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Abstract. There is only one arrangement of n + 3 hyperplanes in general
position in n-dimensional real projective space up to continuous move. For
example, six planes in the space cut out two cubes, six tetrahedrons, twelve
triangular prisms, and six gyozas (a gyoza is bounded by two pentagons,
two triangles and two rectangles); we study how they are arranged. Passing
to the dual situation, for given six points in the space, we consider the
arrangement of the planes passing through three points out of the six; we
study also this arrangement.
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1 Introduction

There is only one arrangement of n+ 2 or less hyperplanes in general position in
n-dimensional real projective space Pn up to projective move. There is only one
arrangement of n+3 or less hyperplanes in general position in Pn up to continuous
move. If n ≥ 2, arrangements of more than n+ 3 hyperplanes are not unique.

Since we consider only the hyperplanes in general position in this paper, we
often omit ‘in general position’.

Five lines in the plane cut out five triangles, five rectangles and a pentagon;
six planes in the space cut out two cubes, six tetrahedrons, twelve triangular
prisms, and six gyozas (a gyoza is bounded by two pentagons, two triangles and
two rectangles); we describe in detail how they are arranged.

Starting from six planes bounding a cube, we move the planes slightly to make
the three pairs of parallel planes non-parallel, and study the happenings.

For given five points in the plane, we consider the arrangement of the lines
passing through two points out of the three; the complete pentagon. For given six
points in the space, we consider the arrangement of the planes passing through
three points out of the six; we study this arrangement.

2 Some generalities

In this section only, we work in the n-dimensional real projective space Pn.
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2.1 Uniqueness of the arrangement of n + 3 hyperplanes in
Pn

In this subsection we prove

Theorem 1 The set of arrangements of n+3 hyperplanes in general position (no
n+ 1 hyperplane meet at a point) in Pn is connected.

We prove the dual statement: The set of arrangements of n + 3 points in Pn

in general position (no n+ 1 points are collinear) is connected.
Any n+2 points in general position in Pn can be transformed projectively into

the n+ 2 points:

1 : 0 : · · · : 0, 0 : 1 : 0 : · · · : 0, . . . , 0 : · · · : 0 : 1, 1 : · · · : 1.

Projective transformations still operate on these points as permutations of n + 2
points. n points out of these n+ 2 points span hyperplanes defined by:

xj = 0, xj = xk (j, k = 1, . . . , n+ 1, j ̸= k).

These hyperplanes divide the space Pn into simplices (if non-empty) defined by

xi1 < xi2 < · · · < xin+1 , {i1, . . . , in+1} ⊂ {0, 1, . . . , n+ 1},

where x0 = 0, xn+1 = 1. The symmetric group on n + 2 letters acts transitively
on these simplices. This completes the proof.

2.2 A unique cubic curve passing through six points in the
space

In this subsection we prove

Theorem 2 For any n + 3 points in general position in Pn, there is a unique
(irreducible rational) curve of degree n passing through these points.

Without loss of generality, we consider n+ 3 points:

x1 : x2 : · · · : xn : xn+1

p0 = 1 : 1 : · · · : 1 : 1,
p1 = 1 : 0 : · · · : 0 : 0,
p2 = 0 : 1 : · · · : 0 : 0,
...

pn = 0 : 0 : · · · : 1 : 0,
pn+1 = 0 : 0 : · · · : 0 : 1,
pn+2 = a1 : a2 : · · · : an : an+1,

where 0 < a1 < · · · < an < an+1. We will find a curve

C : t 7−→ x1(t) : · · · : xn+1(t),
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such that

C(q0) = p0, C(q1) = p1, . . . , C(qn+1) = pn+1, C(r) = pn+2.

If we normalize as

q0 =∞, q1 = 0, q2 = 1,

then the above condition is equivalent to the system

(x1(r) =) c(r − q2)(r − q3)(r − q4) · · · (r − qn+1) = a1,
(x2(r) =) c(r − q1)(r − q3)(r − q4) · · · (r − qn+1) = a2,
(x3(r) =) c(r − q1)(r − q2)(r − q4) · · · (r − qn+1) = a3,
...
(xn+1(r) =) c(r − q1)(r − q2)(r − q4) · · · (r − qn) = an+1,

with n+1 unknowns q3, . . . , qn+1, r and c. From the first and the second equations,
r is solved, from the second and the third equation, p3 is solved,..., and we obtain
a unique set of solutions:

r =
a2

a2 − a1
, qj =

(aj − a1)a2
(a2 − a1)aj

(j = 3, . . . n+ 1)

We do not care the value of c. Since

q3 − 1 =
(a3 − a2)a1
(a2 − a1)a3

, qj − qi =
a1a2

a2 − a1
· aj − ai

ajai
, r − qj =

a1a2
a2 − a1

· 1
a4

we have

q1 = 0 < q2 = 1 < q3 < · · · < qn+1 < r.

