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1 Introduction

LetM be a smooth connected compact complex surface and C an analytic subset C
of M . The pair (M,C) is called a compactification of C2 if M−C is biholomorphic
to C2. Then one sees easily that C is of pure codimension one. Namely, C is a

divisor. We set C =

r∪
i=1

Ci, where each Ci is an irreducible curve. Then it is known

that

(1.1) S is a rational surface (cf.[3]).

(1.2) Hi(M,Z) ∼= Hi(C,Z) for i < 4 , H1(M,Z) ∼= H3(M,Z) = 0 and H2(M,Z) =
Zr. In particular, each Ci is simply connected and its normalization is a
smooth rational curve.

Definition 1.1 A compactification (M,C) is said to be minimal normal if it sat-
isfies the following conditions:

(i) each Ci is smooth,

(ii) the singular points of C =
r∪

i=1

Ci are ordinary double points and

(iii) no non-singular rational component of C with self-intersection number −1
has at most two intersection points with other components of C.

Then Morrow [4], applying the topological results of Ramanujan [7], proved the
following:

Theorem 1.1 Let (M,C) be a minimal normal compactification of C2 and we set

C =

r∪
i=1

Ci. Then the dual graph Γ(C) of C is one of the types (Γa) ∼ (Γg) in

Table I.
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Now, in this note, applying the theory of cluster sets of holomorphic mappings
at the essential singular point according to Nishino-Suzuki [5], we shall give an
elementary proof of Theorem 1.1.

Table I
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2 The cluster set of a holomorphic mapping.

2.1 Analytic curves as a cluster set

Let S be a nonsingular compact complex surface and C =

s∪
i=1

Ci a compact analytic

curve in S satisfying

(i)’ each Ci (1 ≤ i ≤ s)　 is a compact irreducible analytic curve,

(ii) the singular points of C =

s∪
i=1

Ci are ordinary double points, and

(iii) no non-singular rational component of C with self-intersection number −1
has at most two intersection points with other components of C.

Then Nishino-Suzuki (Théorème 5 in [6]) proved the following

Theorem 2.1 Assume that for each Ci there exists a holomorphic mapping φi :
C −→ S \ C such that

Ci ⊂ φi(∞;S) :=
∩
R>0

φi(∆R) ⊂ C ,

where ∆R = {z ∈ C : |z| > R} and φi(∆R) is the closure of φi(∆R) in S.
Then the type of C is one of (α) ∼ (ϵ) in Table 2, in which for the types (βs)(s ≧
2), (γ), (γ′), (δ) and (ϵ) each irreducible component of C is a non-singular rational
curve and the graph Γ(C) is depicted as Figure 1-5 .

⃝

⃝

⃝

⃝ ⃝

���� HHHH

n1

n2 ns

n3 ns − 1

Figure 1

⃝

⃝

⃝ ⃝

⃝

⃝

HHHHH

�����
�����

HHHHH

−2

−2

n0 ns

−2

−2

Figure 2
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⃝

⃝

⃝ ⃝ ⃝

HHHHH

�����

−2

−2

n0 n1 ns

Figure 3

⃝ ⃝ ⃝ ⃝ ⃝

⃝

⃝

−n1,s1 −n1,1 n0 −n3,s −n3,s

−n2,1

−n2,s2

Figure 4

⃝ ⃝ ⃝ ⃝
n1 n2 nr−1 ns

Figure 5

Table 2
Name of type Explication of C

(α) α∞(n) An irreducible non-singular elliptic curve with the self
intersection number (C2) = n ≥ 0．

(β) β∞(n) An irreducible rational curve with only one ordinary
double point and (C2) = n ≥ 0．

(βs) β∞(n1, · · ·, ns)(s ≥ 2) Figure 1, all ni = −2 or max{ni} ≥ 0．
(γ) γ∞(n1, · · ·, ns)(s ≥ 1) Figure 2, all ni = −2 or max{n0+1, n1, · · ·, ns−1, ns+

