11 | (|Z| − 1) and |Z| | 25. Therefore |Z| = 1, which is a contradiction.

If G/O2(G) ∼= M12 or Aut(M12), then Z = Z(O2(G)) is a normal subgroup
of G and similarly to the above discussion it follows that O2(G) = 1. Therefore
G ∼= M12 or Aut(M12). But by using Theorem 2.1 in [12] we know that M12 is
uniquely determined by M(M12). Therefore G ∼= Aut(M12). □

Theorem 3.2. Let G be a finite group such that M(G) = M(Aut(He)). Then
G ∼= Aut(He).
Proof. By using Lemma 2.6 and Theorem 3(4) in [11] it follows that G/Oπ(G) ∼=
L2(16), where 2, 7 ∈ π; L2(16).2, where 7 ∈ π; L2(16).4, where 7 ∈ π; O−

8 (2), where
2 or 7 ∈ π; O−

8 (2).2; S8(2) where π ⊆ {2, 3, 5}; He or Aut(He) where π ⊆ {2, 3}.
We note that always in the above discussion, π ⊆ {2, 3, 5} or π ⊆ {2, 3, 7}.

If 7 ∈ π, then let Z = Z(P ), where P is a 7-Sylow subgroup of Oπ(G).
Then |Z| = 7i, where 1 ≤ i ≤ 3, since 73∥ |Aut(He)|. Also Z is a normal
subgroup of G and by using Lemma 2.8, 17 | (7i − 1), where 1 ≤ i ≤ 3, which is
a contradiction. Therefore 7 ∤ |Oπ(G)|. Also 72 | |Aut(He)| and so Aut(He) has
an abelian subgroup of order 72. But 7 ∤ |Oπ(G)| and 72 does not divide |O−

8 (2)|
and |S8(2)|. Therefore G/Oπ(G) ∼= He or Aut(He). Similarly to the above we
can prove that 3, 5 ̸∈ π. Therefore we conclude that G/O2(G) ∼= He or Aut(He).
Now by using GAP we have the Brauer Character table of He (mod 2). Let x be
an element of order 17 in He and let X = ⟨x⟩. Now for each irreducible character
φ of He (mod 2) we can see that ⟨φ|X , 1|X⟩ > 0. Now by using Lemma 2.10, it
follows that 34 ∈ πe(G), which is a contradiction. Therefore G ∼= He or Aut(He).
By using Theorem 2.1 in [12] we know that He is uniquely determined by M(He)
and so we conclude that G ∼= Aut(He). □

Theorem 3.3. The automorphism group of HN and the automorphism group of
Fi22 are uniquely determined by the set of orders of maximal abelian subgroups.
Proof. First we prove the theorem for Aut(HN). Similarly to the proof of the
last theorems, by using Theorem 3(4) in [11] we know that G/Oπ(G) ∼= HN or
Aut(HN), where π ⊆ {2, 3, 5, 7}. Also 19 is an odd order component of G and
similarly to the last theorems we conclude that Oπ(G) = 1. For convenience we
omit the proof. Now since HN is uniquely determined by M(HN), we conclude
that G ∼= Aut(HN).

Now we prove the theorem for Aut(Fi22). Using Theorem 3(4) in [11] we
conclude that G/Oπ(G) ∼= Suz, Aut(Suz), Fi22 or Aut(Fi22), where π ⊆ {2, 3, 5}.
Let G/Oπ(G) ∼= Suz. By using the Brauer character table of Suz mod 2 or
3, we conclude that if X = ⟨x⟩, where o(x) = 13, then for every irreducible
character φ of Suz mod 2 (or 3) we have ⟨φ|X , 1|X⟩ > 0. Therefore we conclude
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that G has an element of order 26 (or 39), which is a contradiction. Similarly if
G/Oπ(G) ∼= Aut(Suz), then we can prove that Oπ(G) = 1. On the other hand
Aut(Fi22) has an abelian subgroup of order 42, but Aut(Suz) has not an abelian
subgroup of this order. Therefore G/Oπ(G) ∼= Fi22 or Aut(Fi22). Similarly to
the above we can prove that π ⊆ {2, 3}. We know that 2F ′

4(2) is isomorphic to a
subgroup of Fi22. Now by using the Brauer character table of 2F ′

4(2) mod 2 or
3 we can prove that Oπ(G) = 1 and for convenience we omit the proof. Also by
Theorem 2.1 in [12] it is proved that Fi22 is uniquely determined by M(Fi22), and
so G ∼= Aut(Fi22). □

In the sequel we consider the rest of sporadic simple groups. We know that
every sporadic simple group is a Cpp simple group, for some prime p. In order to
determine finite groups with the same prime graph as these groups, we consider
the following diophantine equations which have many applications in the theory
of finite groups (for example see [15] or [20]):

(i)
qp − 1

q − 1
= yn, (ii)

qp − 1

(q − 1)(p, q − 1)
= yn,

(iii)
qp + 1

q + 1
= yn, (iv)

qp + 1

(q + 1)(p, q + 1)
= yn.

We note that the odd order components of some non-abelian simple groups of Lie
type are of the form (qp ± 1)/((q ± 1)(p, q ± 1)) [15] and there exists some results
about these diophantine equations [19]. Now we prove the following lemma about
these diophantine equations to determine some Cpp-simple groups.

