Kumamoto J.Math. Vol.**23** (2010), 37-47

Monodromy of the hypergeometric differential equation of type (3, 6) III $^{-1}$

Keiji Matsumoto, Takeshi Sasaki, Masaaki Yoshida (Received 25 January, 2010) (Accepted June 15, 2010)

Abstract

For the hypergeometric system $E(3, 6; \alpha)$ of type (3, 6), two special cases $\alpha \equiv 1/2$ and $\alpha \equiv 1/6$ have been studied in [MSY] and [MSTY2], respectively. The monodromy group of the former is an arithmetic group acting on a symmetric domain, and that of the latter is the unitary reflection group ST34. In this paper, we find a relation between these two groups.

1 Introduction

For the hypergeometric system $E(3, 6; \alpha)$ of type (3, 6), two special cases $\alpha \equiv 1/2$ and $\alpha \equiv 1/6$ are studied in [MSY] and [MSTY2], respectively. The monodromy group of the former, say M(1/2), is an arithmetic group acting on a symmetric domain, and that of the latter, say M(1/6), is the unitary reflection group ST34. In this paper, we find a relation between these two groups; roughly speaking, M(1/6) is isomorphic to M(1/2) modulo 6.

2 Hypergeometric system $E(3, 6; \alpha)$

Let X = X(3, 6) be the configuration space of six lines in the projective plane \mathbb{P}^2 defined as

$$X(3,6) = \mathrm{GL}_3(\mathbb{C}) \setminus \{ z \in M(3,6) \mid D_z(ijk) \neq 0, 1 \le i < j < k \le 6 \} / H_6,$$

where M(3,6) is the set of 3×6 complex matrices, $D_z(ijk)$ is the (i, j, k)-minor of z, and $H_6 \subset \operatorname{GL}_6(\mathbb{C})$ is the group of diagonal matrices. It is a 4-dimensional complex manifold.

A matrix $z \in M(3, 6)$ defines six lines in \mathbb{P}^2 :

$$L_j: \ell_j := z_{1j}t^1 + z_{2j}t^2 + z_{3j}t^3 = 0, \quad 1 \le j \le 6,$$

where $t^1: t^2: t^3$ is a system of homogeneous coordinates. For parameters $\alpha = (\alpha_1, \ldots, \alpha_6)$ $(\sum \alpha_i = 3)$, we consider the integral

$$\int_{\sigma} \prod_{j=1}^{6} \ell_j(z)^{\alpha_j - 1} dt, \quad dt = t^1 dt^2 \wedge dt^3 + t^2 dt^3 \wedge dt^1 + t^3 dt^1 \wedge dt^2$$

¹Mathematical Subject Classification(2000): 33C80.

 ${\bf Key \ words:} hypergeometric \ differential \ equation, \ monodromy \ group, \ Schwarz \ map, \ unitary \ reflection \ group \$

for a (twisted) 2-cycle σ in $\mathbb{P}^2 - \bigcup L_j$. It is a function in z, but not quite a function on X. So for simplicity, we fix local coordinates on X as

and consider such integrals above as functions in $x = (x^1, x^2, x^3, x^4)$. Then they satisfy a system of linear differential equations on X, called **the hypergeometric differential** equation $E(3, 6; \alpha)$ of type (3, 6). The rank (dimension of local solutions) of this system is six.

This system can be represented, for example, by

$$\begin{aligned} &(\alpha_{234} - 1 + D_{1234})D_1u = x^1(D_{13} + 1 - \alpha_5)(D_{12} + \alpha_2)u, \\ &(\alpha_{234} - 1 + D_{1234})D_2u = x^2(D_{24} + 1 - \alpha_6)(D_{12} + \alpha_2)u, \\ &(\alpha_{234} - 1 + D_{1234})D_3u = x^3(D_{13} + 1 - \alpha_5)(D_{34} + \alpha_3)u, \\ &(\alpha_{234} - 1 + D_{1234})D_4u = x^4(D_{24} + 1 - \alpha_6)(D_{34} + \alpha_3)u, \\ &x^1(\alpha_5 - 1 - D_{13})D_2u = x^2(\alpha_6 - 1 - D_{24})D_1u, \\ &x^3(\alpha_5 - 1 - D_{13})D_4u = x^4(\alpha_6 - 1 - D_{24})D_3u, \\ &x^1(\alpha_2 + D_{12})D_3u = x^3(\alpha_3 + D_{34})D_1u, \\ &x^2(\alpha_2 + D_{12})D_4u = x^4(\alpha_3 + D_{34})D_2u, \\ &x^2x^3D_1D_4u = x^1x^4D_2D_3u, \end{aligned}$$

where $D_i = x^i \partial / \partial x^i$, $\alpha_{i\dots j} = \alpha_i + \dots + \alpha_j$, $D_{i\dots j} = D_i + \dots + D_j$.