1} ≥ 0．
(γ′) γ′

∞(n1, · · ·, ns)(s ≥ 1) Figure 3, ni = −2 or max{n0 + 1, n1, · · ·, ns} ≥ 0．
(δ) δ(n0|q1/l1, q2/l2, q3/l3) Figure 4, (i) n0 ≥ −2. (ii) (l1, l2, l3) =

(3, 3, 3), (2, 4, 4) or (2, 3,m) with m = 3, 4, 5, 6. (iii)
for each i = 1, 2, 3, (qi, li) is a pair of coprime integers
such that 0 < qi < li and that

li
qi

= ni,1 −
1

ni,2 −
1

ni,3 −
1

· · ·
1

ni,ri

(continued fraction expansion)
where ni,j ≥ 2 are integers appearing in Figure 4．

(ϵ) ϵ∞(n1, · · ·, ns)(s ≥ 1) Figire 5, max{ni} ≥ 0．
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2.2 Fundamental groups of the tubular neighborhoods.

Let S and C =

r∪
i=1

Ci be as in 2.1. Let K be the boundary of a tubular neighborhood

of C in S. Let ei (1 ≤ i ≤ r) be a loop in K that goes once around Ci with positive
orientation. Then one has the following (cf. Mumford [5]).

Lemma 2.1 The fundamental group π1(K) is the group generated by e1, e2, . . . , er with
relations:

(R1) eiej = ejei if Ci ∩ Cj ̸= ∅

(R2)

r∏
j=1

e
sij
j = 1, i = 1, 2, . . . , r, where sij = (Ci · Cj) (intersection number)

i.e.,

π1(K) =
⟨
e1, e2, . . . , er | (R1), (R2)

⟩
.

Let us introduce the integer [n1, n2, . . . , nr] ∈ Z for ni ∈ Z (1 ≤ i ≤ r) inductively as
follows:

(2-a) [∅] = 1, where ∅ denotes the empty set.

(2-b) [n1] = n1.

(2-c) [n1, n2, . . . , nj ] = n1[n2, . . . , nj ]− [n3, . . . , nj ] (2 ≤ j ≤ r).

Then one can easily verify the following

Lemma 2.2 (1) [n1, n2, . . . , nr] = [ni, ni−1, . . . , n1][ni+1, . . . , nr]−[ni−1, . . . , n1][ni+2, . . . , nr].

(2) [n1, n2, . . . , nr] = [nr, nr−1, . . . , n2, n1].

(3) [−n1,−n2, . . . ,−nr] = (−1)r[n1, n2, . . . , nr].

(4) If ni ̸= 0 (1 ≤ i ≤ r), then we have the continued fractional expansion

[n1, n2, . . . , nr]

[n2, . . . , nr]
= n1 −

1

n2 −
1

n3 −
1

· · ·
1

nr

.

(5) [n1, n2, . . . , nr] > [n2, n3, . . . , nr] > · · · > [nr−1, nr] > [nr] > 1 if ni > 1 (1 ≤
i ≤ r).

(6) Suppose that ni ≥ 2 (1 ≤ i ≤ r). Then,

[n1, n2, n3 . . . , nr]− [n2, n3, . . . , nr] = 1 iff n1 = n2 = · · · = nr = 2.

Then we obtain the following:

Proposition 2.1 Let C and K be as above. Assume that π1(K) = {1}. Then the curve
C belongs to the type (ϵ).
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Proof. It is easy to see that π1(K) ̸= 1 for the types (α), (β) and (β)s. Thus we
need only to show that π1(K) ̸= {1} for the types (γ), (γ′) and (δ).

The case of type (γ). 　We set

C = C01 ∪ C02 ∪ C03 ∪ C04 ∪ C0 ∪ C1 ∪ · · · ∪ Cs.

Let us denote by ϵ0i (1 ≤ i ≤ 4), ϵj (0 ≤ i ≤ s) the vertices of the graph Γ(C) corre-
sponding to the curves C0i and Cj .