Lemma 3.4. Let p ≥ 3 and p0 be prime numbers and q = pα0 .
(a) If y = 11 and p0 ∈ {2, 3, 5, 7}, then (p, q, n) = (5, 3, 2) is the only solution of
(i) and (ii). Also (p, q, n) = (5, 2, 1) is the only solution of (iii) and (iv).
(b) If y = 29 and p0 ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23}, then the diophantine equations
(i)-(iv) have no solution.
(c) If y = 31 and p0 ∈ {2, 3, 5, 7, 11, 19}, then (p, q, n) = (5, 2, 1) and (3, 5, 1) are
the only solutions of (i) and (ii). Also (iii) and (iv) have no solution.
Proof. Let q = pα0 and (qp−1)/(q−1) = 11n or (qp−1)/((q−1)(p, q−1)) = 11n.
Then 11 | (pαp0 −1), which implies that pαp0 ≡ 1 (mod 11) and hence β := ord11(p0)
is a divisor of αp. Since p ≥ 3 and (pαp0 − 1)/(pα0 − 1) = 11n or (pαp0 − 1)/(pα0 −
1)(p, pα0 − 1)) = 11n, it follows that 11 is a primitive prime for pαp0 − 1. Also 11 is

a primitive prime for pβ0 − 1, by the definition of ord11(p0). Therefore β = αp, by
the definition of the primitive prime (see Lemma 2.3). Also by using the Fermat
theorem we know that β is a divisor of 10. Hence the only possibility for p is
5 and so 1 ≤ α ≤ 2. Now by checking the possibilities for q it follows that
(p, q, n) = (5, 3, 2) is the only solution of the diophantine equations (i) and (ii).
Similarly consider the diophantine equations

qp + 1

q + 1
= 11n, and

qp + 1

(q + 1)(p, q + 1)
= 11n,

Then 11 is a divisor of p2αpo − 1 and in a similar manner it follows that p = 5 and
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α = 1. Therefore the only solution of these diophantine equations is (p, q, n) =
(5, 2, 1).

The proofs of (b) and (c) are similar and for convenience we omit the proof of
them. □

The odd order components of finite non-abelian simple groups are listed in
Table 1 in [15]. Now by using Lemmas 2.11, 2.12, 2.13 and 3.4 we can prove the
following lemma. For convenience we omit the proof.
Lemma 3.5. Let M be a simple group of Lie type over GF (q), where q = pα.

(a) If p ∈ {2, 3, 5, 7, 11} and M is a C11,11-group, then M is L2(11), L5(3), L6(3),
U5(2), U6(2), O11(3), S10(3) or O

+
10(3).

(b) If p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29} and M is a C29,29-group, then M =
L2(29).

(c) If p ∈ {2, 3, 5, 7, 11, 19, 31} and M is a C31,31-group, then M is L5(2), L3(5),
L6(2), L4(5), O

+
10(2), O

+
12(2), L2(31), L2(32), G2(5) or Sz(32).

Theorem 3.6. The automorphism group of the sporadic simple group O′N is
uniquely determined by its prime graph. Therefore Aut(O′N) is characterizable
by the set of orders of maximal abelian subgroups.
Proof. Let G be a finite group such that Γ(G) = Γ(Aut(O′N)). Since there exists
no edge between 3, 11, 31 in Γ(G), we conclude that G is a non-solvable group,
otherwise G has a Hall {3, 11, 31}-subgroup T , which has three components and
this is a contradiction. Therefore G is not a 2-Frobenius group, by Lemma 2.5.
If G is a non-solvable Frobenius group and H, K be the Frobenius complement
and the Frobenius kernel of G, respectively, then by using Lemma 2.1 it follows
that H has a normal subgroup H0 with |H : H0| ≤ 2 such that H0 = SL(2, 5)×Z
where the Sylow subgroups of Z are cyclic and (|Z|, 30) = 1. We know that 3 ≁ 7,
3 ≁ 11 and 3 ≁ 19 in Γ(G). Therefore Z = 1 and hence {7, 11} ⊆ π(K), but
this is a contradiction, since K is nilpotent and 7 ≁ 11 in Γ(G). Hence G is
neither a Frobenius group nor a 2-Frobenius group. Therefore Lemma 2.4 implies
that G has a normal series 1 ⊴H ⊴K ⊴G, where K/H is a C31,31-simple group
and π(K/H) ⊆ π(G). Hence K/H is L3(5), L5(2), L6(2), L2(31), L2(32), G2(5)
or O′N . If K/H ∼= L2(5), L6(2), L2(31) or G2(5), then 11, 19 ∈ π(H), which
is a contradiction, since 11 ≁ 19 in Γ(G) and H is nilpotent. If K/H ∼= L3(5)
or L2(32), then {7, 19} ⊆ π(H), which is a contradiction, since 7 ≁ 19 in Γ(G).
Therefore K/H ∼= O′N and since Out(O′N) = 2, it follows that G/H ∼= O′N or
Aut(O′N). We know that O′N has a 11 : 5 subgroup by [6]. If 7 ∈ π(H), then let
T be a {5, 7, 11}-subgroup of G which is solvable and hence t(T ) ≤ 2, which is a
contradiction since there exists no edge between 5, 7 and 11 in Γ(G). Therefore
7 ̸∈ π(H). If we consider {5, 11, p}-subgroup of G, where p ∈ {19, 31}, it follows
that π(H)∩ {7, 19, 31} = ∅. Therefore π(H) ⊆ {2, 3, 5, 11}. Also O′N has a 19 : 3
subgroup, which implies that π(H) ∩ {11} = ∅. Let p ∈ {3, 5}. If p ∈ π(H), then
let P be the p-Sylow subgroup of H. If Q ∈ Syl7(G), then Q acts fixed point
freely on P , since 7 ≁ 3 and 7 ≁ 5 in Γ(G). Therefore PQ is a Frobenius group
and hence Q is a cyclic group. But this is a contradiction since Sylow 7-subgroups
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of O′N are elementary abelian by [6]. Therefore π(H) ∩ {3, 5} = ∅. Hence H is a
2-group. Let H ̸= 1. Since K/H ∼= O′N , consider the modular character table of
O′N mod 2. Let X = ⟨x⟩ and o(x) = 31. By using GAP we can see that for every
irreducible character of O′N mod 2, say φ, we have ⟨φ|X , 1|X⟩ > 0. Therefore by
using Lemma 2.10 we conclude that 2 ∼ 31, which is a contradiction. Therefore
H = 1 and so G ∼= O′N or Aut(O′N). We know that 2 ≁ 11, in Γ(O′N) and so
G ∼= Aut(O′N). Therefore Aut(O′N) is characterizable by its prime graph and
consequently by M(Aut(O′N)). □