3 Chambers cut out by six planes in P3

It is known (cf. [CY]) and not difficult to show that any six planes cut out two
cubes, six gyozas (defined in §3.2), twelve prisms and six tetrahedrons. We describe
in this section how they are situated:

Theorem 3 1. The six gyozas form a solid torus.

2. The two cubes touch each other at two anti-podal points, forming homotopi-
cally a circle (cf. Figure 3).

3. The two cubes fattened by the twelve prisms form another solid torus (cf.
Figure 6).

4. The two solid tori are glued along their rectangular faces; there are six tetra-
hedral openings (cf. Figure 7).
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Every statement, once stated, can be checked anyway; so we do not bother to give
a proof. We make our best effort to explain and describe the happenings.

Thanks to the theorems in the previous section, any six planes in general
position can be considered as the osculating planes of a cubic curve P1 → P3 at
six points (cf. [CY]) . Labeling the pre-images as t1 < t2 < · · · < t6, we label the
corresponding six planes as 1, . . . , 6, respectively. Then every statement implies
the other statements made by application of the shift j → j+1 mod 6. Let Z6 be
the cyclic group generated by this shift. Summing up, we have

Proposition 1 The chambers cut out by six planes 1, . . . , 6 are the Z6-orbits:

two cubes : 12× 34× 56, 23× 45× 61,

twelve prisms : 123× 45, 123× 56, 234× 56, 234× 61, . . . ,

six tetrahedrons : 1234, 2345, . . . ,

six gyozas : 123456, 234561, . . . .

3.1 Restricted arrangements

The intersection line of the planes 5 and 6 is denoted by {56} = {65}, and the
intersection point of the planes 4, 5 and 6 is denoted by {456} = {546} = · · ·. On
plane 6, there are five lines

{16}, {26}, . . . , {56} ⊂ plane 6

surrounding a pentagon 6 : 12345 in this order as is shown in Figure 1. Note that
around the pentagon, there are five triangles

123, 234, 345, 451, 512 ⊂ plane 6,

and five rectangles

12× 34, 23× 45, 34× 51, 45× 12, 51× 23 ⊂ plane 6

3.2 Six gyozas form a solid torus

The six planes carry six pentagons:

1 : 23456, 2 : 34561, . . . , 5 : 61234, 6 : 12345.

There is a polytope bounded by the two pentagons in the planes 5 and 6, two
triangles in the planes 1 and 4, and two rectangles in the planes 2 and 3, which
will be denoted by 123456; this is shown in Figure 2 left. Such a polytope is called
a gyoza.1

Two gyozas 123456 and 612345 are adjacent through the pentagon 5 : 61234.
A gyoza is adjacent to a tetrahedron through a triangular face, to a prism through
a rectangular face. The six gyozas form a solid torus, which are bounded by twelve
triangles and twelve rectangles.

1Gyoza is a familiar Chinese dumpling.
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Figure 1: Five lines 1, 2, 3, 4, 5 in the plane surrounding a pentagon 12345
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Figure 2: Gyozas 123456 and 612345

3.3 Six tetrahedrons

The six tetrahedrons are coded by serial four letters:

1234, 2345, . . . , 6123.

The tetrahedron 1234 is adjacent to the two gyozas: 561234 and 345612, through
planes 2 and 3, respectively. Its face 1 is adjacent to the prism 61× 234, and face
4 to the prism 34× 561.

The other way round: gyoza 123456 is adjacent to two tetrahedrons 5612 and
3456.
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3.4 Two cubes

There are two cubes 12× 34× 56 and 23× 45× 61. They share two vertices {135}
and {246} (see Figure 3); the union of the two cubes is homotopic to a circle.

{135}

{235} {236}

{246}

{136}

{245}

{145} {146}

{135}

{356} {256}

{246}

{124}{134}

{346}

{125}

Figure 3: Two cubes12× 34× 56, 23× 45× 61

On plane 6, there are two rectangles 6 : 12 × 34 and 6 : 23 × 45 (touching at
the point {246}), which are faces of the two cubes (cf. Figure 1). The cubes are
adjacent only to prisms not to any gyozas.

3.5 Twelve prisms

On each plane, there is a unique triangle with vertex {135} or {246}; on plane 6,
the triangle 234 with vertex {246} (see Figures 1, 4). Among the five triangles on
a plane, this special triangle is the intersection of two prisms. There are six such
special triangles, of which both sides are twelve prisms.

6

2 4

3

{246}

{236} {346}

Figure 4: The special triangle 6 : 234 on plane 6

Figure 5 describes the two prisms touching along the triangle 6 : 234. Each
prism is adjacent to a prism through a triangular face, to another prism through
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a rectangular face (marked P ), to a tetrahedron through the other triangular
face, to a cube through a rectangular face (marked C), and to a gyoza through a
rectangular face (marked G).

