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Abstract. In the present paper we show that the design equations for the
binary Golay code G24 of length 24 will serve to establish that the set of
codewords of weight 8 in the code G24 forms an association scheme, and we
derive that a distance regular graph structure from the obtained association
scheme. The derived distance regular graph is turned out to be the one
already shown by Brouwer-Cohen-Neumaier. They call it as Witt graph.
We would like to point out that the results of our present research do not
use finite group theory or sporadic geometry.

1 Introduction

It is known that the set of codewords of weight 8 (resp. 12, 16) forms a
5-design (a special case of a theorem of Assmus-Mattson [1] ). By the works of
Mendelsohn and Wilson the conditions for design are reformulated as the relations
among the cardinalities of the intersections of certain subsets of a finite set X (c.f.
[11],[12],[13],[15],[16]).

Later H.Koch1 [7],[8],[9] obtained the formulas2 that are essentially equivalent
to the formulas formulated in the line of Mendelsohn and Wilson by using the
modular form theory and the lattice theory. Koch obtained one further formula
which is not obtainable from the Assmus-Mattson Theorem. The design equations
for binary linear doubly self-dual codes originally serves for establishing 5-designs
or 3-designs or etc.

Mathematical Subject Classification (2010): Primary 94B25,Secondary 05E30
Key words: binary Golay code, design equations, association scheme

1Koch attributes the design equations formulated by him to B. Venkov, but Venkov did not
publish any of the formula in the form of research papers.

2One should remark that Koch’s formulas are valid only for binary linear extremal codes.
For the designs coming from other types of combinatorial structures one can not apply Koch’s
formulas directly.
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In the present paper we show that the design equations for the binary Golay
code G24 of length 24 will serve to establish that the set of codewords of weight 8
in the code G24 forms an association scheme, and we derive that a distance regular
graph structure from the obtained association scheme. The derived distance regu-
lar graph is turned out to be the one already shown by Brouwer-Cohen-Neumaier
[3], Chapter 11, Section 4. They call it as Witt graph. We would like to point out
that the results of our present research do not use finite group theory or sporadic
geometry.
Acknowledgement: The author expresses his thanks to the referee of the present
paper for correcting some numerical errors and some typographic errors and im-
proving some proofs of the lemmas and the propositions and others.

2 Some Basic Definitions

Let F2 = GF (2) be the field of 2 elements. Let V = Fn
2 be the vector space of

dimension n over F2 . A linear [n, k] code C is a vector subspace of V of dimension
k. An element x in C is called a codeword of C. Usually an [n, k] code is defined
by giving k linearly independent vectors u1,u2, · · · ,uk of length n. The matrix
formed by 

u1

u2

. . .
uk


is called the generator matrix of the code. For instance the matrix

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


is a generator matrix of the Hamming [8, 4] code H8.
In V , the inner product, which is denoted by x · y for x,y in V , is defined as
usual. The dual code C⊥ of C is defined by

C⊥ = {u ∈ V | u · v = 0, ∀v ∈ C}.

The code C is called self-orthogonal if it satisfies C ⊆ C⊥, and the code C is
called self-dual if it satisfies C = C⊥.

Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be two vectors in V , then the
Hamming distance d(x,y) between x and y is defined to be the number of i′s such
that xi ̸= yi for 1 ≤ i ≤ n. The Hamming weight wt(x) of x is the number of
non-zero coordinates xi of x. The intersersection x ∗ y of x and y is defined to be
the number of i′s such that xi = yi = 1 for 1 ≤ i ≤ n. There is a relation which
connects the weight with the intersection:

(2.1) wt(x+ y) = wt(x) + wt(y)− 2x ∗ y.
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It is also well-known that

(2.2) d(x,y) = wt(x+ y).

The minimum weight d = d(C) of a code C is defined by

min
0̸=u∈C

wt(u).

A homogeneous weight enumerator of a code C is a polynomial in two independent
variables x, y defined by

WC(x, y) =
∑
u∈C

xwt(u)y(n−wt(u)).

The weight enumerator WC(x, y) of a code C carries important informations on
the code C. It is well known that the weight enumerator of the Hamming code
H8 is

WH8(x, y) = x8 + 14x4y4 + y8,

and d(H8) = 4.
In a self-dual binary code each codeword has even weight. If each codeword has
weight that is divisible by 4 then the code is called doubly even. Doubly even
self-dual codes exist only when the length n of the code is a multiple of 8. The
Hamming code H8 is a doubly even self-dual code of length 8. Another famous
doubly even self-dual code is the binary Golay code G24 of length 24. Here we give
a generator matrix of G24:

1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0



.

The weight enumerator WG24(x, y) of the Golay code G24 is known to be

WG24(x, y) = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24.

3 Design Equations for binary Golay code G24

In a sequence of papers [7],[8],[9] H. Koch develops a method to obtain the
relations between intersection of codewords of weight 8 in doubly even self-dual
extremal codes of various lengths. In the present paper we only need the equations
for the set of codewords of weight 8.
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Proposition 3.1 Let G24 be the binary Golay code and C8 be the set of the code-
words of weight 8 in the Golay code G24, then we have

(3.1)
∑
ξ∈C8

(ξ ∗ a) = 253(a ∗ a),

(3.2)
∑
ξ∈C8

(ξ ∗ a)2 = 77(a ∗ a)2 + 176(a ∗ a),

(3.3)
∑
ξ∈C8

(ξ ∗ a)3 = 21(a ∗ a)3 + 168(a ∗ a)2 + 64(a ∗ a),

(3.4)
∑
ξ∈C8

(ξ ∗ a)4 = 5(a ∗ a)4 + 96(a ∗ a)3 + 216(a ∗ a)2 − 64(a ∗ a),

(3.5)
∑
ξ∈C8

(ξ ∗ a)5 = (a ∗ a)5 + 40(a ∗ a)4 + 260(a ∗ a)3 + 80(a ∗ a)2 − 128(a ∗ a),

(3.6)

∑
ξ∈C8

(ξ ∗ a)7 −
[
14 + 7·(a∗a)

6

]∑
ξ∈C8

(ξ ∗ a)6

= 1
6

{
−(a ∗ a)7 − 84(a ∗ a)6 − 1820(a ∗ a)5

−15120(a ∗ a)4 − 33152(a ∗ a)3 + 28672(a ∗ a)2
}
.

In the above formulas (3.1)∼(3.5) the right hand sides are polynomials in a ∗ a,
and we use ft(a ∗ a) (1 ≤ t ≤ 5) to denote those polynomials in natural order for
later use.

4 An Association Scheme in G24

4.1 A Brief Definition of Association Scheme

As to the precise definitions for the theory of association scheme one may refer
[2],[5] or [6].