Theorem 3.7. Let G be a finite group.

(a) If Γ(G) = Γ(Aut(M22)), thenG/O2(G) ∼= M22 andO2(G) ̸= 1 orG/O2(G) ∼=
Aut(M22).

(b) The automorphism group of M22 is uniquely determined by the set of orders
of maximal abelian subgroups.

Proof. (a) Let Γ(G) = Γ(Aut(M22)). Since there exists no edge between 3, 5 and
7, we conclude that G is a non-solvable group. Since 5 ≁ 7, 3 ≁ 11 and 7 ≁ 11
in Γ(G), we conclude that G is not a non-solvable Frobenius group. Therefore G
is not a Frobenius group or a 2-Frobenius group. By using Lemma 2.4, G has a
normal series 1 ⊴ H ⊴ K ⊴ G such that K/H is a C11,11-simple group. Now by
using Lemma 3.5 we know that if M is a simple group of Lie type, then M is
isomorphic to L2(11), L5(3), L6(3), U5(2), U6(2), O11(3), S10(3) or O+

10(3). But
we know that 41 divides the orders of O11(3), S10(3) and O+

10(3). Similarly 13
divides the orders of L5(3) and L6(3). Also 3 ∼ 5 in the prime graph of U5(2) and
U6(2). Therefore if K/H is a simple group of Lie type, then K/H is isomorphic
to L2(11). If K/H is an alternating group or a sporadic simple group which is
a C11,11-group, then K/H is A11, A12, M11, M12, M22, M23, M24, McL, HS,
Sz, O′N , Co2 or J1. Also Γ(K/H) is a subgraph of Γ(G). Therefore 3 ≁ 5 in
Γ(K/H) and π(K/H) ⊆ {2, 3, 5, 7, 11}, which implies that the only possibilities
for K/H are L2(11), M11, M12 and M22. If K/H ∼= M11, M12 or L2(11), then
K/H has a 11 : 5 subgroup by [6]. Also in these cases 7 ̸∈ π(K/H) and hence
7 ∈ π(H). Now consider the {5, 7, 11}-subgroup T of G which is solvable and
hence t(T ) ≤ 2, a contradiction. Therefore K/H ∼= M22 and since Out(M22) ∼= Z2

it follows that G/H ∼= M22 or Aut(M22). Also H is a nilpotent π1-group and so
π(H) ⊆ {2, 3, 5, 7}. By using [6] we know that M22 has a 11 : 5 subgroup. If
3 ∈ π(H), then let T be a {3, 5, 11}-subgroup of G which is solvable and hence
t(T ) ≤ 2, which is a contradiction, since there exists no edge between 3, 5 and 11
in Γ(G). Therefore 3 ̸∈ π(H). Similarly it follows that 7 ̸∈ π(H). Let 5 ∈ π(H)
and Q ∈ Syl5(H). Also let P ∈ Syl3(K). We know that H is nilpotent and hence
Q char H. Since H ◁K it follows that Q◁K. Therefore P acts by conjugation
on Q and since 3 ≁ 5 in Γ(G) it follows that P acts fixed point freely on Q. Hence
QP is a Frobenius group with Frobenius kernel Q and Frobenius complement P .
Now by using Lemma 2.1 it follows that P is a cyclic group which implies that
a Sylow 3-subgroup of M22 is cyclic. But this is a contradiction since a 3-Sylow
subgroup of M22 are elementary abelian by [6]. Therefore H is a 2-group. Hence



A characterization of the automorphism groups of sporadic groups by the set of orders of maximal Abelian subgroups25

G/O2(G) ∼= M22 where O2(G) ̸= 1 or G/O2(G) ∼= Aut(M22).
(b) If M(G) = M(Aut(M22)), then Γ(G) = Γ(Aut(M22)). Therefore by using (a)
we conclude that G/H ∼= M22 or Aut(M22) where H is a 2-group. Let Z be the
center of H. Then Z is a normal subgroup of G and so 11 | (|Z| − 1), by Lemma
2.8. On the other hand we know that |Z| | 28. Therefore the only possibility is
|Z| = 1, which implies that H = 1. Thus G ∼= Aut(M22) and so Aut(M22) is
characterizable by the set of orders of maximal abelian subgroups. □