{245}

{246}

{241}

{235}

{236}

{231} {341}

{346}

{345} {245}

{246}

{241}
2

3

4

5

2 4

3

1

2 4

G

G

P

P

C

C

Figure 5: The two prisms 234× 56 and 234× 61 glued around the triangle 6 : 234

3.6 Prisms around the cubes

Let us enrich the union of the two cubes touching at the two points by the twelve
prisms to make it a solid torus. Figure 6 shows the two cubes and the six prisms

12× 456, 23× 456; 34× 612, 45× 612; 56× 234, 61× 234

around the vertex {246}. In front we can see four rectangles and two triangles on
plane 5.

This solid torus is bounded by twelve triangles and twelve rectangles. Through
each adjacent pair of triangles is a tetrahedron. Let us regard the six tetrahedrons
niches between this solid torus and the solid torus made by the six gyozas. Then
the two solid tori are glued along the bubbled torus weaved by twelve rectangles
and six tetrahedrons as in Figure 7. In the figure, GP means that the rectangle is
(part of) the intersection of a gyoza and a prism, PT means that the triangle is
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Figure 6: Six prisms around the two cubes

(part of) the intersection of a prism and a tetrahedron, and so on. You can see in
the middle-top two adjacent rectangles marked −3−; these are the rectangles on
the plane 3 shown in the middle of Figure 5. The two squares on the right suggest
that the tetrahedron with vertices

{123}, {341}, {124}, {234}

is surrounded by two prisms and two gyozas.
On the boundary of the solid torus shown in Figure 6, we can see a meridian

123 −→ 156 −→ 345 −→ 123

traveling diagonally the six rectangular faces. Tracing this curve on the boundary
of the solid torus made by six gyozas, we find that this curve travels the longitude
twice.

3.7 Both sides of a plane

Each plane is divided into eleven polygons. Each polygon is the intersection of
two polyhedra. Figure 8 shows the kind of these polyhedra, where T stands for a
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Figure 7: Bubbled torus weaved by twelve rectangles and six simplices

tetrahedron, P for a prism, C for a cube, and G for a gyoza. The vertex marked
by a circle is the vertex {135} or {246}. The triangle with this vertex is the special
triangle stated in Section 3.5.
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{135} or {246}CP
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GPPP
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GG
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Figure 8: Eleven polygons on a plane bounding polyandry
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3.8 Switch with respect to a simplex

Consider the arrangement of six planes 1, ..., 6 in the space as in §3. We choose a
simplex, say 3456, and move one of the four planes, say 3, bounding the simplex
so that the simplex reduces to a point, and re-appears again. This move is called
the switch with respect to the simplex 3456. We are interested in the change
of the 26 chambers.

3.8.1 2D case

We start from the arrangement of five lines in the plane bounding the pentagon
12345 in this order. We study the switch with respect to the simplex 345: we move
one of the three lines, say 3, bounding the simplex so that the simplex reduces to a
point, and re-appears again (cf. Figure 9). Note that the new arrangement bound

←→
3

3
4 5

5 4

Figure 9: Switch with respect to the simplex 345

the pentagon 21345 in this order, which is obtained from 12345 by exchanging 1
and 2. By this switch the chambers change as follows:

• The chambers stable under the exchange 1 ↔ 2 do not change; besides
the simplex 345, they are the simplices 123, 512, and the rectangles 12 ×
34, 12× 45.

• Simplices vs rectangles:

234↔ 34× 52, 51× 34↔ 134,

451↔ 45× 13, 23× 45↔ 452.

• A rectangle vs the pentagon:

23× 51↔ 21345, 12345↔ 13× 52.

3.8.2 3D case

• The chambers stable under the exchange 1 ↔ 2 do not change; besides the
simplex 3456, they are the simplices 1234, 6123, the prisms

12× 345, 12× 456, 34× 612, 45× 612, 45× 123, 56× 123,

the cube 12× 34× 56, and the gyoza 345612.
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• Simplices vs prisms:

2345↔ 26× 345, 23× 456↔ 2456,

4561↔ 13× 456, 61× 345↔ 1345.

• Prisms vs gyozas:

23× 561↔ 213456, 123456↔ 13× 256,

61× 234↔ 562134, 561234↔ 26× 134,

• Prisms vs prisms:

34× 561↔ 56× 134, 56× 234↔ 34× 256.

• Gyozas vs gyozas:

234561↔ 265431, 456123↔ 134562.

• A gyoza and a cube:

612345↔ 13× 26× 45, 23× 45× 61↔ 312645.

These changes are caused by the moves shown in Figure 10.