Here we give a brief definition of the association scheme. An association scheme
with d classes is a pair (X,R), where X is a finite set with at least two elements
and R is a partition of X ×X with the following properties:
(i) R = {R0, R1, . . . , Rd},
(ii) R0 = {⟨x, x⟩|x ∈ X},
(iii) if Ri is a member of R then the set RT

i = {⟨y, x⟩|⟨x, y⟩ ∈ Ri} is also a member
of R for i = 0, 1, · · · , d,
(iv) for any pair ⟨x, y⟩ ∈ Rk the number pki,j of z ∈ X such that both the conditions
⟨x, z⟩ ∈ Ri and ⟨y, z⟩ ∈ Rj hold does not depend on the choice of ⟨x, y⟩ ∈ Rk.
The numbers pki,j are called the intersection numbers of this association scheme
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(X,R).
The number ni = p0i,i is called the valency of Ri, and it holds that

|X| =
d∑

i=0

ni.

4.2 Preliminaries

Before discussing the association scheme in G24 we prove a simple lemma:

Lemma 4.1 Let Ck (k = 8, 12, 16) be the set of codewords of weight k in G24,
then the followings hold,
(i) if u,v ∈ C8 then the value of u ∗ v is one of 0,2,4 and 8,
(ii) if u ∈ C8 and v ∈ C12 then the value of u ∗ v is one of 2,4 and 6,
(iii) if u ∈ C8 and v ∈ C16 then the value of u ∗ v is one of 0,4,6 and 8.

Proof. Proof of (i). If u,v ∈ C8, then from the relation (2.1) we have

wt(u+ v) = 16− 2 · u ∗ v.

u+v is a codeword of G24 and its weight may be one of 0,8,12 and 16. From each
possible weight the value of u ∗ v is obtained.
The cases (ii) and (iii) are similarly showed.

After Lemma 4.1 we use I∗ to denote the set {0, 2, 4, 8}. The following proposition
is easy to prove and we present it without giving the proof.

Proposition 4.2 Let u,v ∈ C8 then the followings hold

u ∗ v = 8 ⇔ d(u,v) = 0,

u ∗ v = 0 ⇔ d(u,v) = 16,

u ∗ v = 2 ⇔ d(u,v) = 12,

u ∗ v = 4 ⇔ d(u,v) = 8.

We will use #U to denote the cardinality of a finite set U .

Lemma 4.3 Let v be a fixed codeword of weight 8 in G24, then we have

u ∗ v =


8 for one u ∈ C8,
0 for 30 u ∈ C8,
2 for 448 u ∈ C8,
4 for 280 u ∈ C8.

Proof. Viewing Lemma 4.1 we may put λi = #{u ∈ C8 | u ∗ v = i} for
i = 8, 0, 2, 4. It is obvious that λ8 = 1. By the equation (3.1) we get a linear
equation:

2λ2 + 4λ4 + 8λ8 = 253× 8.
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By the equation (3.2) we get another linear equation:

22λ2 + 42λ4 + 82λ8 = 77× 82 + 176× 8.

Both equations are enough to solve λ4 and λ2, and the solutions are

λ2 = 448, λ4 = 280.

To obtain λ0 one remarks that

λ8 + λ0 + λ2 + λ4 = |C8| = 759,

from which λ0 = 30 follows.

Here we consider the set C8. We define relations P = {P8, P0, P2, P4} between
the elements of C8. First a pair u,v ∈ C8 belong to Pj , j = 0, 2, 4, 8 if and only if
u∗v = j. The condition u∗v = 8 implies that u = v, hence P8 = {⟨u,u⟩|u ∈ C8}
holds.
For i, j, k ∈ I∗ we define Λi,j(k) and λi,j(k) by

Λi,j(k) = {w ∈ C8 | u ∗w = i,v ∗w = j},
λi,j(k) = #Λi,j(k),

where u,v ∈ C8 and they satisfy u ∗ v = k. One may easily see that the equation

(4.1) λi,j(k) = λj,i(k)

holds for i, j ∈ I∗, since we can make a one to one correspondence between the
two sets Λi,j(k) and Λj,i(k). We prove

Lemma 4.4 Let k be an element of I∗. For any pair of elements i, j ∈ C8 satis-
fying u ∗ v = k it holds that ∑

j∈I∗

λ0,j(k) = 30,

∑
j∈I∗

λ2,j(k) = 448,

∑
j∈I∗

λ4,j(k) = 280,

∑
j∈I∗

λ8,j(k) = 1.

Proof. We see that for a fixed codeword u ∈ C8 the sum
∑

j∈I∗
λ0,j(k) counts

all w ∈ C8 satisfying u ∗w = 0. By Lemma 4.3 the sum equals 30. Other cases
are proved in a similar way.
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4.3 The Numbers λi,j(0), i, j ∈ I∗

First we consider the numbers λi,j(0), i, j ∈ I∗.
λ0,2(0) = 0. The number counts w satisfying u ∗ w = 0 and v ∗ w = 2. But
we see that wt(u + v + w) = 20 which is impossible in the Golay code G24.
λ0,0(0) = 1. Because the number counts w satisfying u ∗ w = 0 and v ∗ w = 0.
Since wt(u+v) = 16 and wt(u+v+w) = 24. This implies that w = u+v+1, and
therefore λ0,0(0) = 1. We also see that λ0,8(0) = 1. By Lemma

∑
j∈I∗

λ0,j(0) = 30
from which λ0,4(0) = 28 follows. It is obvious that λ2,8(0) = λ4,8(0) = λ8,8(0) = 0.

Lemma 4.5 We let a = u+ v with u ∗ v = 0. Then it holds that

w ∗ a =



2 if w ∈ Λ0,2(0) ∪ Λ2,0(0),
4 if w ∈ Λ0,4(0) ∪ Λ4,0(0),
4 if w ∈ Λ2,2(0),
6 if w ∈ Λ2,4(0) ∪ Λ4,2(0),
8 if w ∈ Λ4,4(0),
8 if w ∈ Λ0,8(0) ∪ Λ8,0(0).

To determine the numbers λ2,2(0), λ2,4(0), λ4,4(0) we use the formulas (3.1)∼(3.5).
Take a = u+ v and the formula (3.1) with minding of Lemma 4.5 reads∑

w∈C8

(w ∗ a)

=
∑

w∈Λ0,2(0)∪Λ2,0(0)

(w ∗ a) +
∑

w∈Λ0,4(0)∪Λ4,0(0)

(w ∗ a)

+
∑

w∈Λ2,2(0)

(w ∗ a) +
∑

w∈Λ2,4(0)∪Λ4,2(0)

(w ∗ a)

+
∑

w∈Λ4,4(0)

(w ∗ a) +
∑

w∈Λ0,8(0)∪Λ8,0(0)

(w ∗ a)

= 2 · 2 · λ0,2(0) + 2 · 4 · λ0,4(0) + 2 · 8 · λ0,8(0)

+4 · λ2,2(0) + 2 · 6 · λ2,4(0) + 8 · λ4,4(0)

= 2 · 4 · 28 + 2 · 8 + 4 · λ2,2(0) + 2 · 6 · λ2,4(0) + 8 · λ4,4(0)

= 253 · 16.