Theorem 3.8. The automorphism group of the sporadic simple group J3 is
uniquely determined by its prime graph. Therefore Aut(J3) is characterizable by
the set of orders of maximal abelian subgroups.
Proof. Let G be a finite group such that Γ(G) = Γ(Aut(J3)). By considering
5, 17 and 19 we conclude that G is not solvable, and so G is not a 2-Frobenius
group. Since 3 ≁ 17, 3 ≁ 19 and 17 ≁ 19 in Γ(G), it follows that G is neither
a Frobenius group nor a 2-Frobenius group. So by using Lemma 2.4, G has a
normal series 1 ⊴H ⊴K ⊴ G such that K/H is a C19,19 simple group. By using
Lemma 2.3, we have a list of C19,19-simple groups. Since π(K/H) ⊆ π(J3) and
π(J3)∩{7, 11, 13, 31} = ∅, it follows that the only possibilities for K/H are J3 and
L2(19

n), where n ≥ 1.
Case 1. Let K/H ∼= L2(19

n), where n ≥ 1.
We know that πe(L2(q)) consists of all divisors of q, (q+1)/d and (q− 1)/d where
d = (2, q−1) (see [22]). If q = 19n, then 3 | (19n−1)/2 and since 3 ∼ 5 and 3 ≁ 17
in Γ(G), it follows that if 5 divides |G|, then 5 | (19n − 1) and if 17 is a divisor
of |G|, then 17 | (19n + 1). Note that π(19 − 1) = {2, 3}, π(192 − 1) = {2, 3, 5}
and 17 | (194 + 1). Now by using the Zsigmondy’s Theorem, Lemmas 2.11 and
2.12 it follows that the only possibility is n = 1. Since Out(L2(19)) ∼= Z2, it
follows that G/H ∼= L2(19) or L2(19).2. But in this case π(K/H) = {2, 3, 5, 19}
and so 17 | |H|. We know that L2(19) contains a 19 : 9 subgroup and hence G
has a {3, 17, 19}-subgroup T which is solvable and so t(T ) ≤ 2. But this is a
contradiction, since t(T ) = 3. Therefore K/H ≇ L2(19).
Case 2. Let K/H ∼= J3.
Similar to the above discussions, we have G/H ∼= J3 or Aut(J3). Also H is a
nilpotent π1-group. Hence π(H) ⊆ {2, 3, 5, 17}. If 17 ∈ π(H), then let T be a
{3, 17, 19} subgroup of G, since J3 has a 19 : 9 subgroup. Obviously T is solvable
and hence t(T ) ≤ 2, which is a contradiction. Therefore π(H) ⊆ {2, 3, 5} and
G/H ∼= J3 or Aut(J3).

Now similar to the proof of the last theorems we prove that H = 1. Let 2 | |H|
and x be an element of order 19 in K/H ∼= J3 and X = ⟨x⟩. By using GAP we can
see that for every irreducible character φ (mod 2) of J3, we have ⟨φ|X , 1|X⟩ > 0.
Therefore we have 2 ∼ 19, which is a contradiction. If 3 | |H|, then let x be an
element of order 17 and use the irreducible characters of J3 (mod 3), to conclude
that 3 ∼ 17, which is a contradiction. If 5 | |H|, then let x be an element of
order 19 in J3 and use the irreducible characters of J3 (mod 5), which implies
that 5 ∼ 19, and this is a contradiction. Therefore H = 1, and so G ∼= Aut(J3),
since 2 ≁ 17 in Γ(J3) and 2 ∼ 17 in Γ(G). □
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Theorem 3.9. (a) Let G be a finite group satisfying Γ(G) = Γ(Aut(HS)). Then
G ∼= McL, G/O2(G) ∼= U6(2) or HS, where O2(G) ̸= 1 or G/O2(G) ∼= Aut(HS)
or U6(2).2.
(b) The finite group Aut(HS) is uniquely determined by the set of orders of
maximal abelian subgroups.
Proof. (a) Let Γ(G) = Γ(Aut(HS)). Since there exists no edge between 3, 7
and 11 in Γ(G), we conclude that G is not solvable and so G is not a 2-Frobenius
group. Since 5 ≁ 7, 5 ≁ 11 and 7 ≁ 11 in Γ(G), it follows that G has a normal
series 1 ⊴H ⊴K ⊴ G such that K/H is one of the following groups: M11, M12,
M22, McL, HS, U5(2), U6(2) and L2(11).
Case 1. Let K/H ∼= M11, M12, U5(2) or L2(11).
By using [6] we see that in each case |Out(K/H)| is a divisor of 2 and 7 ̸∈ π(G/H).
Therefore 7 ∈ π(H). Also in each case, K/H has a 11 : 5 subgroup. Hence it
follows that G has a {5, 7, 11} subgroup T , which is solvable and hence t(T ) ≤ 2.
But this is a contradiction and so this case is impossible.
Case 2. Let K/H ∼= M22.
Since Out(M22) ∼= Z2, we have G/H ∼= M22 or Aut(M22). First let G/H ∼= M22,
where H is a π1-group and π1 = {2, 3, 5, 7}. We know that M22 has a 11 : 5
subgroup (see [6]). Let p ∈ {2, 3, 7}. We know that there exists no edge between
p, 5 and 11 in Γ(G). Now since M22 has a 11 : 5 subgroup we conclude that
π(H) ∩ {2, 3, 7} = ∅. If 5 ∈ π(H), then let P be a Sylow 5-subgroup of H. If
Q ∈ Syl3(G), then Q acts fixed point freely on P , since 3 ≁ 5 in Γ(G). Therefore
PQ is a Frobenius group which implies that Q be a cyclic group and this is a
contradiction. Hence H = 1 and so G = M22. But Γ(M22) ̸= Γ(Aut(HS)), since
2 ≁ 5 in Γ(M22). Therefore this case is impossible.