←→a
b

c
a

b

c
d

←→a
b

c
a

b

c

dd

Figure 10: Switch with respect to the simplex 3456; {a, b, c, d} = {3, 4, 5, 6}

3.8.3 nD case

Consider the arrangement of n+ 3 hyperplanes 1, ...,m = n + 3 in the projective
space Pn as in [CY], where the chambers are labeled by ± sequences with length
m. We perform the switch with respect to the simplex 3 · · ·m.

• The chambers stable under the exchange 1↔ 2 do not change.

• Any other chamber changes as follows: if ϵ1 · · · ϵm denotes its label, then
apply the exchange 1↔ 2 to the chamber with label

−ϵ1 − ϵ2 ϵ3 · · · ϵm.



30 K. Cho, K. Yada and M. Yoshida

4 Displacement of six planes bounding a cube

The reader might think that to get six planes in general position, one has only to
put a cube, bounded by six planes, in the space and move the planes slightly to
make the three pairs of parallel planes non-parallel. It is not too easy to see how
the chambers are deformed; in this section we describe this move.

4.1 Five lines on the plane

In this section we play with a baby model. We start from a square (two pairs of
parallel lines: L,R; U,D) and the line ∞ at infinity (Step 0). We have two triple
points X and Y at infinity. Figure 11 shows them and the intersection points.

Step 1: Move U and D to kill the triple point X, then the new triangle ex1x2

comes out (Figure 12).

Step 2: Move L and R to kill the triple point Y , then the new triangle fy1y2
comes out (Figure 13).

X

Y

a b
c d

X

Y

a b

c d

a b X c d X a c Y

b d X Y

∞

Y

U

D

L R

U D L

R

Figure 11: A square

During this process, some triangles change into squares, and a square changes
into a pentagon:
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Y

a b
c d

Y

a b

c d

a b c d a c Y

b d Y

∞

ee

e ex1x2

x1 x2Y

x1

x2

U

DL

R

U D L

R

Figure 12: Move U and D, the triangle ex1x2 comes out

Step0 Step1 Step2

S(abcd) → S(abcd) → S(abcd),

T (aXY ) ⇒ S(aex1Y ) → S(aex1y2),
T (bXY ) → T (bx2Y ) → T (bx2y1),
T (cXY ) ⇒ S(cex2Y ) ⇒ P (cex2y1f),
T (dXY ) → T (dx1Y ) ⇒ S(dx1y2f),

T (acX) → T (ace) → T (ace),
T (cdY ) → T (cdY ) → T (cdf),
T (dbX) ⇒ S(dbx2x1) → S(dbx2x1),
T (baY ) → T (baY ) ⇒ S(bay2y1, )

T (ex1x2) → T (ex1x2),

T (fy1y2),

where T, S, P stand for triangle, square, and pentagon, respectively; for example,
S(abcd) is a square (rectangle) with vertices a, , b, c, d in this order.
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a
b

c

d

Y

a
b

c

d

a b c d a c

b d

∞

ee

e ex1x2

x1 x2

f

x1

x2

y1 y2

f y1 y1 y2

f y2

f

五

U

D

L

R

U D L

R

Figure 13: Move L and R, the triangle fy1y2 comes out

4.2 Starting from a cube

In the space, put a cube C bounded by pairwise parallel planes

U, D; L, R; F, B;

they are initial letters of up, down, left, right, front and back, respectively. We
name the eight vertices as

b = ULF, a = ULB, c = URF, d = URB,

f = ULF, e = ULB, g = URF, h = URB,

where ULF = U ∩ L ∩ F (see Figure 14). The six planes divide the space into
chambers; every chamber other than C has a face or an edge or a vertex in common
with C.

• a pyramid: a face in common with C; four faces meet at a point in infinity,

• a tetrahedron: an edge in common with C; two faces meet the plane at
infinity along an edge,

• a tetrahedron: a vertex in common with C; it meets the plane at infinity
along a triangle.
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a d

h

gf

b

e

X Y

Z

R, LF, B

U, D
L

R

U

F

B

D

c

Figure 14: The cube and the plane at infinity

The sphere at infinity (the celestial sphere) is triangulated to be an octahedron
which is dual to the cube C. Intersections of the six planes and the plane at
infinity in P3 is shown in Figure 14. Note that the two tetrahedrons with a pair of
antipodal vertices in common with C are glued along the triangle at infinity, and
form a double tetrahedron. Thus the number of chambers in P3 cut out by the six
planes is

1 + 6 + 12 + 8/2 = 23.

Figure 15 shows the restricted arrangements on the six planes. Each plane is
compactified by adding circles; identification of antipodal points gives projective
planes. We displace the six planes in three steps 1, 2, 3, killing the quadruple points
Z,X, Y , respectively (see Figure 16). At each step, a new tetrahedron appears,
and the process will end up with 13 + 3 = 26 chambers, as expected. We study

• restricted arrangements,

• the intersection of the six planes and the plane at infinity,

• kind of chambers cut out by the six planes.