⃝

⃝

⃝ ⃝ ⃝

⃝

⃝

HHHHH

�����
�����

HHHHH

ϵ01

−2

−2

n0

ϵ0

n1

ϵ1 ϵs

ns

ϵ02

ϵ04

ϵ03

−2

−2

max{n0 + 1, n1, · · · , ns−1, ns + 1} ≥ 0

Let ai (1 ≤ i ≤ 4) and ej (0 ≤ j ≤ s) be the loops in K corresponding to the vertices
ϵ0i (1 ≤ i ≤ 4), ϵj (0 ≤ j ≤ s) of Γ(C). Then we have the following relation between
generators:

(R1) aie0 = e0ai (1 ≤ i ≤ 2), aies = esai (i = 3, 4), eiei+1ei+1ei (0 ≤ i ≤ s− 1)．

(R2) e1 = a2
1 = a2

2, e2s = a2
3 = a2

4,
a1a2e

n0
o e1 = 1, e0e

n1
1 e2 = 1, · · · , es−2e

ns−1
s−1 es = 1, a3a4e

ns
s es−1 = 1．

From this one has{
π1(K)

/
< e0, es > ∼= Z2 ∗ Z2 if s > 0

π1(K)
/
< e0 > ∼= Z2 ∗ Z2 ∗ Z2 ∗ Z2/(a1a2a3a4 = 1) if s = 0 .

This implies that π1(K) ̸= {1}.

The case of type (γ′).

⃝

⃝

⃝ ⃝ ⃝

HHHHH

�����

ϵ01

−2

−2

n0

ϵ0

n1

ϵ1 ϵs

ns

ϵ02

max{n0 + 1, n1, · · · , ns−1, ns} ≥ 0

Let ai (1 ≤ i ≤ 2) and ej (0 ≤ j ≤ s) be the loops in K corresponding to the vertices
ϵ0i (1 ≤ i ≤ 2) and ϵj (0 ≤ j ≤ s) in Γ(C).
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By Lemma 2.1, we have

π1(K) =
⟨
ai(1 ≤ i ≤ 2) , ej (0 ≤ j ≤ s) | (R1), (R2)

⟩
,

where

(R1) aie0 = e0ai (1 ≤ i ≤ 2), eiei+1 = ei+1ei(0 ≤ i ≤ s− 1)

(R2) e0 = a2
1 = a2

2, en0
0 a1a2e1 = 1, e0e

n1
1 e2 = 1, · · · , es−2e

ns−1
s−1 es, es−1e

ns
s = 1.

Then we have

π1(K)
/
< e0 > ∼=

⟨
a1, a2|a2

1 = a2
2 = (a1a2)

α = 1
⟩ ∼= Z2 ∗ Z2 ∗ Zα/(a1a2b = 1) ̸= {1},

where α = [n1, · · ·ns] and b = a1a2, and hence π1(K) ̸= {1}.

The case of type (δ).

⃝ ⃝ ⃝ ⃝ ⃝

⃝

⃝

−n1r1 −n11 n0 −n31 −n3r3

−n21

−n1r2ϵ2r2

ϵ21

ϵ11ϵ1r1 ϵ0 ϵ31 ϵ3r3

Let ai (1 ≤ i ≤ 3) be a loop in π(K) corresponding to the vertex ϵi1 (1 ≤ i ≤ 3) of
Γ(C) and e0 a loop corresponding to the vertex ϵ0．Then one has

π1(K)
/
< e0 >∼= Zα1 ∗ Zα2 ∗ Zα3/(a1a2a3 = 1) ̸= {1},

where αi = [ni1, · · ·niri ] (1 ≤ i ≤ 3)，hence we have π1(K) ̸= {1}.

Consequently the graph Γ(C) must belongs to the type (ϵ). This completes the proof.

3 Rational ruled surfaces.

3.1 A linear trees of rational curves on a rational surface.

Definition 3.1 Let S be a smooth rational surface and A =

r∪
i=1

Ai a curve on S. A is

called a linear tree of (smooth) rational curve if

(i) each Ai is a smooth rational curve,

(ii) (Ai ·Ai+1) = 1 (1 ≤ i ≤ r − 1) and

(iii) (Ai ·Aj) = 0 if |i− j| ≥ 2.