Now let G/H ∼= Aut(M22). By using [6], M22 has a 11 : 5 subgroup. Similar
to the above discussion we conclude that {3, 5, 7} ∩ π(H) = ∅, and hence H is a
2-group. But in this case 3 and 5 are not joined which is a contradiction. Therefore
Case 2 is impossible, too.
Case 3. Let K/H ∼= U6(2).
We know that U6(2) has a 11 : 5 subgroup and so 7 ̸∈ π(H). Also π(H) ⊆ {2, 3, 5}.
If 3 ∈ π(H), then let x be an element of U6(2) of order 7 and X = ⟨x⟩. Then for
every irreducible character φ of U6(2) (mod 3) we have ⟨φ|X , 1|X⟩ > 0. Therefore
3 ∼ 7 in Γ(G), which is a contradiction. Similarly since 5 ≁ 7 in Γ(G), it follows
that 5 ̸∈ π(H). By using [6], we know that Out(K/H) ∼= S3. We know that U6(2).3
has an element of order 21. Therefore G/H ∼= U6(2) or U6(2).2. As we mentioned
above if G/H ∼= U6(2), then H ̸= 1 is a 2-group and so G/O2(G) ∼= U6(2), where
O2(G) ̸= 1. Similarly if G/H ∼= U6(2).2, then G/O2(G) ∼= U6(2).2.
Case 4. Let K/H ∼= HS.
This case is similar to Case 3 and we omit the details of the proof. There exists a
11 : 5 subgroup in HS. Similar to Case 3, it follows that G/O2(G) ∼= HS, where
O2(G) ̸= 1, or G/O2(G) ∼= Aut(HS).
Case 5. Let K/H ∼= McL.
Again if p ∈ {2, 3, 5} and p | |H|, then by using the Brauer character table of McL
(mod p), we conclude that G has an element of order 11p, which is impossible.
Also McL has a 11 : 5 subgroup, which implies that 7 ∤ |H|. Therefore H = 1.
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We know that Out(McL) = 2, and since Aut(McL) has an element of order 22,
we conclude that G ≇ Aut(McL). Therefore G ∼= McL.
(b) If M(G) = M(Aut(HS)), then Γ(G) = Γ(Aut(HS)). Therefore by using
(a) we conclude that G/H ∼= HS or U6(2), where H ̸= 1 is a 2-group; or G/H ∼=
Aut(HS) or U6(2).2, whereH is a 2-group; or G ∼= McL. We know that 5∥ |U6(2)|,
but 52 | |Aut(HS)|. Therefore there is an abelian subgroup of order 52 and hence
52 divides an element of M(Aut(HS)). Obviously if G/H ∼= U6(2) or U6(2).2,
where H is a 2-group, then 52 does not divide any element of M(G), which is a
contradiction. Also McL is uniquely determined by M(McL) by Theorem 2.1 in
[12]. Therefore K/H is isomorphic to HS or Aut(HS), where H is a 2-group. Let
Z be the center of H. Then Z is a normal subgroup of G and so 11 | (|Z|−1). On
the other hand we know that |Z| | 210. Therefore the only possibility is |Z| = 1 or
|Z| = 210. If |Z| = 210, then 210 divides an element of M(Aut(HS)). Therefore
Aut(HS) has an abelian subgroup of order 210. We note that 210∥ |Aut(HS)|.
But we know that Aut(HS) has a subgroup which is isomorphic to M22 and we
know that the 2-Sylow subgroup of M22 is not abelian, which implies that H = 1.
Thus G ∼= HS or Aut(HS). Now by Theorem 2.1 in [12] the simple group HS
is characterizable by the set of orders of maximal abelian subgroups. Therefore
G ∼= Aut(HS) and so Aut(HS) is characterizable by the set of orders of maximal
abelian subgroups. □

Theorem 3.10. Let G be a finite group.

(a) If Γ(G) = Γ(Aut(Fi′24)), then G/O2(G) ∼= Fi′24, where O2(G) ̸= 1 or
G/O2(G) ∼= Aut(Fi′24).

(b) The finite group Aut(Fi′24) is uniquely determined by the set of orders of
maximal abelian subgroups.

Proof. (a) Let Γ(G) = Γ(Aut(Fi′24)). By considering {7, 17, 23}-subgroup of
G we conclude that G is not solvable. If G is a non-solvable Frobenius group,
then {11, 13, 17, 23, 29} ⊆ π(K), where K is the Frobenius kernel of G, which is
a contradiction since 11 ≁ 13. Hence by using Lemma 2.4, G has a normal series
1⊴H⊴K⊴G, whereK/H is a C29,29-simple group and π(K/H) ⊆ π(G). Therefore
K/H is L2(29), Ru or Fi′24. If K/H ∼= L2(29) or Ru, then {17, 23} ⊆ π(H),
which is a contradiction, since H is nilpotent and 17 ≁ 23 in Γ(G). Therefore
K/H ∼= Fi′24 and so G/H ∼= Fi′24 or Aut(Fi′24). By using [6], we know that Fi′24
has a 23 : 11 subgroup. Therefore π(H)∩ {5, 7, 13, 17} = ∅. Also Fi′24 has a 29 : 7
subgroup, and hence π(H)∩{11, 13} = ∅. Also we know that Fi′24 has a subgroup
isomorphic to He. If 3 | |H| and N/H ∼= He, then for every irreducible character φ
of He (mod 3) we have ⟨φ|X , 1|X⟩ > 0, where X = ⟨x⟩ and o(x) = 17. Therefore
3 ∼ 17, which is a contradiction. Hence G/O2(G) ∼= Fi′24 where O2(G) ̸= 1; or
G/O2(G) ∼= Aut(Fi′24).
(b) By assumptions we know that Γ(G) = Γ(Fi′24) and 222∥ |Aut(Fi′24)|. Hence if
Z is the center of H, then Z ⊴G. On the other hand 29 | (|Z| − 1), which implies
that H = 1 and by Theorem 2.1 in [12] we get the result. □