The formula (3.2) implies∑
w∈C8

(w ∗ a)2

= 2 · 22 · λ0,2(0) + 2 · 42 · λ0,4(0) + 2 · 82 · λ0,8(0)

+42 · λ2,2(0) + 2 · 62 · λ2,4(0) + 82 · λ4,4(0)

= 2 · 16 · 28 + 2 · 64 + 16 · λ2,2(0) + 2 · 36 · λ2,4(0) + 64 · λ4,4(0)

= 77 · 162 + 176 · 16.



30 M. Ozeki

The formula (3.3) implies∑
w∈C8

(w ∗ a)3

= 2 · 23 · λ0,2(0) + 2 · 43 · λ0,4(0) + 2 · 83 · λ0,8(0)

+43 · λ2,2(0) + 2 · 63 · λ2,4(0) + 83 · λ4,4(0)

= 2 · 64 · 28 + 2 · 512 + 64 · λ2,2(0) + 2 · 216 · λ2,4(0) + 512 · λ4,4(0)

= 21 · 163 + 168 · 162 + 64 · 16.

The above three linear equations are enough to determine the numbers λ2,2(0), λ2,4(0), λ4,4(0).
Actually we have

λ2,2(0) = 224, λ2,4(0) = 224, λ4,4(0) = 28.

4.4 The Numbers λi,j(2), i, j ∈ I∗

Next we treat the numbers λi,j(2), i, j ∈ I∗.
We find that this case needs certain subtle analysis in determining the numbers
λ2,2(2), λ2,4(2), λ4,4(2). Generally for temporally fixed u,v we put

u = (u1, · · · , u24) ∈ C8,

v = (v1, · · · , v24) ∈ C8,

w = (w1, · · · , w24) ∈ C8,

u ∗ v ∗w = #{h|uh = vh = vh = 1, 1 ≤ h ≤ 24},
ν1(w) = #{h | uh = wh = 1, vh = 0, 1 ≤ h ≤ 24},
ν2(w) = #{h | uh = 0, wh = vh = 1, 1 ≤ h ≤ 24},
Λ
(s)
i,j (2) = {w ∈ C8 | u ∗w = i,v ∗w = j,u ∗ v = 2,u ∗ v ∗w = s},

λ
(s)
i,j (2) = #Λ

(s)
i,j (2),

where 0 ≤ s ≤ u ∗ v = 2. By the definition we have λ
(0)
i,j (2) + λ

(1)
i,j (2) + λ

(2)
i,j (2) =

λi,j(2). It is easy to observe that λ
(2)
0,2(2) = λ

(1)
0,2(2) = 0 and λ

(0)
0,2(2) = λ0,2(2), and

λ
(2)
0,4(2) = λ

(1)
0,4(2) = 0, λ

(0)
0,4(2) = λ0,4(2). We treat the rather easier cases:

Lemma 4.6 Let the notations be as above, then it holds that

(i) λ0,0(2) = 0, λ
(2)
2,2(2) = 0, λ

(2)
2,8(2) = 1, λ

(0)
4,4(2) = 0,

(ii) λ
(0)
2,4(2) = λ

(2)
4,4(2),

(iii) λ
(2)
2,4(2) = λ0,4(2).

Proof. Proof of (i). Suppose there is w ∈ C8 satisfying w ∗ u = 0,w ∗ v = 0
whereas u∗v = 2. Then it follows from these conditions that wt(u+v+w) = 20,
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which is impossible in G24. λ
(2)
2,2(2) is the number of w ∈ C8 satisfying u ∗ w =

2,v ∗ w = 2,u ∗ v = 2,u ∗ v ∗ w = 2. Then wt(u + v + w) = 20, which

is impossible in the Golay code. λ
(0)
4,4(2) is the number of w ∈ C8 satisfying

u ∗ w = 4,v ∗ 4 = 2,u ∗ v = 2,u ∗ v ∗ w = 0. The conditions imply that
wt(u+ v +w) = 4, which is impossible in the Golay code.

Proof of (ii). Let w ∈ Λ
(2)
4,4(2), then by definition w satisfies u ∗ w = 4,v ∗ w =

4,u ∗v = 2,u ∗v ∗w = 2. Then we verify that w+v ∈ Λ
(0)
2,4(2). Conversely when

w ∈ Λ
(0)
2,4(2), then it is verified that w+v ∈ Λ

(2)
4,4(2). Both mappings are injective.

Thus we have λ
(0)
2,4(2) = λ

(2)
4,4(2).

Proof (iii). When w ∈ Λ
(2)
2,4(2) then it holds that u ∗ w = 2,v ∗ w = 4,u ∗ v =

2,u ∗v ∗w = 2. We see that w+v ∈ Λ0,4(2). Conversely when w ∈ Λ0,4(2), then

we see that w + v ∈ Λ
(2)
2,4(2), and λ

(2)
2,4(2) = λ0,4(2) holds.

Let u = (u1, · · · , u24),v = (v1, · · · , v24) ∈ C8 satisfying u ∗ v = 2. We consider a
vector u ∪ v = (t1, t2, · · · , t24) defined by ti = 1 if ui = 1 or vi = 1, and ti = 0 if
ui = vi = 0 for 1 ≤ i ≤ 24. Note that wt(u ∪ v) = 14.

Lemma 4.7 We let a = u ∪ v with u ∗ v = 2. Then it holds that

w∗a =


4 if w ∈ Λ

(0)
2,2(2),

3 if w ∈ Λ
(1)
2,2(2),

2 if w ∈ Λ
(2)
2,2(2),

w∗a =


6 if w ∈ Λ

(0)
2,4(2),

5 if w ∈ Λ
(1)
2,4(2),

4 if w ∈ Λ
(2)
2,4(2),

w∗a =


8 if w ∈ Λ

(0)
4,4(2),

7 if w ∈ Λ
(1)
4,4(2),

6 if w ∈ Λ
(2)
4,4(2).

.

Proof. Let w ∈ Λ
(s)
i,j (2) s = 0, 1, 2. Then using ν1, ν2 introduced above we

have w ∗ a = ν1 + s+ ν2 = i− s+ s+ j − s = i+ j − s. All the nine equalities in
the lemma follow from this.

