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Abstract

In this paper, we show that an extremal Type II Z2k-code of sufficently large
length n does not exist if k = 2, 3, 4.

1 Introduction

Let Z2k (= {0, 1, 2, . . . , 2k − 1}) be the ring of integers modulo 2k, where k is a positive
integer. We sometimes regard the elements of Z2k as those of Z. A Z2k-code C of length
n (or a code C of length n over Z2k) is a Z2k-submodule of Zn2k. A code C is self-dual
if C = C⊥ where the dual code C⊥ of C is defined as C⊥ = {x ∈ Zn2k | x · y = 0 for
all y ∈ C} under the standard inner product x · y. The Euclidean weight of a codeword
x = (x1, x2, . . . , xn) is

∑n
i=1 min{x2

i , (2k − xi)2}. The minimum Euclidean weight dE(C)
of C is the smallest Euclidean weight among all nonzero codewords of C.

A binary doubly even self-dual code is often called Type II. For Z4-codes, Type II
codes were first defined in [4] as self-dual codes containing a (±1)-vector and with the
property that all Euclidean weights are divisible by eight. Then it was shown in [10] that,
more generally, the condition of containing a (±1)-vector is redundant. Type II Z2k-codes
was defined in [3] as a self-dual code with the property that all Euclidean weights are
divisible by 4k. It is known that a Type II Z2k-code of length n exists if and only if n is
divisible by eight.

In [9], we show the following theorem:

Theorem 1.1 (cf. [9]). Let C be a Type II Z2k-code of length n. If k ≤ 6 then the
minimum Euclidean weight dE(C) of C is bounded by

dE(C) ≤ 4k
⌊ n

24

⌋
+ 4k. (1)

Remark 1.1. The upper bound (1) has been known for the cases k = 1 [13] and k = 2 [4].
For k ≥ 3, the bound (1) was known under the assumption that bn/24c ≤ k − 2 [3].

In [9], we define that a Type II Z2k-code meeting the bound (1) with equality is
extremal for k ≤ 6.

The aim of this paper is to show the following theorem.
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Theorem 1.2. For k ≤ 4, an extremal Type II Z2k-code of length n does not exist for all
sufficiently large n.

Remark 1.2. For the case k = 1, the above result in Theorem 1.2 was shown in [13].

2 Preliminaries

An n-dimensional (Euclidean) lattice Λ is a subset of Rn with the property that there
exists a basis {e1, e2, . . . , en} of Rn such that Λ = Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zen, i.e., Λ consists
of all integral linear combinations of the vectors e1, e2, . . . , en. The dual lattice Λ∗ of
Λ is the lattice {x ∈ Rn | 〈x, y〉 ∈ Z for all y ∈ Λ}, where 〈x, y〉 is the standard inner
product. A lattice with Λ = Λ∗ is called unimodular. The norm of x is 〈x, x〉. A
unimodular lattice with even norms is said to be even, otherwise odd. An n-dimensional
even unimodular lattice exists if and only if n ≡ 0 (mod 8), while an odd unimodular
lattice exists for every dimension. The minimum norm min(Λ) of Λ is the smallest norm
among all nonzero vectors of Λ. For Λ and a positive integer m, the shell Λm of norm m
is defined as {x ∈ Λ | 〈x, x〉 = m}.

The theta series of Λ is

ΘΛ(z) = ΘΛ(q) =
∑
x∈Λ

q〈x,x〉 =
∞∑
m=0

|Λm|qm, q = eπiz, Im(z) > 0.

For example, let Λ be the E8-lattice. Then,

ΘΛ(q) = E4(q) = 1 + 240
∞∑
m=1

σ3(m)q2m

= 1 + 240q2 + 2160q4 + 6720q6 + 17520q8 + · · · ,
where σ3(m) is a divisor function σ3(m) =

∑
0<d|m d

3.
It is well-known that if Λ is an n-dimensional even unimodular lattice, then ΘΛ is a

modular form of weight n/2 for the full modular group SL2(Z) (see [8]). For example,
E4(q) is a modular form of weight 4 for SL2(Z). Moreover the following theorem is known
(see [8, Chap. 7]).

Theorem 2.1. If Λ is an even unimodular lattice, then

ΘΛ(q) ∈ C[E4(q),∆24(q)],

where ∆24(q) = q2
∏∞

m=1(1− q2m)24 which is a modular form of weight 12 for SL2(Z).