The change of the intersection of the six planes and the plane at infinity is described
in Figure 16. Here the points

w, ζ1, ζ ′1, ζ2, ζ ′2, v

are intersections of two planes and the plane at infinity, not of three planes, i.e.
not the vertices of the arrangement.

In the course of the deformation process, we keep the two planes U and D being
parallel, because any two planes intersect anyway, and we can assume without loss
of generality that the intersection line is at infinity.
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U RB

D F L

X

X

Y

Y

X

X

Y

Y

a d
cb

e h
gf

a d
he

b c
gf

c d

a b

Z

Z Z

Z

g h

fe

Figure 15: Restricted arrangements 0

4.3 Step 1

We let B lean forward, and F lean backward; the two planes B and F intersect
above the cube C. See Figure 17. The quadruple point Z is resolved, and the
23 chambers change their shape as is stated in detail later. The new tetrahedron
ijz1z2 appears.

4.4 Step 2

We move F and B to the left as in Figure 18. The quadruple point X is resolved,
and the new tetrahedron klx1x2 appears.

4.5 Step 3

Finally, we move L and R to intersect in front of C as in Figure 19. The
quadruple point Y is resolved, and the new tetrahedron opy1y2 appears.
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X

Y

R, L

U, D

B

F

z2

z1

Y

R, L

U, D

B

F

z2
z1

x1

x2

w

U, D

B

F
x1

x2

w

y2 y1

ζ1
ζ ′1

vζ ′2

ζ2
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Figure 20: Polyhedra 1

4.6 Polyhedra and their possible deformation

During the deformation from Step 0 to Step 3, the following polyhedra appear:

T: tetrahedron, Py: Pyramid, Pr: Prism,

DT: double tetrahedron, C’, N, G’, C: cube, G: gyoza,

which are shown in Figures 20, 21. They will be denoted respectively by

T (A,B,C,D), Py

A − D
| E |
B − C

 , P r

A D
E F
B C

 ,

DT

 A
B C E

D

 , N

A − F
B \ E
C − D

 ,

C ′
(
A B F
G C D E

)
, G′

B A E
| F G
C − D

 ,

C

(
A B H F
G C D E

)
, G

B A E
F G H
C − D

 ,

where quadruple points are printed in boldface. In the course of killing the quadru-
ple points, the polyhedra change their shape as is shown in Figures 22 and 23.
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Six points/planes in the 3-space 41

DT

N

G′

GC

C ′

Figure 23: Change of shapes II



42 K. Cho, K. Yada and M. Yoshida

4.7 Deformation

We describe the deformation of the 22 chambers according to the change:

Step 0 −→ Step 1 −→ Step 2 −→ Step 3.

The head of each formula of deformation is the intersection of the chamber and
the cube C.

We explain, for instance, the first one ‘Face abcd’ and the last one ‘Vertices
d and f ’:

The pyramid with rectangular bottom abcd and with vertex Z changes to a
prism by the first move resolving the quadruple point Z at infinity. This prism
does not change by the second and the third move.

The tetrahedron T (d,X, Y, Z) with vertex at d and with bottom triangle XY Z
(in the plane at infinity) is glued along this triangle with the tetrahedron T (f, Z, Y,X)
to form a double tetrahedron DT with three quadruple points {X,Y, Z}. By the
first move, the quadruple point Z is resolved and it changes to a polyhedron N
with two quadruple points {X,Y }. By the second move, X is resolved and N
changes to a polyhedron C ′ with a quadruple point Y . By the third move Y is
resolved and C ′ changes to a gyoza G.