Proposition 4.8 Let u,v ∈ C8 satisfying u ∗ v = 2. Let λ
(s)
i,j (2), where i, j ∈

I∗, 0 ≤ s ≤ defined above. Then we have

λ0,0(2) = 0, λ0,2(2) = 15, λ0,4(2) = 15, λ0,8(2) = 0,

λ2,0(2) = 15, λ
(0)
2,2(2) = 180, λ

(1)
2,2(2) = 72, λ

(2)
2,2(2) = 0,

λ4,0(2) = 15, λ
(0)
2,4(2) = 45, λ

(1)
2,4(2) = 120, λ

(2)
2,4(2) = 15,

λ8,0(2) = 0, λ
(0)
4,4(2) = 0, λ

(1)
4,4(2) = 40, λ

(2)
4,4(2) = 45.

Proof. We use the vector a = u ∪ v. This time wt(a) = 14. To determine

λ
(s)
i,j (2)’s we utilize the formulas (3.1)∼(3.5). In viewing Lemma 4.7 the formula
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(3.1) reads

∑
w∈C8

(w ∗ a)

=
∑

w∈Λ0,2(2)∪Λ2,0(2)

(w ∗ a) +
∑

w∈Λ0,4(2)∪Λ4,0(2)

(w ∗ a)

+
∑

w∈Λ
(0)
2,2(2)

(w ∗ a) +
∑

w∈Λ
(1)
2,2(2)

(w ∗ a) +
∑

w∈Λ
(2)
2,2(2)

(w ∗ a)

+
∑

w∈Λ
(0)
2,4(2)∪Λ

(0)
4,2(2)

(w ∗ a) +
∑

w∈Λ
(1)
2,4(2)∪Λ

(1)
4,2(2)

(w ∗ a) +
∑

w∈Λ
(2)
2,4(2)∪Λ

(2)
4,2(2)

(w ∗ a)

+
∑

w∈Λ
(0)
4,4(2)

(w ∗ a) +
∑

w∈Λ
(1)
4,4(2)

(w ∗ a) +
∑

w∈Λ
(2)
4,4(2)

(w ∗ a)

+
∑

w∈Λ2,8(2)∪Λ8,2(2)

(w ∗ a)

= 2 · 2 · λ0,2(2) + 2 · 4 · λ0,4(2)

+4 · λ(0)
2,2(2) + 3 · λ(1)

2,2(2) + 2 · λ(2)
2,2(2)

+2 · 6 · λ(0)
2,4(2) + 2 · 5 · λ(1)

2,4(2) + 2 · 4 · λ(2)
2,4(2) + 8 · λ(0)

4,4(2)

+7 · λ(1)
4,4(2) + 6 · λ(2)

4,4(2) +

+2 · 8 · λ2,8(2)

= 253 · 14.

∑
w∈C8

(w ∗ a)t

= 2 · 2t · λ0,2(2) + 2 · 4t · λ0,4(2)

+4t · λ(0)
2,2(2) + 3t · λ(1)

2,2(2) + 2t · λ(2)
2,2(2)

+2 · 6t · λ(0)
2,4(2) + 2 · 5t · λ(1)

2,4(2) + 2 · 4t · λ(2)
2,4(2) + 8t · λ(0)

4,4(2)

+7t · λ(1)
4,4(2) + 6t · λ(2)

4,4(2) +

+2 · 8t · λ2,8(2)

= ft(a ∗ a),

where ft(a ∗ a) (2 ≤ t ≤ 5) is the right hand side of the formulas (3.2)∼(3.5).
The above five linear conditions on λ0,2(2), λ0,4(2), · · · , λ2,8(2) together with Lemma
4.6 are enough to determine the values of λ0,2(2), λ0,4(2), · · · , λ2,8(2) explicitly.
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4.5 The Numbers λi,j(4), i, j ∈ I∗

Finally we treat the numbers λi,j(4), i, j ∈ I∗.

Λ
(s)
i,j (4) = {w ∈ C8 | u ∗w = i,v ∗w = j,u ∗ v = 4,u ∗ v ∗w = s},

λ
(s)
i,j (4) = #Λ

(s)
i,j (4),

where 0 ≤ s ≤ u ∗ v = 4 and u ∗ v ∗w is defined already.

Lemma 4.9 Let the notations be as above, then it holds that

(i) λ
(3)
2,2(4) = λ

(4)
2,2(4) = 0,λ

(0)
2,4(4) = λ

(3)
2,4(4) = λ

(4)
2,4(4) = 0,

(ii) λ
(0)
4,4(4) = 1, λ

(1)
4,4(4) = 0,

(iii) λ
(0)
4,8(4) = λ

(1)
4,8(4) = λ

(2)
4,8(4) = λ

(3)
4,8(4) = 0, λ

(4)
4,8(4) = 1.

Proof. Proof of (i). Since s = u∗v∗w can not be greater than u∗v,u∗w,v∗w
we have evidently λ

(3)
2,2(4) = 0 and λ

(4)
2,2(4) = 0. By the same reason we have

λ
(3)
2,4(4) = λ

(4)
2,4(4) = 0. As to λ

(0)
2,4(4) we consider wt(u + v + w). It is clear that

wt(u+v+w) = 4, which is impossible in the binary Golay code. Thus we conclude

that λ
(0)
2,4(4) = 0.

Proof of (ii). The number λ
(0)
4,4(4) counts w ∈ C8 satisfying u ∗w = v ∗w = 4,u ∗

v ∗w = 0 under the restriction u ∗v = 4. In this case we have wt(u+v+w) = 0,

meaning that w = u+ v and λ
(0)
4,4(4) = 1.

As to λ
(1)
4,4(4) we again consider wt(u+ v +w). We see that wt(u+ v +w) = 4,

which is also impossible in the binary Golay code, and λ
(1)
4,4(4) = 0.

Proof of (iii). All numbers in (iii) imply that v ∗ w = 8 and v = w. Since

u ∗ v = 4, it holds that u ∗ v ∗ w = 4, and consequently λ
(0)
4,8(4) = λ

(1)
4,8(4) =

λ
(2)
4,8(4) = λ

(3)
4,8(4) = 0, λ

(4)
4,8(4) = 1.

We want to prove that λ
(s)
i,j (4) (0 ≤ s ≤ 4) is constant for each fixed pair of

i, j ∈ I∗, but we find that this can not be done straightforwardly even if we use
the formulas (3.1)∼(3.6) together with Lemma 4.3. The reader may understand
this difficulty by viewing the proof of Proposition 4.12. To overcome this difficulty

we make a more precise notation, that will work actually. Instead of Λ
(s)
i,j (4) we

use Λ
(s)
i,j (4)(u,v). The implications are the same but we are conscious about which

pair u,v ∈ C8 satisfying u ∗ v = 4 is used. A pair ⟨u,v⟩ ∈ C2
8 belongs to L4 if

the condition u ∗ v = 4 holds. It is easy to see that if ⟨u,v⟩ ∈ L4 then so are
⟨u,u+ v⟩, ⟨u+ v,v⟩. With these facts we prove

Lemma 4.10 We employ the notations before, then it holds that

(i) λ
(0)
2,2(4)(u,v) = λ

(2)
2,4(4)(u,u+ v),
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(ii) λ
(2)
2,4(4)(u,v) = λ

(0)
2,2(4)(u,u+ v),

(iii) λ
(3)
4,4(4)(u,v) = λ

(1)
2,4(4)(u,v),

(iv) λ
(4)
4,4(4)(u,v) = λ0,4(4)(u,v).