3 A compactification \overline{X} of X(3,6)

The configuration space X = X(3, 6) admits an obvious action of the symmetric group S_6 permuting the numbering of the six lines.

The Grassmann duality on the Grassmannian Gr(3, 6) induces an involution * on X. A system of six lines, representing a point of X, is fixed by * if and only if there is a conic tangent to the six lines. The set of fixed points of * on X is a 3-dimensional submanifold of X. Indeed it is isomorphic to the configuration space X(2, 6) of six points on \mathbb{P}^1 .

The action of S_6 and that of * commutes. There is a compactification \bar{X} of X on which $S_6 \times \langle * \rangle$ acts bi-regularly, such that $\bar{X}/\langle * \rangle \cong \mathbb{P}^4$ (bi-regular).

4 Local property of E(3,6)

Let X_{ijk} be the set of points in \overline{X} represented by the system (L_1, \ldots, L_6) of six lines such that L_i, L_j, L_k meet at a point. Then

$$X = \bar{X} - \bigcup_{1 \le i < j < k \le 6} X_{ijk}.$$

The system E(3,6) can be considered to be defined on \overline{X} with regular singularity along X_{ijk} .

The **Schwarz map** $s(\alpha)$ of the system $E(3, 6; \alpha)$ is defined by linearly independent solutions u_1, \ldots, u_6 as

$$s: X \ni x \longmapsto u_1(x): \dots : u_6(x) \in \mathbb{P}^5,$$

It has exponent $\alpha_i + \alpha_j + \alpha_k - 1$ along X_{ijk} .

In the x-coordinates, only 14 among the twenty X_{ijk} are visible; they are given by the equations D(ijk) = 0:

$$\begin{array}{ll} D(135) = x^1, & D(136) = x^2, & D(345) = x^1 - 1, & D(346) = x^2 - 1, \\ D(125) = x^3, & D(126) = x^4, & D(245) = x^3 - 1, & D(246) = x^4 - 1, \\ D(145) = x^1 - x^3, & D(146) = x^2 - x^4, & D(256) = x^3 - x^4, & D(356) = x^1 - x^2, \\ D(156) = x^1 x^4 - x^2 x^3, & D(456) = (x^1 - 1)(x^4 - 1) - (x^2 - 1)(x^3 - 1). \end{array}$$

5 Monodromy groups

For $1 \le i < j < k \le 6$, we introduce 6-vectors a_{ijk} and b_{ijk} :