Face abcd

Py

 a − d
| Z |
b − c

→ Pr

 a d
j i
b c

→ ibid→ ibid

Face efgh

Py

 f − e
| Z |
g − h

→ Pr

 f e
z1 z2
g h

→ ibid→ Pr

 f e
n m
g h


Face aefb

Py

 e − a
| X |
f − b

→ ibid→ Pr

 e a
ℓ k
f b

→ ibid

Face cghd

Py

 c − d
| X |
g − h

→ ibid→ Pr

 c d
x1 x2

g h

→ ibid

Face bfgc

Py

 f − b
| Y |
g − c

→ ibid→ ibid→ Pr

 f b
p o
g c


Face aehd

Py

 a − d
| Y |
e − h

→ ibid→ ibid→ Pr

 a d
y1 y2
e h


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Edge ab

T (a, b,X,Z)→ T (a, b,X, j)→ T (a, b, k, j)→ ibid

Edge cd

T (c,X, d, Z)→ T (c,X, d, i)→ Pr

x1 c
w i
x2 d

→ ibid

Edge bc

T (b, c, Y, Z)→ Pr

 b j
Y z2
c i

→ ibid→ Pr

 b j
o m
c i


Edge ad

T (a, d, Y, Z)→ Pr

 a j
Y z1
d i

→ ibid→ G

 j a y1
i d y2
n − p


Edge ef

T (e, f,X,Z)→ Pr

 e z2
X i
f z1

→ ibid→ Pr

 e m
ℓ i
f n


Edge gh

T (g, h,X,Z)→ Pr

 g z1
X j
h z2

→ G

x1 g z1
x2 h z2
k − j

→ G

x1 g n
x2 h m
k − j


Edge fg

T (f, g, Y, Z)→ T (f, g, Y, z1)→ ibid→ T (f, g, p, n)

Edge eh

T (e, h, Y, Z)→ T (e, h, Y, z2)→ ibid→ Pr

 e y1
m o
h y2


Edge bf

T (b, f,X, Y )→ ibid→ Pr

 b k
Y x2

f ℓ

→ G

 k b o
ℓ f p
x2 − y2


Edge ae

T (a, e,X, Y )→ ibid→ Pr

 a k
Y x1

e ℓ

→ Pr

 a k
y1 x1

e ℓ


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Edge cg

T (c, g,X, Y )→ ibid→ T (c, g, x1, Y )→ Pr

 c o
x1 y1
g p


Edge dh

T (d, h,X, Y )→ ibid→ T (d, h, x2, Y )→ T (d, h, x2, y2)

Vertices b and h

T (b,X, Y, Z) + T (h,Z,X, Y ) = DT

 b
X Y Z

h

→ N

X − h
j \ z2
b − Y


→ G′

 h z2 j
| Y b
x2 − k

→ G

 h m j
y2 o b
x2 − k


Vertices a and g

T (a,X, Y, Z) + T (g, Z,X, Y ) = DT

 a
X Y Z

g

→ N

X − g
j \ z1
a − Y


→ G′

 g x1 k
| Y a
z1 − j

→ G

 g x1 k
p y1 a
n − j


Vertices c and e

T (c,X, Y, Z) + T (e, Z,X, Y ) = DT

 c
X Y Z

e

→ N

X − e
i \ z2
c − Y


→ C ′

(
i c z2
ℓ x1 Y e

)
→ C

(
c x1 ℓ i
o y1 e m

)
Vertices d and f

T (d,X, Y, Z) + T (f, Z, Y,X) = DT

 d
X Y Z

f

→ N

X − f
i \ z1
d − Y


→ C ′

(
i d z1
ℓ x2 Y f

)
→ G

 d i n
x2 ℓ f
y2 − p


5 Six points in the space

If we pass to the dual situation, six planes (in general position) become six lines
(in general position). In this section we study the planes spanned by three points
out of the six; there are twenty of them.
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5.1 Five points in the plane

Before going further, we would like to see the situation of five points on the plane
P2. Any four points in general position are projectively moved to

p0 = 1 : 1 : 1, p1 = 1 : 0 : 0, p2 = 0 : 1 : 0, p3 = 0 : 0 : 1.

The lines joining two of them are given by

xj = 0, xi − xj = 0, 1 ≤ i, j ≤ 3, i ̸= j.

They divide the plane P2 into (5− 1)!/2 = 12 triangles coded by 5-juzus2; permu-
tations of five letters, say, {0, 1, 2, 3, 4} with the identifications such as

01234 = 12340 = · · · = 40123 = 43210 = · · · .

Indeed if we put the fifth point p4 in one of these triangles then there is a unique
conic passing these five points (Theorem 2 in §2.2) according to the order of the
corresponding 5-juzu. For example, the triangle 0 ≤ x1 ≤ x2 ≤ x3 = 1 corresponds
to the juzu 01234. If we join the points p0 and p1, p1 and p2,. . . , p4 and p0, then
these five lines are in general position, and cut out a unique pentagon, five triangles
and five rectangles. If we join two points out of the five points (there are five lines
anew) then regardless of the position of p4 in the triangle, the intersection pattern
of these ten lines is the same (see Figure 24). From this figure, we can see that
there are four kinds of arrangements of six points (lines) in general position (see
[Yo]). Note that the new five lines cut a rectangle into three pieces (a rectangle and
two triangles), and the pentagon into eleven pieces (a pentagon and ten triangles),
while they do not cut a triangle. Important remark: more than two lines meet
only at p0, · · · , p4.

5.2 Six points in the space; Results

We work on the 3-space P3. We are interested in the intersection pattern of the
planes passing through three points out of the six points (there are fourteen planes
anew). Not like the five points on the plane stated above, four such planes happen
to meet besides the given six points.