Proof. Proof of (i). Let w ∈ Λ
(0)
2,2(4)(u,v), then by definition it holds that u∗

w = 2,u∗v∗w = 0,v∗w = 2. From these conditions we see that u∗w = 2, (u+v)∗
w = 4,u∗(u+v)∗w = 2 hold. This implies that w ∈ Λ

(2)
2,4(4)(u,u+v). Conversely

from w ∈ Λ
(2)
2,4(4)(u,u+v) we can derive the consequence w ∈ Λ

(0)
2,2(4)(u,v). Thus

Λ
(0)
2,2(4)(u,v) = Λ

(2)
2,4(4)(u,u+ v), and λ

(0)
2,2(4)(u,v) = λ

(2)
2,4(4)(u,u+ v).

Proof of (ii). Let w ∈ Λ
(2)
2,4(4)(u,v), then it holds that u∗w = u∗v∗w = 2,v∗w =

4. By these conditions we see that u ∗w = 2, (u+v) ∗w = 2,u ∗ (u+ v) ∗w = 0,

and w ∈ Λ
(0)
2,2(4)(u,u+ v). Conversely if w ∈ Λ

(0)
2,2(4)(u,u+ v) then we can show

that w ∈ Λ
(2)
2,4(4)(u,v). Thus we have λ

(2)
2,4(4)(u,v) = λ

(0)
2,2(4)(u,u+ v).

Proof of (iii). We prove λ
(3)
4,4(4)(u,v) = λ

(1)
2,4(4)(u,v). Let w ∈ Λ

(3)
4,4(4)(u,v), then

it holds that u∗w = v∗w = 4,u∗v∗w = 3,u∗v = 4. By these conditions we see
that #{h| uh = 1, vh = wh = 0} = 3,#{h|uh = wh = 1, vh = 0} = 1,#{h|uh =
vh = wh = 1} = 3,#{h| uh = vh = 1, wh = 0} = 1,#{h| vh = wh = 1, uh = 0} =
1,#{h| uh = 0, vh = 1, wh = 0} = 3,#{h| uh = vh = 0, wh = 1} = 3,#{h| uh =

vh = wh = 0} = 9 holds. Using these relations we observe that v +w ∈ Λ
(1)
2,4(4),

and the correspondence w ↔ v +w is a one to one correspondence between two

sets Λ
(3)
4,4(4) and Λ

(1)
2,4(4). Hence we get λ

(3)
4,4(4) = λ

(1)
2,4(4).

The proof of λ0,4(4) = λ
(4)
4,4(4) is quite similar to that of λ

(3)
4,4(4) = λ

(1)
2,4(4). We only

point out that Λ
(4)
4,4(4) ∋ w ↔ v + w ∈ Λ0,4(4) is a one to one correspondence.

And we omit the details.

Lemma 4.11 We let a = u ∪ v with u ∗ v = 4. Then it holds that

w ∗ a =


4 if w ∈ Λ

(0)
2,2(4)(u,v)

3 if w ∈ Λ
(1)
2,2(4)(u,v)

2 if w ∈ Λ
(2)
2,2(4)(u,v)

, w ∗ a =


6 if w ∈ Λ

(0)
2,4(4)(u,v)

5 if w ∈ Λ
(1)
2,4(4)(u,v)

4 if w ∈ Λ
(2)
2,4(4)(u,v)

,

w ∗ a =



8 if w ∈ Λ
(0)
4,4(4)(u,v)

7 if w ∈ Λ
(1)
4,4(4)(u,v)

6 if w ∈ Λ
(2)
4,4(4)(u,v)

5 if w ∈ Λ
(3)
4,4(4)(u,v)

4 if w ∈ Λ
(4)
4,4(4)(u,v)

.

Proof. Proofs of first six equations are very similar to those of Lemma 4.7

and we omit them. Proof of last 5 equations. Let w ∈ Λ
(s)
4,4(2) 0 ≤ s ≤ 4, then

as in Lemma 4.7 we see that 4 = ν1 + s, 4 = s + ν2 and w ∗ a = ν1 + s + ν2 =
4− s+ s+ 4− s = 8− s. From this the last 5 equations follow.
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Proposition 4.12 Let u,v ∈ C8 satisfying u ∗ v = 4. Let λ
(s)
i,j (4), where i, j ∈

I∗, 0 ≤ s ≤ 4 defined above. Then we have

λ0,0(4)(u,v) = 3, λ0,2(4)(u,v) = 24, λ0,4(4)(u,v) = 3, λ0,8(4)(u,v) = 0,

λ2,0(4)(u,v) = 24, λ
(0)
2,2(4)(u,v) = 72, λ

(1)
2,2(4)(u,v) = 192, λ

(2)
2,2(4)(u,v) = 24,

λ
(3)
2,2(4)(u,v) = 0, λ

(4)
2,2(4)(u,v) = 0,

λ4,0(4)(u,v) = 3, λ
(0)
2,4(4)(u,v) = 0, λ

(1)
2,4(4)(u,v) = 64, λ

(2)
2,4(4)(u,v) = 72,

λ
(3)
2,4(4)(u,v) = 0, λ

(4)
2,4(4)(u,v) = 0, λ8,0(4) = 0,

λ
(0)
4,4(4)(u,v) = 1, λ

(1)
4,4(4)(u,v) = 0, λ

(2)
4,4(4)(u,v) = 72, λ

(3)
4,4(4)(u,v) = 64, λ

(4)
4,4(4)(u,v) = 3.