We now give a method to construct even unimodular lattices from Type II codes,
which is called Construction A [3]. Let ρ be a map from Z2k to Z sending 0, 1, . . . , k to
0, 1, . . . , k and k+ 1, . . . , 2k− 1 to 1− k, . . . ,−1, respectively. If C is a self-dual Z2k-code
of length n, then the lattice

A2k(C) =
1√
2k
{ρ(C) + 2kZn}
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is an n-dimensional unimodular lattice, where

ρ(C) = {(ρ(c1), . . . , ρ(cn)) | (c1, . . . , cn) ∈ C}.
The minimum norm of A2k(C) is min{2k, dE(C)/2k}. Moreover, if C is Type II, then the
lattice A2k(C) is an even unimodular lattice.

The symmetrized weight enumerator of a Z2k-code C is

C(x0, x1, . . . , xk) =
∑
c∈C

x
n0(c)
0 x

n1(c)
1 · · · xnk−1(c)

k−1 x
nk(c)
k ,

where n0(c), n1(c), . . . , nk−1(c), nk(c) are the number of 0,±1, . . . ,±k− 1, k components
of c, respectively. Then the theta series of A2k(C) can be found by replacing x1, x2, . . .,
xk by

f0 =
∑

x∈2kZ
qx

2/2k, f1 =
∑

x∈2kZ+1

qx
2/2k, . . . , fk =

∑

x∈2kZ+k

qx
2/2k.

respectively. Let C be a Type II Z2k-code of length n. Then, the even unimodular
lattice A2k(C) contains the sublattice Λ0 =

√
2kZn which has minimum norm 2k. We set

ΘΛ0(q) = θ0, n = 8j and j = 3µ + ν (ν = 0, 1, 2), that is, µ = bn/24c. We denote E4(q)
and ∆24(q) by E4 and ∆, respectively. By Theorem 2.1, the theta series of A2k(C) can
be written as

ΘA2k(C)(q) =

µ∑
s=0

asE
j−3s
4 ∆s =

∑
r≥0

|A2k(C)r|qr = θ0 +
∑
r≥1

βrq
r.

Let C be an extremal Type II Z2k-code for 1 ≤ k ≤ 6, namely, dE(C) = 4k(µ + 1). We
remark that a codeword of Euclidean weight 4km gives a vector of norm 2m in A2k(C).
Then we choose the a0, a1, . . . , aµ so that

ΘA2k(C)(q) = θ0 +
∑

r≥2(µ+1)

β∗r q
r.

Here, we set b2s as E−j4 θ0 =
∑∞

s=0 b2s(∆/E
3
4)s. That is, θ0 =

∑∞
s=0 b2sE

j−3s
4 ∆s. Then

µ∑
s=0

asE
j−3s
4 ∆s = ΘA2k(C)(q) =

∞∑
s=0

b2sE
j−3s
4 ∆s +

∑

r≥2(µ+1)

β∗r q
r.

Comparing the coefficients of qi (0 ≤ i ≤ 2µ), we get as = b2s (0 ≤ s ≤ µ). Hence we
have

−
∑

r≥(µ+1)

b2rE
j−3r
4 ∆r =

∑

r≥2(µ+1)

β∗r q
r.

In (2), comparing the coefficients of q2(µ+1) and q2(µ+2), we have

{
β∗2(µ+1) = −b2(µ+1),

β∗2(µ+2) = −b2(µ+2) + b2(µ+1)(24µ− 240ν + 744).
(2)
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All the series are in q2 = t, and Bürman’s formula [15, page 128] shows that

b2s =
1

s!

ds−1

dts−1

((
d

dt
(E−j4 θ0)

)
(tE3

4/∆)s
)

{t=0}
.

In [9], we show that

β∗2(µ+1) > 0 (3)

and we remark that the inequality (3) is a crucial part of the proof of Theorem 1.1.
Finally, we quote the two theorems needed later:

Theorem 2.2 (cf. [14, page 18, Theorem 1.64]). Let η(z) = t1/24
∏∞

m=1(1 − tm) be the
Dedekind eta function, where t = e2πiz, the same for several places and Im(z) > 0. If
f(z) =

∏
δ|N η(δz)rδ with k = (1/2)

∑
δ|N rδ ∈ Z, with the additional properties that

∑

δ|N
δrδ ≡ 0 (mod 24)

and ∑

δ|N

N

δ
rδ ≡ 0 (mod 24),

then f(z) satisfies

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for every

(
a b
c d

)
∈ Γ0(N). Here the character χ is defined by χ(d) :=

(
(−1)ks
d

)
, where

(
·
·

)
is the usual Jacobi symbol and s :=

∏
δ|N δ

rδ .