$$\begin{array}{ll} a_{123} &= (-d_{123}, d_{12}c_3, 0, -d_{1}c_{23}, 0, 0), \quad b_{123} = (1, 0, 0, 0, 0, 0), \\ a_{124} &= (-d_{4}c_{12}, -d_{12}, d_{12}c_{4}, d_{1}c_{2}, -d_{1}c_{24}, 0), \quad b_{124} = (1, 1, 0, 0, 0, 0), \\ a_{125} &= (-d_{5}c_{12}, 0, -d_{12}, 0, d_{1}c_{2}, 0), \quad b_{125} = (1, 1, 1, 0, 0, 0), \\ a_{126} &= (1, 0, 0, 0, 0, 0), \quad b_{126} = (-d_{126}, -d_{1236}/c_{3}, d_{5}c_{126}, 0, 0, 0), \\ a_{134} &= (d_{4}c_{1}, -d_{34}c_{1}, d_{3}c_{14}, -d_{1}, d_{1}c_{3}), \quad b_{135} = (0, 1, 0, 1, 0, 0), \\ a_{135} &= (d_{5}c_{1}, -d_{5}c_{13}, -d_{3}c_{1}, 0, -d_{1}, d_{1}c_{3}), \quad b_{135} = (0, 1, 1, 1, 1, 0), \\ a_{136} &= (-1/c_{2}, c_{3}/c_{2}, 0, 0, 0, 0), \quad b_{136} = (-d_{2}, -d_{1236}/c_{3}, d_{5}c_{126}, -d_{1236}/c_{3}, d_{5}c_{126}, 0), \\ a_{145} &= (0, d_{5}c_{1}, -d_{45}c_{1}, 0, 0, -d_{1}), \quad b_{145} = (0, 0, 1, 0, 1, 1), \\ a_{146} &= (0, 1, -c_{4}, 0, 0, 0), \quad b_{166} = (d_{2}/c_{2}, -d_{1456}, -d_{5}c_{16}, d_{3}c_{1456}, -d_{5}c_{16}, -d_{5}c_{16}), \\ a_{156} &= (0, 0, 1, 0, 0, 0), \quad b_{156} = (d_{2}/c_{2}, -d_{1456}, -d_{156}, d_{3}c_{1456}, d_{4}c_{156}), \\ a_{234} &= (-d_{4}, d_{34}, -d_{3}c_{4}, -d_{234}, d_{23}c_{4}, -d_{234}), \quad b_{234} = (0, 0, 0, 1, 0, 0), \\ a_{235} &= (-d_{5}, d_{5}c_{3}, d_{3}, -d_{5}c_{23}, -d_{2}, d_{2}c_{3}), \quad b_{235} = (0, 0, 0, 1, 1, 0), \\ a_{236} &= (1, -c_{3}, 0, c_{23}, 0, 0), \quad b_{236} = (d_{1}/c_{1}, 0, 0, d_{45}c_{6}, d_{5}c_{6}, 0), \\ a_{245} &= (0, -d_{5}, d_{45}, d_{5}c_{2}, -d_{45}c_{2}, -d_{2}), \quad b_{245} = (0, 0, 0, 0, 1, 1), \\ a_{246} &= (0, 1, -c_{4}, -c_{2}, c_{24}, 0), \quad b_{246} = (d_{1}/c_{1}, d_{1}/c_{1}, -d_{3}c_{456}, d_{5}c_{6}, d_{5}c_{6}), \\ a_{345} &= (0, 0, 0, -d_{5}, d_{45}, -d_{345}), \quad b_{345} = (0, 0, 0, 0, 0, 1, 1), \\ a_{346} &= (0, 0, 0, 1, -c_{4}, c_{34}), \quad b_{346} = (0, 0, 1, c_{1}, 0, -d_{3456}, 0, d_{5}c_{6}), \\ a_{345} &= (0, 0, 0, 0, 1, -c_{3}), \quad b_{356} = (0, d_{1}/c_{1}, 0, -d_{3456}, -d_{4456}), \\ a_{456} &= (0, 0, 0, 0, 1), \quad b_{456} = (0, 0, d_{1}/c_{1}, 0, d_{12}/c_{12}, -d_{456}), \\ a_{456} &= (0, 0, 0, 0, 1), \quad b_{456} = (0$$

where

$$c_j = \exp 2\pi i \alpha_j, \quad c_{ij\dots} = c_i c_j \cdots, \quad d_{ij\dots} = c_{ij\dots} - 1.$$

The circuit matrix around a loop in X going once around the divisor X_{ijk} is given by

$$R_{ijk} = I_6 - {}^t a_{ijk} \cdot b_{ijk}.$$

These R_{ijk} $(1 \le i < j < k \le 6)$ generate the monodromy group $M(\alpha)$ of the system $E(3,6;\alpha)$. The monodromy group keeps the form

	$(d_1 d_2 d_{345})$	$d_1 d_2 d_{45}$	$d_1 d_2 d_5$	0	0	$0 \rangle$
	$c_3 d_1 d_2 d_{45}$	$d_1 d_{23} d_{45}$	$d_1 d_{23} d_5$	$d_1 d_3 d_{45}$	$d_{1}d_{3}d_{5}$	0
$H = d_6 \times$	$c_{34}d_1d_2d_5$	$c_4 d_1 d_{23} d_5$	$d_1 d_{234} d_5$	$c_4 d_1 d_3 d_5$	$d_1 d_{34} d_5$	$d_1 d_4 d_5$
$m = u_6 \times$	0	$c_2 d_1 d_3 d_{45}$	$c_2 d_1 d_3 d_5$	$d_{12}d_3d_{45}$	$d_{12}d_{3}d_{5}$	0
	0	$c_{24}d_1d_3d_5$	$c_2 d_1 d_{34} d_5$	$c_4 d_{12} d_3 d_5$	$d_{12}d_{34}d_5$	$d_{12}d_4d_5$
	$\int 0$	0	$c_{23}d_1d_4d_5$	0	$c_3 d_{12} d_4 d_5$	$d_{123}d_4d_5$ /