Theorem 3.11. Let G be a finite group.
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(a) If Γ(G) = Γ(Aut(Suz)), then G ∼= Aut(Suz), Fi22 or Aut(Fi22).

(b) The finite group Aut(Suz) is uniquely determined by the set of orders of
maximal abelian subgroups.

Proof. (a) Since there is no edge between 7, 11 and 13 in Γ(G), it follows
that G is not a solvable group. If G is a non-solvable Frobenius group, then
{11, 13} ⊆ π(K), where K is the Frobenius kernel of G which is a contradiction.
Therefore G is neither a Frobenius group nor a 2-Frobenius group. Hence there
exists a normal series 1 ⊴ H ⊴ K ⊴ G, such that K/H is a C13,13 simple group
and π(K/H) ⊆ π(G). Therefore K/H is Sz(8), U3(4),

3D4(2), Suz, Fi22,
2F4(2)

′,
L2(27), L2(25), L2(13), L3(3), L4(3), O7(3), O

+
8 (3), S6(3), G2(4), S4(5) or G2(3).

Let K/H ∼= Sz(8). It is known that Out(Sz(8)) ∼= Z3 and so G/H ∼= Sz(8)
or Sz(8).3. If G/H ∼= Sz(8), then {3, 11} ⊆ π(H) which is a contradiction, since
3 ≁ 11. If G/H ∼= Sz(8).3, then let T be {3, 7, 11}-subgroup of G, since Sz(8) has
a 7 : 6 subgroup. Then t(T ) = 3, which is a contradiction.

If K/H ∼= 2F4(2)
′, U3(4), L2(25), L4(3), S4(5) or G2(3), then {7, 11} ⊆ π(H),

which implies that 7 ∼ 11, since H is nilpotent, and this is a contradiction. If
K/H ∼= 3D4(2), L2(27), L2(13) or L3(3), then {5, 11} ⊆ π(H) and we get a
contradiction similarly, since 5 ≁ 11.

If K/H ∼= G2(4), S6(3), O7(3) or O
+
8 (3), then 11 ∈ π(H) and K/H has a 13 : 3

subgroup by [6]. Now by considering T as a {3, 11, 13}-subgroup of G, it follows
that t(T ) = 3, which is a contradiction since T is solvable.

If K/H ∼= Fi22, then G/H ∼= Fi22 or Aut(Fi22), where π(H) ⊆ {2, 3, 5, 7, 11}.
Since Fi22 has a 11 : 5 subgroup and a 13 : 3 subgroup it follows that {7, 11} ∩
π(H) = ∅. Therefore G/H ∼= Fi22 or Aut(Fi22), where π(H) ⊆ {2, 3, 5}. Similar
to the last cases we can prove that if 5 | |H| and K/H ∼= Fi22, then for every
irreducible character φ of Fi22 (mod 5) we have ⟨φ|X , 1|X⟩ > 0, where X = ⟨x⟩
and o(x) = 13. Therefore 5 ∼ 13, which is a contradiction. We know that 2F ′

4(2)
is isomorphic to a subgroup of Fi22. Now by using the Brauer character table of
2F ′

4(2) mod 2 or 3 we can prove that H = 1. Therefore G ∼= Fi22 or Aut(Fi22).
If K/H ∼= Suz, then G/H ∼= Suz or Aut(Suz). If G/H ∼= Suz, then π(H) ⊆

{2, 3, 5, 7, 11}. Since Suz has a 11 : 5 and 13 : 3 subgroups it follows that 7, 11 ̸∈
π(H). Similar to previous cases if p ∈ {2, 3, 5}, then by using the irreducible
characters of Suz (mod p) we can see that p ∼ 13, which is a contradiction.
Therefore G ∼= Aut(Suz), since 2 ≁ 11 in Γ(Suz).
(b) By using (a) we see that by assumption it follows that G is isomorphic to
Aut(Suz), Fi22 or Aut(Fi22). Now by using Theorem 2.1 in [12] and Theorem 3.3
we get the result. □

We know that the prime graph of the automorphism group of M22, J3, HS,
Suz, O′N and Fi′24 are disconnected and so we can use Theorem A in [31] and
Lemma 2.4. But the prime graph of Aut(McL) is connected and so we need a
completely different method for this group.

Theorem 3.12. Let G be a finite group such that Γ(G) = Γ(Aut(McL)). Then
G/O2(G) is isomorphic to HS, Aut(HS), McL, Aut(McL), U6(2) or U6(2).2.
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Proof. We note that the prime graph of Aut(McL) is connected and 2 is joined
to 3, 5, 7 and 11. Also 3 ∼ 5 in Γ(G) and there is not any other edge in Γ(G).
Step 1. If N is a maximal normal subgroup of G and A = π(N)∩{5, 7, 11}, then
A has at most one element.