Proof. We use the vector a = u ∪ v. This time wt(a) = 12. To determine

λ
(s)
i,j (4)’s we utilize the formulas (3.1)∼(3.5). In viewing Lemma 4.11 the formulas

(3.1)∼(3.5) go

∑
w∈C8

(w ∗ a)t

=
∑

w∈Λ0,2(4)∪Λ2,0(4)

(w ∗ a)t +
∑

w∈Λ0,4(4)∪Λ4,0(4)

(w ∗ a)t

+
∑

w∈Λ
(0)
2,2(4)

(w ∗ a)t +
∑

w∈Λ
(1)
2,2(4)

(w ∗ a)t +
∑

w∈Λ
(2)
2,2(4)

(w ∗ a)t

+
∑

w∈Λ
(0)
2,4(4)∪Λ

(0)
4,2(4)

(w ∗ a)t +
∑

w∈Λ
(1)
2,4(4)∪Λ

(1)
4,2(4)

(w ∗ a)t +
∑

w∈Λ
(2)
2,4(4)∪Λ

(2)
4,2(4)

(w ∗ a)t

+
∑

w∈Λ
(0)
4,4(4)

(w ∗ a)t +
∑

w∈Λ
(1)
4,4(4)

(w ∗ a)t +
∑

w∈Λ
(2)
4,4(4)

(w ∗ a)t +
∑

w∈Λ
(3)
4,4(4)

(w ∗ a)t

+
∑

w∈Λ
(4)
4,4(4)

(w ∗ a)t +
∑

w∈Λ4,8(4)∪Λ8,4(4)

(w ∗ a)t

= 2 · 2t · λ0,2(4) + 2 · 4t · λ0,4(4)

+4t · λ(0)
2,2(4) + 3t · λ(1)

2,2(4) + 2t · λ(2)
2,2(4)

+2 · 6t · λ(0)
2,4(4) + 2 · 5t · λ(1)

2,4(4) + 2 · 4t · λ(2)
2,4(4) + 8t · λ(0)

4,4(4)

+7t · λ(1)
4,4(4) + 6t · λ(2)

4,4(4) + 5t · λ(3)
4,4(4)

+4t · λ(4)
4,4(4) + 2 · 8t · λ4,8(4)

= ft(a ∗ a),

where ft(a ∗ a) (1 ≤ t ≤ 5) is the right handsides of the formulas (3.1)∼(3.5) with
(a ∗ a) = 12.
In viewing Lemma 4.9 and Lemma 4.10,(iv),(v) the above five equations are sim-
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plified to

(4.2)



λ
(1)
2,2(4) = 192,

λ
(1)
2,4(4) = 64,

λ
(2)
4,4(4) = 72,

λ
(2)
2,2(4) = 72− 2λ0,2(4),

λ
(0)
2,2(4) = 225− 3λ0,4(4)− 2λ

(2)
2,4(4).

The formula (3.6) unfortunately does not give additional linear condition.
Here we use Lemma 4.4 to decrease the number of the unknowns:

λ2,0(4) + λ2,2(4) + λ2,4(4) + λ2,8(4)

= λ0,2(4) + λ
(0)
2,2(4) + λ

(1)
2,2(4) + λ

(2)
2,2(4)

+λ
(0)
2,4(4) + λ

(1)
2,4(4) + λ

(2)
2,4(4)

= 448,

λ4,0(4) + λ4,2(4) + λ4,4(4) + λ4,8(4)

= λ0,4(4) + λ
(0)
2,4(4) + λ

(1)
2,4(4) + λ

(2)
2,4(4)

+λ
(0)
4,4(4) + λ

(1)
4,4(4) + λ

(2)
4,4(4)

+λ
(3)
4,4(4) + λ

(4)
4,4(4) + λ

(4)
4,8(4)

= 280.

Substituting the known values and the identities (4.2) into the above two linear
equations and rearranging the terms we have

λ0,2(4) = 27− λ0,4(4),

λ
(0)
2,2(4) = 69 + λ0,4(4),

λ
(2)
2,2(4) = 18 + 2λ0,2(4),

λ
(2)
2,4(4) = 78− 2λ0,2(4).

The last 4 equations are written more precisely:

(4.3)


λ0,2(4)(u,v) = 27− λ0,4(4)(u,v),

λ
(0)
2,2(4)(u,v) = 69 + λ0,4(4)(u,v),

λ
(2)
2,2(4)(u,v) = 18 + 2λ0,4(4)(u,v),

λ
(2)
2,4(4)(u,v) = 78− 2λ0,4(4)(u,v).
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We now use (i),(ii) of Lemma 4.10. Combining (ii) of Lemma 4.10 with the second
and the fourth relations of (4.3) we get

λ
(0)
2,2(4)(u,v) = 69 + λ0,4(4)(u,v)

= λ
(2)
2,4(4)(u,u+ v)

λ
(2)
2,4(4)(u,u+ v) = 78− 2λ0,4(4)(u,u+ v)

Thus we obtain

(4.4) λ0,4(4)(u,v) + 2λ0,4(4)(u,u+ v) = 9,

The equation (4.4) yields by symmetric argument

(4.5) λ0,4(4)(u,u+ v) + 2λ0,4(4)(u,v) = 9.

The equations (4.4) and (4.5) give the solution:

λ0,4(4)(u,u+ v) = λ0,4(4)(u,v) = 3.

All the other values except λ0,0(4)(u,v) of Proposition 4.12 are obtained by Lemma
4.9 and the equation (4.3). As to the value of λ0,0(4)(u,v) one may use the first
relation of Lemma 4.4 and actually we obtain

λ0,0(4)(u,v) = 3.

4.6 Main Theorem

We prove

Theorem 4.13 The set C8 together with the relations P above forms an associ-
ation scheme.

Proof. We recall the set of relations P = {P8, P0, P2, P4} between the elements
of C8, which are introduced directly after Lemma 4.3. One may immediately note
that P8 corresponds to R0 in the definition of the association scheme. Viewing (i)
of Lemma 4.1 we see that P satisfy the condition (i) of the association scheme.
By the symmetry property of the intersection ∗ it holds that PT

8 = P8, P
T
0 =

P0, P
T
2 = P2, P

T
4 = P4, and therefore P satisfies (iii) of the association scheme.

It remains to show that P satisfies the condition (iv) of the association scheme.

(1) If ⟨u,v⟩ ∈ P8 then u = v, and the number p
(8)
i,j = #{w ∈ C8| u ∗ w =

i,v ∗ w = j} is non-zero only if i = j ∈ Iast. By Lemma 4.3 we conclude

p
(8)
8,8 = 1, p

(8)
0,0 = 30, p

(8)
2,2 = 448, p

(8)
4,4 = 280.

(2) If ⟨u,v⟩ ∈ P0 then the numbers p
(0)
i,j = #{w ∈ C8| u ∗w = i,v ∗w = j} are

treated in Section 4.3, and we see that p
(0)
i,j are given by λi,j(0). The precise values

are discussed also in Section 4.3.
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(3) If ⟨u,v⟩ ∈ P2 then the numbers p
(2)
i,j = #{w ∈ C8| u ∗w = i,v ∗w = j} are

treated in Section 4.4. Some of p
(2)
i,j ’s are derived with a refined process., and the

summarized results are

p
(2)
0,0 = λ0,0(2) = 0, p

(2)
0,2 = λ0,2(2) = 15, p

(2)
0,4 = λ0,4(2) = 15, p

(2)
0,8 = λ0,8(2) = 0,

p
(2)
2,0 = p

(2)
0,2 = 15, p

(2)
2,2 = λ2,2(2) = λ

(0)
2,2(2) + λ

(1)
2,2(2) + λ

(2)
2,2(2) = 252,

p
(2)
2,4 = λ2,4(2) = λ

(0)
2,4(2) + λ

(1)
2,4(2) + λ

(2)
2,4(2) = 180, p

(2)
2,8 = λ2,8(2) = 1,

p
(2)
4,0 = λ4,0(2) = 15, p

(2)
4,2 = λ4,2(2) = 180,

p
(2)
4,4 = λ4,4(2) = λ

(0)
4,4(2) + λ

(1)
4,4(2) + λ

(2)
4,4(2) = 85, p

(2)
4,8 = λ4,8(2) = 0.