invariant:

$${}^{t}\check{R}HR = H, \quad R \in M(\alpha),$$

where i is the operator which changes c_j to $1/c_j$. The above facts are shown in [MSTY1, MSTY2]. Note that the lists in these papers contains errors for a_{136} and a_{145} , so we tabulated here the corrected vectors.

The scalars $a_{ijk} \cdot {}^{t}b_{lmn}$ have the following properties.

Lemma 1. (1) $a_{ijk} \cdot {}^t b_{ijk} = 1 - c_i c_j c_k \ (1 \le i < j < k \le 6).$ (2) For the other entries, we omit explicit expressions: If $a_{ijk} \cdot {}^t b_{lmn}$ is not zero as a rational function of $c_1, \ldots, c_5 \ (c_6 = (c_1 \cdots c_5)^{-1})$, we replace the value simply by z. Then the matrix $AB := (a_{ijk} \cdot {}^t b_{lmn})$ is given as

1	z	z	z	z	z	z	z	0	0	0	z	z	z	0	0	0	0	0	0	0 \
	z	z	z	z	z	z	z	z	z	0	z	z	z	z	z	0	0	0	0	0
	z	z	z	z	0	z	z	z	z	z	0	z	z	z	z	z	0	0	0	0
	z	z	z	z	0	0	z	0	z	z	0	0	z	0	z	z	0	0	0	0
	z	z	0	0	z	z	z	z	z	0	z	z	z	z	z	0	z	z	0	0
	z	z	z	0	z	z	z	z	z	z	0	z	z	z	z	z	z	z	z	0
	z	z	z	z	z	z	z	0	z	z	0	0	z	0	z	z	0	z	z	0
	0	z	z	0	z	z	0	z	z	z	0	0	0	z	z	z	z	z	z	z
	0	z	z	z	z	z	z	z	z	z	0	0	0	0	z	z	0	z	z	z
	0	0	z	z	0	z	z	z	z	z	0	0	0	0	0	z	0	0	z	z
	z	z	0	0	z	0	0	0	0	0	z	z	z	z	z	0	z	z	0	0
	z	z	z	0	z	z	0	0	0	0	z	z	z	z	z	z	z	z	z	0
	z	z	z	z	z	z	z	0	0	0	z	z	z	0	z	z	0	z	z	0
	0	z	z	0	z	z	0	z	0	0	z	z	0	z	z	z	z	z	z	z
	0	z	z	z	z	z	z	z	z	0	z	z	z	z	z	z	0	z	z	z
	0	0	z	z	0	z	z	z	z	z	0	z	z	z	z	z	0	0	z	z
	0	0	0	0	z	z	0	z	0	0	z	z	0	z	0	0	z	z	z	z
	0	0	0	0	z	z	z	z	z	0	z	z	z	z	z	0	z	z	z	z
	0	0	0	0	0	z	z	z	z	z	0	z	z	z	z	z	z	z	z	z
ĺ	0	0	0	0	0	0	0	z	z	z	0	0	0	z	z	z	z	z	z	z

We are interested in the most symmetric cases: $c_1 = \cdots = c_6 =: c$. Since $c^6 = 1$, it is enough to consider

$$c = 1, -1, \omega, -\omega,$$

where ω is a primitive third root of unity. Excluding the trivial case c = 1 (for all i, j, k, we have $a_{ijk} = 0$ or $b_{ijk} = 0$, and so $R_{ijk} = I_6$), there are three cases. By the explicit expression of AB, we see

Lemma 2. When c = -1 and $-\omega$, the entries of the matrix AB marked z are not equal to zero. When $c = \omega$, the diagonal elements of the matrix AB are zero, while the other entries marked z are not zero.