Theorem 2.3 (cf. [14, page 18, Theorem 1.65]). Let c, d and N be positive integers with
d|N and gcd(c, d) = 1. If f(z) =

∏
δ|N η(δz)rδ satisfying the conditions of Theorem 2.2

for N , then the order of vanishing of f(z) at the cusp c/d is

N

24

∑

δ|N

gcd(d, δ)2rδ

gcd(d, N
d

)dδ
.

3 Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2. Our proof is an analogue of that of [12].
Before we give the proof of Theorem 1.2, we give two lemmas. First, we quote the following
lemma from [12]. In [11], Ibukiyama remarked that in [12, Lemma 1] 2π (p. 70, l. −1)
should be (2π)1/2.
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Lemma 3.1 ([12, Lemma 1], [11, Theorem 12]). Suppose that G(q), H(q) are analytic
inside the circle |q| = 1 and satisfy:

(i) H(q) =
∞∑
s=0

Hsq
s with H0 > 0, H1 > 0, and Hs ≥ 0 for s ≥ 2,

(ii) if F (y) = e2πyH(e−2πy), then F ′(y) = 0 has a solution y = y0 in the range

y > 0, with F (y0) = c1 > 0, F ′′(y0)/F (y0) = c2 > 0, G(e−2πy0) 6= 0.

Then βr, the coefficient of qr in G(q)H(q)r, satisfies

βr ∼ (2π)1/2

(rc2)1/2
G(e−2πy0)cr1, as r →∞.

Second, we show the following lemma:

Lemma 3.2. We set t = q2 = e2πiz and f0(k, t) =
∑

x∈Z t
kx2

. Let Z(k, t) := [f0(k, t)8, E4(t)]/4 =
f0(k, t)8E4(t)′ − (f0(k, t)8)′E4(t), where [ , ] is the Rankin-Cohen bracket and f(t)′ =
t(df/dt). Then, for 1 ≤ k ≤ 4 and a positive real number y, Z(k, e−2πy) 6= 0.

Proof. Let f (resp. g) be a modular form of weight k (resp. `) for a group Γ. Then,
[f, g] := kfg′ − `f ′g is a modular form of weight k + `+ 2 for Γ [6, page 53].

We remark that f0(1, t) is a modular form of weight 1/2 for Γ0(4) [14, page 12].
Therefore, f0(1, t)4 is a modular form of weight 2 for Γ0(4). Moreover, f0(k, t)4 is a
modular form of weight 2 for Γ0(4k) [14, page 28, Proposition 2.22].

• The case of k = 1:

We remark that Z(1, t) ∈ Γ0(4) and define the functions:




∆∞4 (t) = η8(4z)/η4(2z),
∆0

4(t) = η8(z)/η4(2z),
J4(t) = ∆0

4(t)/∆∞4 (t),

Note that J4(t) is an isomorphism from a fundamental domain of Γ0(4) to the
Riemann sphere C ∪ {∞} and a generator of the function field of H∗/Γ0(4), where
H be the upper half plane and H∗/Γ0(4) is a compactification of H/Γ0(4) [5, page
407], [2, page 16]. Then, we have the following equality:

Z(1, t)

∆∞4 (t)5
= 224X4 + 11264X3 + 188416X2 + 1048576X,

where X := J4(t). It is easy to check that there are no positive real roots of the right-
hand side (3). Here, we remark that J4(e2πiz) takes real values on the imaginary
axis. Using Theorem 2.2 and 2.3, we have ∆∞4 (e2πi0) 6= 0 and ∆0

4(e2πi0) = 0, namely
J4(e2πi0) = 0. Therefore, the values of the J4(t) on the imaginary axis are positive
real numbers and we have Z(1, t) 6= 0 on the imaginary axis.

The other cases can be proved similarly. We only mention the functions which could be
used for the proofs of the cases k = 2, 3 and 4.
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• The case of k = 2:





∆∞8 (t) = η4(8z)/η2(4z),
∆0

8(t) = η4(z)/η2(2z),
J8(t) = ∆0

8(t)/∆∞8 (t),

where J8(t) is Hauptmodul for type “8−” [7, page 331].