Proposition 2 Let p0, . . . , p5 be six points in general position in P3, and Hijk

the plane passing through pi, pj and pk. Four such planes never meet at a point
besides the given six points unless the four planes are {H012, H234,H035,H145}, up
to re-numbering.

Any five points in general position are projectively moved to

p0 = 1 : 1 : 1 : 1, p1 = 1 : 0 : 0 : 0, . . . p4 = 0 : 0 : 0 : 1.

The planes passing through three of them are given by

xj = 0, xi − xj = 0, 1 ≤ i, j ≤ 4, i ̸= j.
2Juzu is a Buddhism version of Christian rosary; a mathematics terminology in Japanese.
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Figure 24: Right and left are combinatorially the same

They divide the space P3 into (6− 1)!/2 = 60 tetrahedrons coded by 6-juzus. For
example, the tetrahedron defined by

0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 = 1

corresponds to the 6-juzu 01234. If we put the sixth point p5 in one of these
tetrahedron then there is a unique cubic curve passing through these six points
(Theorem 2 in §2.2) according to the order of the corresponding 6-juzu. Note
that the six planes passing through {p0, p1, p2}, {p1, p2, p3},. . . , {p5, p0, p1} are in
general position.

Theorem 4 Let the five points p0, . . . , p4 be above, and p5 = a1 : a2 : a3 : a4 in
the simplex

T : 0 < a1 < a2 < a3 < a4 = 1.

Four planes in {Hijk | 0 ≤ i < j < k ≤ 5} meet at a point besides p0, . . . , p5 only
in the following cases:

1. H012 ∩H234 ∩H045 ∩H135 : f1 := a2a3 − a1a2 − a2a4 + a1a4 = 0,

2. H012 ∩H244 ∩H034 ∩H135 : f2 := a2a3 − a1a4 = 0,

3. H014 ∩H025 ∩H135 ∩H234 : f3 := a4a3 + a1a2 − a1a4 − a2a4 = 0,

4. H023 ∩H045 ∩H124 ∩H135 : f4 := (a2 − a4)a3 − (a1 − a4)a2 = 0,

The four surfaces Sj : fj = 0 meet at a point

a1 : a2 : a3 : a4 =
1

3
:
1

2
:
2

3
: 1,

and they divide the simplex T into twelve chambers.
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The above point p5 can be characterized as

Proposition 3 There is a unique cubic curve passing through p0, . . . , p5 in this
order. These form a regular hexagon if and only if p5 is the point stated in the
previous theorem.

We prove the above statements in the following subsections.

5.3 The twenty planes passing three points out of the six

Let the sixth point p5 be coordinatized by a1 : · · · : a4, and Hijk denote the plane
passing through the points pi, pj and pk. The twenty planes Hijk are defined as
follows

H012 : 0 0 1 −1
H013 : 0 1 0 −1
H014 : 0 1 −1 0
H023 : 1 0 0 −1
H024 : 1 0 −1 0
H034 : 1 −1 0 0
H123 : 0 0 0 1
H124 : 0 0 1 0
H134 : 0 1 0 0
H234 : 1 0 0 0
H015 : 0 a3 − a4 a4 − a2 a2 − a3
H025 : a3 − a4 0 a4 − a1 a1 − a3
H035 : a2 − a4 a4 − a1 0 a1 − a2
H045 : a3 − a2 a1 − a3 a2 − a1 0
H125 : 0 0 −a4 a3
H135 : 0 −a4 0 a2
H145 : 0 a3 −a2 0
H235 : −a4 0 0 a1
H245 : a3 0 −a1 0
H345 : a2 −a1 0 0,

where for example H012 is defined by x3 − x4 = 0.

5.4 Four planes meeting at a point

By computing 4×4-minors of the above table, we find that four planes among the
twenty can meet at a point besides p0, . . . , p5, not like the ten lines in the plane
shown in Figure 24, and that this can happen if the set of four planes belongs to
the S6-orbit (consists of thirty sets) of

{H012, H234, H035, H145}.

Let d(012, 234, 035, 145) denote the determinant of the equations of the above four
planes modulo multiplicative constant and the factors ai − aj(i ̸= j). They are
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given as