(4) If ⟨u,v⟩ ∈ P4 then the numbers p
(4)
i,j = #{w ∈ C8| u ∗w = i,v ∗w = j} are

treated in Section 4.5. We could the values p
(4)
i,j in a very complicated way. We

summarize the results:

p
(4)
0,0 = λ0,0(4) = 3, p

(4)
0,2 = λ0,2(4) = 24, p

(4)
0,4 = λ0,4(4) = 3, p

(4)
0,8 = λ0,8(4) = 0,

p
(4)
2,0 = p

(4)
0,2 = 24, p

(4)
2,2 = λ2,2(4) = λ

(0)
2,2(4) + λ

(1)
2,2(4) + λ

(2)
2,2(4) = 288,

p
(4)
2,4 = λ2,4(4) = λ

(0)
2,4(4) + λ

(1)
2,4(4) + λ

(2)
2,4(4) = 136, p

(4)
4,8 = λ4,8(4) = 0,

p
(4)
4,4 = λ4,4(4) = λ

(0)
4,4(4) + λ

(1)
4,4(4) + λ

(2)
4,4(4) + λ

(3)
4,4(4) + λ

(4)
4,4(4) = 140,

p
(4)
8,0 = λ8,0(4) = 0, p

(4)
8,2 = λ8,2(4) = 0, p

(4)
8,4 = λ8,4(4) = 1, p

(4)
8,8 = λ8,8(4) = 0.

By the processes above to determine the numbers p
(k)
i,j i, j, k ∈ I∗ they do not

depend on the choice of u,v ∈ C8 satisfying u ∗ v = k, therefore the (C8,P)
satisfies the condition (iv) of the association scheme.

5 A Distance Regular Graph in G24

5.1 Some Basic Definitions of the Distance Regular Graph

We will define a graph structure on C8. For precise definitions of distance
regular graphs one may refer [3]. Here we give some basic definitions of the graph.
A graph G consists of two objects:
(i) one is a finite set V which is called a vertex set,
and
(ii) another is a finite set E which is called an edge set. Each edge connects two
different vertices in V.

We may assume that the cardinality of V is not less than 2 and the set E is not
empty. A graph G is called simple if for each pair of vertices in V there is at most
one edge which connects those vertices. In this section we only consider simple
graphs. In a simple graph an edge is defined by a pair of vertices v1 and v2. Thus
we may express an edge as v1v2. Two elements v1 and v2 in V are called adjacent
if they are connected by an edge in E . We write this relation for v1 and v2 as
v1 ∼a v2. The vertices which are adjacent to a vertex v are called the neighbors
of v. A path from a vertex v1 to another vertex vn is a sequence of edges in E :

v1v2, v2v3, · · · , vn−1vn.
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The number n−1 is called the length of the above path. The graph G is connected
if for any two of the vertices v1 and v2 in V we can always find at least one path
from v1 to v2. The degree or the valency k(v) of a vertex v ∈ V is the number of
the vertices that are adjacent to v. When k(v) is a constant k for all v ∈ V then
the graph is called regular of valency k.
In a connected graph G we can define a graph distance. Let v1 and v2 in V then
the graph distance d(v1, v2) between v1 and v2 is the least length of all the path’s
joining v1 and v2. We understand that d(u, v) = 0 holds if and only if u = v. From
here we suppose that the graph G is connected. In G the number

δ = δ(G) = max
u,v∈G

d(u, v)

is meaningful, and we call this δ the diameter of the graph G. For a vertex v ∈ V
we set

Γi(v) = {u ∈ V | d(u, v) = i}.

We also consider Γi−1(v) (1 ≤ i ≤ δ) and Γi+1(v) (0 ≤ i ≤ δ − 1). The numbers
defined by

ci = #{w ∈ Γi−1(v)|w ∼a u}, 1 ≤ i ≤ δ,

bi = #{w ∈ Γi+1(v)|w ∼a u}, 0 ≤ i ≤ δ − 1,

are called intersection numbers of the graph G. The graph G is called distance
regular if G is regular and for any pair of vertices v, u ∈ V satisfying d(u, v) = i
there are precisely ci neighbors of u in Γi−1(v) and bi neighbors of u in Γi+1(v).

5.2 Graph Structure in C8

We will define a graph structure on C8. The vertices are the vectors of C8.
Two codewords u and v in C8 are said to be adjacent if and only if u ∗ v = 0
holds. For two codewords u and v in C8 we write u ∼a v if they are adjacent to
each other. By Lemma 4.4 each vertex u has 30 adjacent vertices, and therefore
the graph is regular and the valency is 30. In this section we must treat two kinds
of distances. One is the Hamming distance of the code, which is denoted by hd.
This distance is introduced in Section 1 as d. The another distance is the graph
distance. A path from a vertex u to another vertex v is a sequence of vertices
u = u0,u1, · · · ,un = v that satisfy the condition : ui ∼a ui+1 for 0 ≤ i ≤ n− 1.
n is the length of the path. The graph distance gd(u,v) between two vertices
u,v ∈ C8 is defined to be the length of the shortest path joining u and v. The
graph distance is denoted by gd. For a codeword u ∈ C8 and a non negative
integer i the subset Γi(u) of C8 is defined by

Γi(u) = {v | gd(u,v) = i}.

We now prove
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Proposition 5.1 Let u,v ∈ C8 then the following two conditions are equivalent.
(i) hd(u,v) = 8,
(ii) gd(u,v) = 2.

Proof. The condition (i) is equivalent to u ∗ v = 4 by Proposition 4.2. First
we assume the condition (i). By Proposition 4.12 there are 3 codewords w ∈ C8

satisfying both u ∗w = 0 and v ∗w = 0, namely gd(u,w) = 1 and gd(v,w) = 1.
This implies gd(u,v) ≤ 2. Since u∗v = 4, we can say that gd(u,v) ≥ 2. Therefore
gd(u,v) = 2 holds.
Next we assume the condition (ii). Then there is a codeword w ∈ C8 such that
gd(u,w) = 1 and gd(v,w) = 1. The last conditions imply that u ∗ w = 0 and
v ∗w = 0. Concerning the value of u ∗ v there are three possibilities: 0,2 and 4.
One may note that u∗v = 8 is impossible. Suppose that u∗v = 2 then we see that
wt(u + v +w) = 20, which is impossible in G24. If u ∗ v = 0, then gd(u,v) = 1,
which contradicts to the condition (ii). Therefore u ∗ v = 4 is the only possibility.
Then by Proposition 4.2 hd(u,v) = 8.