Z(2, t)/∆∞8 (t)10 =
240X9 + 12928X8 + 283136X7 + 3358720X6

+23883776X5 + 105086976X4 + 281018368X3

+419430400X2 + 268435456X

where X := J8(t).

• The case of k = 3:





∆∞12(t) = η(2z)η−2(4z)η−3(6z)η6(12z),
∆0

12(t) = η6(z)η−3(2z)η−2(3z)η(6z),
J12(t) = (∆0

12(t)/∆∞12(t))1/2,

whereJ12(t) is Hauptmodul for type “12−” [7, page 331].

Z(3, t) =
240X19 + 18000X18 + 616032X17 + 12860832X16

+184227840X15 + 1927623168X14 + 15293558784X13

+94189206528X12 + 456914313216X11 + 1760257683456X10

+5401844490240X9 + 13181394788352X8 + 25400510447616X7

+38149727846400X6 + 43699899727872X5 + 36857648775168X4

+21565588635648X3 + 7815347306496X2 + 1320903770112X

where X := J12(t).

• The case of k = 4:





∆∞16(t) = η(16z)2/η(8z),
∆0

16(t) = η2(z)/η(2z),
J16(t) = ∆0

16(t)/∆∞16(t),
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where J16(t) is Hauptmodul for type “16−” [7, page 331].

Z(3, t) =
240X19 + 13440X18 + 339840X17 + 5259776X16

+56422912X15 + 448143360X14 + 2741043200X13

+13230211072X12 + 51153629184X11 + 159735971840X10

+403939164160X9 + 825259589632X8 + 1351740293120X7

+1750333390848X6 + 1751407132672X5 + 1305938493440X4

+682899800064X3 + 223338299392X2 + 34359738368X

where X := J16(t).

Proof of Theorem 1.2. Using the equation (2) and the fact that θ0 = θj1 where θ1 is
the theta series of the lattice (2kZ)8/

√
2k, we have b2s = −j

s!
ds−1

dts−1

(
E3s−j−1

4 θj−1
1 (θ1E

′
4 −

θ′1E4)(t/∆)s{t=0}, where f ′ is the derivation of f with respect to t = q2.

We show that β∗2(µ+2) < 0 for sufficiently large n. We recall here that µ = bn/24c.
When we set h(t) =

∏∞
r=1(1− tr)−24, we have

b2(µ+1)

= −j
(µ+1)!

dµ

dtµ

(
E2−ν

4 θj−1
1 (θ1E

′
4 − θ′1E4)(h(q))µ+1

)
{t=0} ,

b2(µ+2)

= −j
(µ+2)!

dµ+1

dtµ+1

(
E5−ν

4 θj−1
1 (θ1E

′
4 − θ′1E4)(h(q))µ+2

)
{t=0} .

We show that |b2(µ+2)/b2(µ+1)| is bounded, which implies that β∗2(µ+2) < 0 as n→∞ since

the equations (2) and the inequality (3) hold.
We now apply Lemma 3.1 with G(t) = G1(t) = E2−ν

4 θj−1
1 (θ1E

′
4−θ′1E4)h(t) and H(t) =

h(t). Then, as is shown in [12], and using Lemma 3.2, the hypotheses (i) and (ii) in Lemma
3.1 are satisfied. So,

b2(µ+1) ∼ −(2π)1/2jc
−1/2
2 µ−3/2G1(e−2πy0)cµ1 , as r →∞.

where c1 and c2 are constants. Similarly with G(q) = G2(q) = E5−ν
4 θj−1

1 (θ1E
′
4− θ′1E4)h(q)

and H(q) = h(q).

b2(µ+2) ∼ −(2π)1/2jc
−1/2
2 µ−3/2G2(e−2πy0)cµ+1

1 , as r →∞.

Hence |b2(µ+2)/b2(µ+1)| is bounded (In fact, it approaches a limit of about 1.64 × 105 as
µ→∞).
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Remark 3.1. Using the equations (2), the coefficient β∗2(µ+2) first attains a negative value

as n is about 1.64× 105.

Remark 3.2. For k = 5 and 6, we could not show G(e−2πy0) 6= 0 in the hypothesis (ii) in
Lemma 3.1. The method of Lemma 3.2 does not work because there are no Hauptmoduls
for the groups Γ0(20) and Γ0(24) since the groups are not genus zero.
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