First we prove that G is not solvable. If G is a solvable group, then let H
be a Hall {5, 7, 11}-subgroup G. Then H is solvable and t(H) = 3, which is a
contradiction by Lemma 2.5.

Let N be a maximal normal solvable subgroup of G and obviously N ̸= G.
Also by Lemma 2.5, it follows that |π(N)| ≤ 2, so |π(A)| ≤ 2. If |A| = 2, then let
A = {p1, p2}, p ∈ {5, 7, 11} \ A and H be a Hall A-subgroup of N . Now N is a
normal subgroup of G and H is a Hall subgroup of N . Therefore G = NNG(H),
by the Frattini argument. Since p ̸∈ π(N), it follows that p ∈ π(NG(H)) and so
there is an element y ∈ NG(H) of order p. It is obvious that y acts fixed point
freely on H and o(y) = p. Therefore H is nilpotent by Thompson’s Theorem [9,
Theorem 10.2.1], which implies that p1 ∼ p2, a contradiction. Similarly we can
prove that π(N) ∩ {3, 7, 11} has at most one element.

As a consequence of this result we conclude that π(G) ∩ A has at least two
elements and so there exists p ∈ {7, 11} such that p ∈ π(G).
Step 2. Let G = G/N . The subgroup S = Socle(G) is a nonabelian simple group.

We know that CG(S) = 1 and NG(S) = G, which implies that S ≤ G ≤
Aut(S). The socle of a group is a direct product of minimal normal subgroups and
so S = M1 ×M2 × · · · ×Mr, where Mi, 1 ≤ i ≤ r, are minimal normal subgroups.
Also every minimal normal subgroup is characteristically simple and so is a direct
product of isomorphic simple groups. Therefore S = P1 × · · · × Pk, where each
Pi, 1 ≤ i ≤ k, is a non-abelian simple group. Also note that π(S) ⊆ π(G) =
{2, 3, 5, 7, 11} and so π(Pi) ⊆ {2, 3, 5, 7, 11}, for every 1 ≤ i ≤ k. There exist only
finitely many nonabelian simple groups P such that π(P ) ⊆ {2, 3, 5, 7, 11} and if
P is a nonabelian simple group such that π(P ) ⊆ {2, 3, 5, 7, 11}, then we can see
that 2, 3 ∈ π(P ) and π(Out(P )) ⊆ {2, 3} (see [26]).

We claim that k = 1. Let k ≥ 2. Then 7, 11 ̸∈ π(S), since 3 ∈ π(Pi), for every
1 ≤ i ≤ k, and 3 ≁ 7 and 3 ≁ 11 in Γ(G). Hence π(Pi) ⊆ {2, 3, 5} and by using
[26] we see that for every 1 ≤ i ≤ k, Pi is isomorphic to A5, A6 or U4(2). On
the other hand, 7, 11 ∈ π(Out(S)), since Z(S) = 1. We note that {7, 11} ∩ π(N)
has at most one element. So let p ∈ {7, 11} ∩ π(G) and let φ ∈ G be an element
of order p. Obviously φ ∈ Aut(S). Let Q = Pφ

1 and fi : Q → Pi, 1 ≤ i ≤ k,
be the natural projection of Q to Pi. Also P1 is a normal subgroup of S and so
Q is a normal subgroup of S. Therefore Im fi ⊴ Pi and Pi is a simple group,
which implies that Im fi = 1 or Im fi = Pi, for every 1 ≤ i ≤ k. On the other
hand, P1 is a simple group, and so Q is a simple group. Therefore ker fi = 1 or
ker fi = Q. If ker fi = 1, then Im fi = Pi, which implies that Q ∼= Pi. Also if
ker fi = Q, then Im fi = 1. Hence there exists a unique j, 1 ≤ j ≤ k, such that
Pφ
1 = Pj . Now if j ̸= 1, then there exists a φ-orbit of length p. Without loss of

generality let {P1, . . . , Pp} be a φ-orbit. As we mentioned above 3 ∈ π(P1). Let
g1 ∈ P1 be an element of order 3 and let gi+1 = gφi , where 1 ≤ i ≤ p− 1. Now let
x be the element of S whose projections xi to Pi are defined as follows: xi = gi
for i = 1, . . . , p and xi = 1 otherwise. Obviously x is of order 3 and so xφ ∈ G



30 B. Khosravi

is of order 3p, which is a contradiction since 3 ≁ p in Γ(G). Therefore for every
1 ≤ i ≤ k, we have Pφ

i = Pi. Since φ ̸= 1, there exists 1 ≤ i ≤ k such that φ acts
nontrivially on Pi. Therefore φ induces an outer automorphism of Pi of order p.
Hence p is a divisor of |Out(Pi)|, which is a contradiction. Therefore k = 1 and S
is a nonabelian simple group.
Step 3. The subgroup S is isomorphic to McL, HS or U6(2).

Up to now we prove that there is a nonabelian simple group S such that
S ≤ G/N ≤ Aut(S). Also we know that π(S) ⊆ {2, 3, 5, 7, 11}. Now we consider
each possibility for S, separately.