The case $c = \omega$ is of special interest; this will be studied in [SY]. In this paper, we treat the two cases

 $(\alpha_1,\ldots,\alpha_6) =$

Case 0 : 1/2 = (1/2, ..., 1/2) and Case 1 : 1/6 = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6 + 1, 1/6 + 1).

In these cases, the circuit matrix R_{ijk} around the divisor X_{ijk} is a reflection of order 2 with respect to the hermitian matrix H; the vector b_{ijk} can be expressed in terms of a_{ijk} and H as

$$b_{ijk} = 2\bar{a}_{ijk}H/(a_{ijk}, a_{ijk})_H,$$

and so each reflection is expressed by a row 6-vector $a = a_{ijk}$ as

$$R_{ijk} = I_6 - 2^t a \bar{a} H/(a, a)_H,$$

where $(a, a')_H := \bar{a}H^t a'$.

From now on, everything related to the case 0 will have upper index 0, which ones for the case 1 without upper index. For example,

$$c_j^0 = -1, \quad d_j^0 = -2, \quad d_{ij}^0 = 0, \dots,$$

while

$$c_j = -\omega, \quad d_j = \omega^2, \quad d_{ij} = \omega^2 - 1, \dots \quad (\omega^2 + \omega + 1 = 0),$$

and for the case 0, the hermitian matrix is H^0 , the roots are a_{ijk}^0 , and the reflections are R_{ijk}^0 , while for the case 1, they are H, a_{ijk} and R_{ijk} . Lemma 2 implies

Fact 1. For vectors a_{ijk} and a_{iik}^0 , we have

 $a_{ijk} \perp_H a_{lmn}$ if and only if $a_{ijk}^0 \perp_{H^0} a_{lmn}^0$.

Fact 2. ([MSY]) The reflections R_{ijk}^0 generate the principal congruence subgroup $\Gamma(2)$ with respect to H^0 .

Fact 3. ([MSTY2]) The reflections R_{ijk} generate the finite complex reflection group ST34 (Shephard-Todd registration number 34, order 39191040 = $2^9 \cdot 3^7 \cdot 5 \cdot 7$).

These groups $\Gamma(2)$ and ST34 will be studied in the next section.

6 Groups related to ST34 and $\Gamma(2)$

6.1 Arithmetic groups

The invariant form H^0 is an integral symmetric matrix unimodularly equivalent to

$$U \oplus U \oplus (-I_2), \quad U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

where I_k denotes the unit matrix of degree k. The symmetric domain \mathbb{H} is defined to be a component of

$$\{z \in \mathbb{C}^6 \mid {}^t z H^0 z = 0, \; {}^t \bar{z} H^0 z > 0\} \subset \mathbb{P}^5.$$

We set

$$O_{H^0}(\mathbb{Z}) = \{g \in GL_6(\mathbb{Z}) \mid {}^tgH^0g = H^0\},$$

$$\Gamma = \{g \in O_{H^0}(\mathbb{Z}) \mid g \text{ keeps each of two connected components}\},$$

$$\Gamma(2) = \{g \in \Gamma \mid g \equiv I_6 \mod 2\},$$

$$\Gamma(3) = \{g \in \Gamma \mid g \equiv I_6 \mod 3\},$$

$$\Gamma(6) = \Gamma(2) \cap \Gamma(3) = \{g \in \Gamma \mid g \equiv I_6 \mod 6\}.$$

These groups act properly discontinuously on \mathbb{H} . Note that

$$-I_6 \in \Gamma(2), \quad -I_6 \notin \Gamma(3), \Gamma(6)$$

It is shown in [MSY] that the group $\Gamma(2)$ is generated by the reflections

$$R_a^0 = I_6 - 2a \, {}^t a H^0 / (a, a)_{H^0}$$

with respect to the roots a of norm $N(a) := -(a, a)_{H^0} = 1$ and that Γ is generated by reflections with respect to the roots of norm 1 and 2.