d(012, 234, 035, 145) : (a1 − a2)a3 − (a4 − a1)a2,
d(012, 234, 045, 135) : a2a3 − a1a2 − a2a4 + a1a4 = f1,
d(012, 235, 035, 145) : a1a3 − a2a4,
d(012, 235, 045, 134) : a1a3 − a1a2 + a2a4 − a1a4,
d(012, 244, 034, 135) : a2a3 − a1a4 = f2,
d(012, 235, 035, 134) : (a2 − a1)a3 − a1(a2 − a4),
d(013, 024, 145, 235) : a4a3 − a1a2,
d(013, 025, 145, 234) : (a1 + a2 − a4)a3 − a1a2,
d(013, 045, 124, 235) : (a1 − a4)a3 − a1(a2 − a4),
d(013, 045, 125, 234) : (−a2 + a1 + a4)a3 − a1a4,
d(014, 025, 135, 234) : a4a3 + a1a2 − a1a4 − a2a4 = f3,
d(014, 035, 125, 234) : (a1 − a4)a3 − (a1 − a2)a4,
d(023, 045, 124, 135) : (a2 − a4)a3 − (a1 − a4)a2 = f4,
d(023, 045, 125, 134) : (a2 − a1 + a4)a3 − a2a4,
d(024, 045, 125, 134) : (a4 − a2)a3 − (a1 − a2)a4;

there are fifteen of them. The remaining fifteen sets are the complementary ones,
which give the same equation, for example d(345, 015, 124, 023) coincides with
d(012, 234, 035, 145).

5.5 The sixth point in a tetrahedron

Without loss of generality, we assume that the sixth point p5 = a1 : a2 : a3 :
a4 (a4 = 1) is in the tetrahedron T defined by

0 < a1 < a2 < a3 < a4 = 1.

Then only four (out of fifteen) surfaces defined by d(∗, ∗, ∗) pass through T ; they
are f1, . . . , f4 shown above. The (non-singular) surfaces S1 : f1 = 0, . . . , S4 : f4 = 0
in T meet at a point

a1 : a2 : a3 : a4 =
1

3
:
1

2
:
2

3
: 1,

and cut T into twelve pieces. Indeed if we set

a1 = y, a2 = x, a3 = c,

then the surfaces S1, . . . , S4 are given by

y =
x(c− 1)

x− 1
, y = cx, y =

x− c

1− c
, y = x+ 1− x

c
, (0 < y < x < c < 1)

respectively; we cut by level planes c =constant and easily draw sections of
T (Figure 25).
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Figure 25: Sections of the simplex T : 0 < y < x < c, for c =
0.8, 0.7, 2/3, 0.6, 0.5, 0.2

5.6 Regular m-gon

Set ζ = exp 2πi/m. On the complex z-plane, we consider a regular m-gon with
vertices

z = 1, ζ, · · · , ζm−1;

this is invariant under the rotation r : z 7→ ζz. The transformation

x =
z − 1

z − ζm−1
· ζ − ζm−1

ζ − 1
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takes the unit circle in the z-plane into the real x-line, and send the vertices as

x(1) = 0, x(ζ) = 1, . . . , x(ζm−2) = |1 + ζ|2, x(ζm−1) =∞.

Since the inverse map is given by

z =
(1− ζm−1)x− ζ + ζm−1

(ζ − 1)x− ζ + ζm−1
,

the transformation r in x-variable is given by

R(x) =
|ζ + 1|2

|ζ + 1|2 − x
.

By using this transformation, we can easily show that when m = 6, the image of
the vertices are

x = 0, 1,
3

2
, 2, 3, ∞.

5.7 The cubic curve passing through the six points

In this section we find the cubic curve

C : t 7→ C(t) = x1(t) : x2(t) : x3(t) : x4(t) ∈ P3

passing through the six points p0, . . . , p4 and

p5 = a1 : · · · : a4 =
1

3
:
1

2
:
2

3
: 1,

the intersection points of the four surfaces S1, . . . , S4. Since 0 < a1 < · · · < a4,
the six points will be arranged on C in this order. Let us normalize as

C(∞) = p0, C(0) = p1, C(1) = p2

and put
C(p) = p3, C(q) = p4, C(r) = p5.

Our task is to solve the system:

(x1(r) =) c(r − 1)(r − p)(r − q) = a1,
(x2(r) =) cr(r − p)(r − q) = a2,
(x3(r) =) cr(r − 1)(r − q) = a3,
(x4(r) =) cr(r − 1)(r − p) = a4,

with unknown p, q, r, c (1 < p < q < r). This can be solved as

p =
3

2
, q = 2, r = 3, c = 9.

This shows that the surfaces S1, . . . , S4 meet at a point if and only if the six points
p0, . . . , p5 form a regular hexagon on the cubic curve; this sounds quite natural.
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5.8 The twenty planes when the six points form a regular
hexagon

When the six points p0, . . . , p5 form a regular hexagon in this order as above,
we show in Figure 26 the plane H012 with the intersection lines with the other
nineteen planes.

• five thick lines are intersections with the five planesH123,H234, H345, H450,H501.,

• three bullets stand for p0, p1 and p2,

• the line joining p0 and p1 is the intersection of three planes; same for {p1, p2}
and for {p2, p0},

• if we move p5 slightly out of the surfaces S1, . . . , S4, then all the multiple
points other than p0, p1 and p2 disappear.

02

1

Figure 26: Intersection with other 19 planes
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