Proposition 5.2 Let u,v ∈ C8 then the following two conditions are equivalent.
(i) hd(u,v) = 12,
(ii) gd(u,v) = 3.

Proof. First we assume (i) holds. By Proposition 4.2 (i) implies u ∗ v = 2.
This shows that gd(u,v) ≥ 3. By Proposition 4.8 there is a codeword w ∈ C8 such
that u ∗w = 0,v ∗w = 4. Thus gd(u,w) = 1 and gd(v,w) = 2, and gd(u,v) ≤ 3.
Consequently gd(u,v) = 3.
Next we assume that (ii) holds. Then there is a path of length 3 and there is no
shorter path joining u and v. We set that the sequence of codewords u,u1,u2,v ∈
C8 forms a shortest path of length 3. By this setting it must hold that u ∗ u1 =
0,u1 ∗ u2 = 0,u2 ∗ v = 0, gd(u,u1) = 2 and gd(u1,v) = 2. We now discuss on
the intersection u ∗ u2. If u ∗ u2 = 0, then u ∼a u2 and the length of the path
u,u1,u2,v ∈ C8 is less than 3, which contradicts our setting. If u ∗ u2 = 2, then
by Proposition 4.2 and the proof of (i) of the present proposition gd(u,u2) = 3.
This contradicts to our setting. Hence the equation u ∗ u2 = 4 must hold. By the
same reasoning we have u1 ∗ v = 4.
Finally we consider the value of u ∗ v. If u ∗ v = 4, then by Proposition 4.2
hd(u,v) = 8 and by Proposition 5.1 gd(u,v) = 2. This contradicts to the present
assumption (ii). If u ∗ v = 0, then gd(u,v) = 1 which also contradicts to the
present assumption (ii). Therefore we must have u ∗ v = 2, and by Proposition
4.2 hd(u,v) = 12.

Here we summarize some results scattered in many places in this paper as a propo-
sition,

Proposition 5.3 Let u,v ∈ C8 then the following hold.

u ∗ v = 8 ⇔ hd(u,v) = 0 ⇔ gd(u,v) = 0,
u ∗ v = 0 ⇔ hd(u,v) = 16 ⇔ gd(u,v) = 1,
u ∗ v = 2 ⇔ hd(u,v) = 12 ⇔ gd(u,v) = 3,
u ∗ v = 4 ⇔ hd(u,v) = 8 ⇔ gd(u,v) = 2.
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Theorem 5.4 The set C8 with the adjacent relation above is a distance regular
graph.

Proof. By the definition of adjacency for a given codeword u, there 30 code-
words that are adjacent to u, by Propositions 4.3 and 5.1 there are 280 codewords
that have distance 2 from u, and by Propositions 4.3 and 5.2 there are 448 code-
words that have distance 3 from u. These are 758 in number. Therefore C8 is
a connected regular graph of diameter 3, since there is no codeword which has
distance greater than 3 from any codeword.
We now determine the intersection array. We fix a codeword u ∈ C8. Let
Γi(u) 0 ≤ i ≤ 3 be the subset of C8 defined before. For an element v ∈ C8 with
gd(v,u) = i two numbers are associated :ci = #{w ∈ Γi−1(u)|gd(w,v) = 1},
and bi = #{w ∈ Γi+1(u)|gd(w,v) = 1}. c0 is meaningless. c1 is the number
of w’s satisfying gd(u,w) = 0, gd(w,v) = 1 under the condition gd(v,u) = 1.
This implies that u = w, and c1 = 1. c2 is the number of w’s satisfying
gd(u,w) = 1, gd(w,v) = 1 under the condition gd(v,u) = 2. Looking Propo-
sition 5.3 and Proposition 4.12 we see that c2 = λ0,0(4) = 3. c3 is the number of
w’s satisfying gd(u,w) = 2, gd(w,v) = 1 under the condition gd(v,u) = 2. By
Propositions 5.3 and 4.8 we see that c3 = λ2,0(2) = 15.
b0 is the number of w’s satisfying gd(u,w) = 1, gd(w,v) = 1 under the condition
gd(v,u) = 0. The last condition implies that v = u. Hence the condition on w is
simply u∗w = 0 by Proposition 5.3. By Proposition 4.4 b0 = 30. b1 is the number
of w’s satisfying gd(u,w) = 2, gd(w,v) = 1 under the condition gd(v,u) = 1. By
Proposition 5.3 we see that b1 = λ4,0(0) = 28, which is discussed directly before
Lemma 4.5. b2 is the number of w’s satisfying gd(u,w) = 3, gd(w,v) = 1 under
the condition gd(v,u) = 2. By Propositions 5.3 and 4.12 we have b2 = λ2,0(4) =
24. Since the conditions on b3 contain gd(u,w) = 4 and therefore b3 = 0. Thus
the graph C8 is a distance regular graph.

Note 1 The intersection array of the distance regular graph proved in Theorem
5.4 is ι(C8) = {b0, b1, b2; c1, c2, c3} = {30, 28, 24; 1, 3, 15}, which is identical to the
one given in Brouwer-Cohen-Neumaier [3], Chapter 11, Section 4.

Note 2 It is known that a distance regular graph is also an association scheme
[3], Chapter 4. It may be possible to compute intersection numbers qki,j (i, jk ∈
{0, 1, 2, 3}) associated with the association scheme for present distance regular
graph along with the explanation in [3], Chapter 4, but here we can give qki,j’s

by utilizing Proposition 5.3 and the results in Section 4. We observe that qki,j =
#{w ∈ C8 | gd(u,w) = i, gd(v,w) = j} under the condition gd(u,v) = k. Below
we give tables of qki,j (k = 1, 2, 3) without precise explanation.

q
(1)
i,j

i\j 0 1 2 3
0 0 1 0 0
1 1 1 28 0
2 0 28 28 224
3 0 0 224 224

q
(2)
i,j

i\j 0 1 2 3
0 0 0 1 0
1 0 3 3 24
2 1 3 140 136
3 0 24 136 288

q
(3)
i,j

i\j 0 1 2 3
0 0 0 0 1
1 0 0 15 15
2 0 15 85 180
3 1 15 180 252
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Note 3 By the previous note we may show that the association scheme obtained
in Section 4 and that of Section 5 are isomorphic.
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