Now we define the subgroup $\Gamma(1)$ of Γ generated by reflections with respect to the roots of norm 1 and the products of two reflections with respect to the roots of norm 2. Note that

$$[\Gamma, \Gamma(1)] = 2, \quad \Gamma(2) \subset \Gamma(1).$$

6.2 Finite groups ([Atlas])

The invariant hermitian form H is negative definite. It is shown in [MSTY2] that the twenty reflections R_{ijk} generates a unitary reflection group often called ST34. It is a reflection group in $GL_6(\mathbb{Z}[\omega])$ with structure

$$ST34 = 6.G.2,$$

where

• 6 stands for the cyclic group of order 6,

- G stands for the simple group $PSU_4(3)$,
- 2 stands for the cyclic group of order 2,
- 6 is a normal subgroup of ST34 with $ST34/(6) \simeq G.2$ and
- 6.G is a normal subgroup of ST34 with $ST34/(6.G) \simeq 2$.

Note that 6 corresponds to the group $\langle -\omega I_6 \rangle$ generated by the scalar matrix $-\omega I_6$, and 2 corresponds to det = ± 1 , i.e., $S(ST34)/\langle -\omega \rangle$ is isomorphic to the simple group G, where S(ST34) denotes the subgroup of ST34 with det(q) = 1.

We set

$$GO_6^-(3) = \{g \in GL_6(\mathbb{F}_3) \mid {}^tgHg = H\}.$$

It is known that there exist two kinds of non-degenerate quadratic forms on $(\mathbb{F}_3)^6$ with Witt defect 0 and 1. Our H gives the form with Witt defect 1. It is shown in [Atlas] that this group has the structure

$$GO_6^-(3) = 2.G.(2^2).$$

Note that the center of $GO_6^-(3)$ is $\{\pm I_6\}$ and (2^2) corresponds to the characters det(g)and $\#_2(g)$, where $\#_2(g)$ means the spinor norm which is the number of reflections with $N(v_j) = 2$ modulo 2 when g is expressed as a product of reflections $R_{v_j}^0$ with $N(v_j) = 1, 2$.

We set

$$G\Omega_6^-(3) = \{g \in GO_6^-(3) \mid \#_2(g) = 0\}$$

Since $-I_6 \in \Gamma(2)$, we have $\#_2(-I_6) = 0$. Note that the kernel of the natural map

$$p: \Gamma \to GO_6^-(3)$$

is $\Gamma(3)$.

Relation between the two monodromy groups 7

Proposition 1. The correspondence

$$R_{ijk} \longmapsto R^0_{ijk}$$

induces a homomorphism of ST34/Z onto $\Gamma(2)/N$, where Z is the group generated by ωI_6 (index 2 subgroup of the center $\langle cI_6 \rangle$ of ST34), and N is a normal subgroup of $\Gamma(2)$ included in $\Gamma(6)$.

Proof. We first show that we can choose a set of generators of ST34 as

GenRef := { R_{346} , R_{245} , R_{124} , R_{123} , R_{126} , R_{156} }.

Set

$$a_1 = a_{346}, \ a_2 = a_{245}, \ a_3 = a_{124}, \ a_4 = a_{123}, \ a_5 = a_{126}, \ a_6 = a_{156}$$

and

$$R_1 = R_{346}, R_2 = R_{245}, R_3 = R_{124}, R_4 = R_{123}, R_5 = R_{126}, R_6 = R_{156}$$

Note that the inner products of the six roots are given as

$$((a_i, a_j)_H)_{i,j=1,\dots,6} = \begin{pmatrix} 2 & c & 1 & 0 & 0 & 0 \\ \overline{c} & 2 & 1 & 0 & \overline{c} & 0 \\ 1 & 1 & 2 & \overline{c} & 0 & 0 \\ 0 & 0 & c & 2 & 0 & 0 \\ 0 & c & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{pmatrix}.$$

The six reflections are related as

$$R_1 - R_2 - R_3 - R_5 - R_6$$

 $\setminus 3 /$
 R_4

This diagram reads: If two reflections $R, R' \in \text{GenRef}$ are joined by an edge, then $(RR')^3 = I$, otherwise they commute. The node with label 3 means the following:

$$\{(a_3, a_4)_H(a_4, a_5)_H(a_5, a_3)_H\}^2 = \bar{c}^2 \quad (= \text{ third root of unity}),$$

and

$$(R_3 R_4 R_5)^2 (R_3 R_5 R_4)^2 = I.$$

The structure theorem for ST34 established in [Shephard] asserts that the six reflections with the above relations form a set of generating reflections. Moreover it is shown that a generator of the center of ST34 is given as

$$(R_1 R_2 R_3 R_4 R_5 R_6)^7 = cI.$$

We next show the corresponding relations for the reflections

$$R_1^0 = R_{346}^0, \ R_2^0 = R_{245}^0, \ R_3^0 = R_{124}^0, \ R_4^0 = R_{123}^0, \ R_5^0 = R_{126}^0, \ R_6^0 = R_{156}^0$$

hold modulo 6:

- For $R_a, R_b \in \text{GenRef}$, if $(R_a R_b)^2 = I$ then $(R_a^0 R_b^0)^2 = I$. (Note that we do not need modulo 6.)
- For $R_a, R_b \in \text{GenRef}$, if $(R_a R_b)^3 = I$ then $(R_a^0 R_b^0)^3 \equiv I \mod 6$.
- For the node with label 3, using the same notational convention as above,

$$(R_3^0 R_4^0 R_5^0)^2 (R_3^0 R_5^0 R_4^0)^2 \equiv I \mod 6.$$

• For the center, we have

$$(R_1^0 R_2^0 R_3^0 R_4^0 R_5^0 R_6^0)^7 \equiv -I \mod 6.$$

All the above relations can be shown by *computation*.

44

Theorem 1. (1) $N = \Gamma(6)$ and

 $ST34/\langle \omega I_6 \rangle \simeq \Gamma(2)/\Gamma(6) \simeq \langle \Gamma(2), \Gamma(3) \rangle / \Gamma(3).$

(2) $\Gamma(1) = \langle \Gamma(2), \Gamma(3) \rangle$ and

 $\Gamma/\Gamma(3)\simeq GO_6^-(3), \quad \Gamma(1)/\Gamma(3)\simeq G\Omega_6^-(3).$

Proof. (1) Orders of $ST34/\langle \omega I_6 \rangle$ and $G\Omega_6^-(3)$ are equal to $4 \times |G|$. Consider the following maps

$$ST34 \xrightarrow{\varphi} \Gamma(2)/N \xrightarrow{f_1} \Gamma(2)/\Gamma(6) \xrightarrow{f_2} \langle \Gamma(2), \Gamma(3) \rangle / \Gamma(3) \xrightarrow{f_3} G\Omega_6^-(3),$$

where f_1, f_2 are naturally defined and f_3 is given by the natural projection

$$p: \langle \Gamma(2), \Gamma(3) \rangle \to G\Omega_6^-(3).$$

Note that f_1 is surjective and its kernel is $\Gamma(6)/N$, f_2 is bijective, and that f_3 is injective. Put

 $f = f_3 \circ f_2 \circ f_1,$

and consider its kernel M. Since M is normal in $\Gamma(2)/N \simeq ST34/\langle \omega \rangle$, there are few possibilities. Since the image of f has enough many elements, M does not contain G. We can easily see that $-I_6$ is mapped to $-I_6$ by f. By comparing the orders of $\Gamma(2)/N$ and $G\Omega_6^-(3)$, we conclude $M = I_6$ and f is bijective. Thus we conclude that f_3 is surjective, f_1 is injective and $N = \Gamma(6)$.

(2) It is clear that

$$\langle \Gamma(2), \Gamma(3) \rangle \subset \Gamma(1).$$

By the definitions of $\Gamma(1)$ and $G\Omega_6^-(3)$, we can regard $\Gamma(1)/\Gamma(3)$ as a subgroup of $G\Omega_6^-(3)$ by the natural projection p. Since f_3 is surjective,

$$p(\langle \Gamma(2), \Gamma(3) \rangle) \simeq \langle \Gamma(2), \Gamma(3) \rangle / \Gamma(3) \simeq G\Omega_6^-(3) \supset p(\Gamma(1)).$$

Thus we have $\langle \Gamma(2), \Gamma(3) \rangle \simeq \Gamma(1)$.