If S ∼= A5, then π(S) = π(Aut(S)) = {2, 3, 5} and so {7, 11} ⊆ π(N), which is
a contradiction by Step 1. Similarly it follows that S is not isomorphic to L2(7),
L2(8), A6

∼= L2(9), U3(3), U4(2).
If S ∼= L2(11), then π(S) = {2, 3, 5, 11} and so 7 ∈ π(N). Also S ≤ G/N

contains a Frobenius subgroup 11 : 5 of order 55. Now by using Lemma 2.9, G
contains an element of order 35, which is a contradiction. Similarly if S ∼= M11,
M12, U5(2), then L2(11) < S and 7 ∈ π(N). Therefore similarly follows that 5 ∼ 7
in Γ(G), which is a contradiction.

If S ∼= A7, A8
∼= L4(2), L3(4), L2(49), U3(5), A9, J2, S6(2), U4(3), O

+
8 (2), then

L2(7) < S and π(S) = {2, 3, 5, 7}. Therefore 11 ∈ π(N) and also L2(7) contains a
Frobenius subgroup 7 : 3 of order 21. Now Lemma 2.9 implies that G contains an
element of order 33 and so 3 ∼ 11 in Γ(G), which is a contradiction.

If S ∼= A10, A11, A12, S4(7), then 3 ∼ 7 in Γ(S), which is a contradiction.
If S ∼= M22, then since 3 ≁ 5 in Γ(S) it follows that 3 ∈ π(N) or 5 ∈ π(N).
Let 5 ∈ π(N). Let x ∈ G/N , X = ⟨x⟩ and o(x) = 11. Now by using [16]

about irreducible characters of M22 (mod 5), we can see that for every irreducible
character φ of M22 (mod 5) we have ⟨φ|X , 1|X⟩ > 0. Now by using Lemma 2.10, it
follows that 55 ∈ πe(G), which is a contradiction. Therefore 5 ̸∈ π(N). Similarly
we can prove that 3 ̸∈ π(N) and so S ̸∼= M22.

If S ∼= HS, then HS ≤ G/N ≤ Aut(HS). Therefore G/N ∼= HS or G/N ∼=
Aut(HS). In each case there exists a subgroup H of G such that H/N ∼= HS. If
{3, 5, 11} ∩ π(N) ̸= ∅, then let p ∈ {3, 5, 11} ∩ π(N), x be an element of order 7 in
H/N and X = ⟨x⟩. Similar to the last case by using [16] we can see that for every
irreducible character φ of HS (mod p) we have ⟨φ|X , 1|X⟩ > 0, and so G has an
element of order 7p, by Lemma 2.10, which is a contradiction. Similarly it follows
that 7 ̸∈ π(N). Therefore N is a 2-group.

Similar to the above discussion it follows that G/O2(G) ∼= McL. With the
same method we conclude that G/O2(G) ∼= Aut(McL), U6(2) or U6(2).2. We
omit the details of the proof for convenience. Now the proof of this theorem is
completed. □

We note that if k is a natural number, then obviously

Γ(Aut(McL)) = Γ(Z2k ×Aut(HS)) = Γ(Z2k ×HS) = Γ(Z2k ×McL)

= Γ(Z2k ×Aut(McL)) = Γ(Z2k × U6(2)) = Γ(Z2k × U6(2).2).

Remark. W. Shi and J. Bi in [29] put forward the following conjecture:
Conjecture. Let G be a group and M be a finite simple group. Then G ∼= M if
and only if (i) |G| = |M |, (ii) πe(G) = πe(M).
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This conjecture is valid for sporadic simple groups, alternating groups and
some simple groups of Lie type [29]. As a consequence of the main results, we
prove the validity of this conjecture for the groups under discussion.

Theorem 3.13. Let G be a finite group and A be an almost sporadic simple
group, except Aut(J2) and Aut(McL). If |G| = |A| and πe(G) = πe(A), then
G ∼= A.

We note that Theorem 3.13 was proved in [18] by using the characterization of
almost sporadic simple groups with their order components. Now we give a new
proof for this theorem. In fact we prove the following result which is a general-
ization of Shi-Bi Conjecture and so Theorem 3.13 is an immediate consequence of
Theorem 3.14. Also note that Theorem 3.13 is a generalization of a result in [4].

Theorem 3.14. Let A be an almost sporadic simple group, except Aut(J2) and
Aut(McL). If G is a finite group satisfying |G| = |A| and Γ(G) = Γ(A), then
G ∼= A.
Proof. Obviously Aut(O′N) and Aut(J3) are uniquely determined by their prime
graphs. So let A = Aut(M22). By using Theorem 3.7, it follows that G/O2(G) ∼=
M22 or G/O2(G) ∼= Aut(M22). If G/O2(G) ∼= M22, then |O2(G)| = 2 and hence
O2(G) ⊆ Z(G) which is a contradiction, since G has more than one component and
hence Z(G) = 1. Therefore G/O2(G) ∼= Aut(M22), which implies that O2(G) = 1
and hence G ∼= Aut(M22). Let A = Aut(HS). By using Theorem 3.9, it follows
that G/O2(G) ∼= U6(2) or HS, where O2(G) ̸= 1; or G/O2(G) ∼= U6(2).2, McL
or HS.2. By using [6], it follows that 36 divides the orders of U6(2), U6(2).2 and
McL, but 36 ∤ |G|. Therefore G/O2(G) ∼= HS or Aut(HS). Now we get the result
similarly to the last case. For convenience we omit the details of the proof of other
cases. □

Remark. We know that Γ(Aut(J2)) is connected and so we can not use Theorem
A in [31]. Also we can not use the method of the proof of Theorem 3.12. Therefore
we put forward the following question:

Question. Let G be a finite group satisfying Γ(G) = Γ(Aut(J2)). What we can
say about the structure of G?
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