8 Concluding remarks

8.1 Geometric interpretation

Since the domain \mathbb{H} is simply connected, the Schwarz map $s(\mathbf{1/2}) : X \to \mathbb{H}$ can be thought of the universal branched covering branching along X_{ijk} with index 2. The Schwarz map $s(\mathbf{1/6})$ also branches along X_{ijk} with index 2. Thus, if $M(\subset \mathbb{P}^5)$ denotes the image of this Schwarz map, the composed map

$$s(1/6) \circ s(1/2)^{-1} : \mathbb{H} \longrightarrow M$$

is single-valued. Moreover, the theorem above implies that this map induces a morphism

$$\mathbb{H}/\Gamma(6) \longrightarrow M.$$

8.2 An elliptic analogue

Recall the original hypergeometric differential equation

$$E(a,b,c): x(1-x)u'' + \{c - (a+b+1)x\}u' - abu = 0,$$

and the Schwarz map

$$s(a,b,c): \mathbb{C} - \{0,1\} \ni x \longmapsto u(x): v(x) \in \mathbb{P}^1,$$

where u and v are linearly independent solutions of E(a, b, c). It is classically well known that the projective monodromy group of E(1/2, 1/2, 1) is conjugate to the elliptic modular group $\Gamma_1(2)$, where

$$\Gamma_1(k) = \{g \in \mathrm{SL}_2(\mathbb{Z}) \mid g \equiv I_2 \mod k\}/\mathrm{center},$$

which is a free group, and acts properly discontinuously and freely on the upper half-plane

$$\mathbb{H}_1 = \{ \tau \in \mathbb{C} \mid \Im \tau > 0 \},\$$

and the Schwarz map s(1/2, 1/2, 1) gives the developing map of the universal covering $\mathbb{H}_1 \to \mathbb{C} - \{0, 1\}$ inducing the isomorphism

$$\mathbb{C} - \{0, 1\} \cong \mathbb{H}_1 / \Gamma_1(2).$$

On the other hand, the projective monodromy group of E(1/6, -1/6, 1/3) is the tetrahedral group. Note that we have isomorphisms

$$\Gamma_1(2)/\Gamma_1(6) \cong \Gamma_1(1)/\Gamma_1(3) \cong$$
 tetrahedral group.

Thus our main theorem can be considered as a generalization of this famous fact. Furthermore, this is not only an analogue: if we restrict the equations E(3, 6; 1/2) and E(3, 6; 1/6)to the singular strata $X_{ijk}, X_{ijk} \cap X_{lmn}, \ldots$, we will end up with a 1-dim stratum, on which the monodromy groups of the two restricted equations (to both of which the Clausen formula

$$_{3}F_{2}(2a, a + b, 2b; a + b + 1/2, 2a + 2b; x) = F(a, b; a + b + 1/2; x)^{2}$$

for the hypergeometric functions is applicable) are related as the above elliptic cases.

Acknowledgment. The authors are grateful to Professor Eiichi Bannai, who kindly helped them work with finite groups.

References

- [Atlas] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, The ATLAS of Finite Groups, Oxford University Press, 1985.
- [MSY] K. Matsumoto, T. Sasaki and M. Yoshida, The monodromy of the period map of a 4-parameter family of K3 surfaces and the Aomoto-Gel'fand hypergeometric function of type (3,6), Internat. J. of Math., 3 (1992), 1–164.

- [MSTY1] K. Matsumoto, T. Sasaki, N. Takayama and M. Yoshida, Monodromy of the hypergeometric differential equation of type (3,6) I, Duke Math. J., 71 (1993), 403–426.
- [MSTY2] K. Matsumoto, T. Sasaki, N. Takayama and M. Yoshida, Monodromy of the hypergeometric differential equation of type (3,6) II, Ann. Scuola Norm. Sup. Pisa, Serie IV., 20 (1993), 617–631.
- [Shephard] G.C. Shephard, Unitary groups generated by reflections, Canad. J. Math., 5(1953), 364–383.
- [ST] G.C. Shephard and J.A. Todd, Finite unitary reflection groups, Canad. J. Math., 6(1954), 274–304.
- [SY] T. Sasaki and M. Yoshida, Schwarz map of E(3,6) for the cubic parameters (4/3, 1/3, 1/3, 1/3, 1/3, 1/3), in preparation.
- [Yo] M. Yoshida, Hypergeometric Functions, My Love, Aspects of mathematics E32, Vieweg Verlag, Wiesbaden, 1997.

Keiji Matsumoto Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan email:matsu@math.sci.hokudai.ac.jp

Takeshi Sasaki Department of Mathematics, Kobe University, Kobe 657-8501, Japan email:sasaki@math.kobe-u.ac.jp

Masaaki Yoshida Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan email:myoshida@math.kyushu-u.ac.jp