We set mi := (A2
i ) (1 ≤ i ≤ r). Then the graph Γ(A) of the curve A is depicted as

⃝ ⃝ ⃝ ⃝
m1 m2 mr−1 ms

Then we have
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Lemma 3.1 (see Lemma 6 in Suzuki [8] ) Let (S,A) be as above. Then

(3-a) If there exists a pair i, j (1 ≤ i < j ≤ r) such that (A2
i ) ≥ 0, (A2

j ) ≥ 0 and
Ai∩Aj = ∅,then (A2

i ) = (A2
j ) = 0 and there exists only one component Ak (k ̸= i, j)

which intersects Ai ∪Aj. The graph Γ(A) is depicted as

⃝ ⃝ ⃝
0 m 0

(3-b) If there exists a pair i, j (1 ≤ i < j ≤ n) such that (A2
i ) > 0, (A2

j ) > 0, then n = 2
and (A2

i ) = (A2
j ) = 1. The graph Γ(A) is depicted as

⃝ ⃝
1 1

Corollary 3.1 Assume that r ≥ 3. Then there exists only one component Ai0 with
(A2

i0) > 0. In particular, (A2
k) < 0 for Ak with Ak ∩Ai0 = ∅.

3.2 An elementary transformation.

Assume that the graph Γ(A) contains the following subgraph:

⃝ ⃝ ⃝
p 0 q

Ai Aj Ak

Blowing up at the intersection point of Aj and Ak (resp. Ai and Aj) and contracting
the proper transform of Aj , which is a (−1)-curve, to a smooth point, we obtain the
following:

⃝ ⃝ ⃝
p+ 1 0 q − 1 (

resp. ⃝ ⃝ ⃝
p− 1 0 q + 1 )

,

which we call the elementary transformation. For each 0 < k ∈ Z, one has the following:

⃝ ⃝ ⃝
p 0 q

99K ⃝ ⃝ ⃝
p+ 1 0 q − 1

99K ⃝ ⃝ ⃝
p+ k 0 q − k

⃝ ⃝ ⃝
p 0 q

99K ⃝ ⃝ ⃝
p− 1 0 q + 1

99K ⃝ ⃝ ⃝
p− k 0 q + k
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In the next section 4, we will treat the following special type of the elementary
transformations:

(ET)N : ⃝ ⃝ ⃝
N 0 −N − 1

99KL99 ⃝ ⃝ ⃝
N − 1 0 −N

99KL99 ⃝ ⃝ ⃝
−N − 1 0 N

4 A classification of minimal normal compatifica-
tions of C2.

4.1 The type of the boundary divisor.

Let (M,C) be a minimal normal compactification of C2 and set C =
r∪

i=1

Ci , where Ci

is an irreducible component of C. According to (1.1) and (1.2) in Introduction, we know
that

(4-a) M is rational (see [3]).

(4-b) Hi(M,Z) ∼= Hi(C,Z) for i < 3.

(4-c) H1(M,Z) = H1(C,Z) = 0 and H2(M,Z) ∼= PicS =

r⊕
i=1

ZOM (Ci).

Then we have

Proposition 4.1 For each Ci, there exists a holomorphic mapping φi : C −→ M \ C
such that

Ci ⊂ φi(∞;M) ⊂ C,

where φi(∞;M) :=
∩
R>0

φi(∆R) and ∆R = {z ∈ C : |z| > R}.

Proof. The proof is done by the idea similar to that of Lemma 1 in [1] (see also
Lemma 2 in [8]).

By (4-c), the type of boundary C is one of the types (α) − (e) in Table 2. Let K
be the boundary of a tubular neighborhood of the curve C in S as before. Since C2 is
simply connected at infinity, π1(K) = {1} (trivial). By Proposition 2.1, we have

Theorem 4.1 The curve C belongs to the type (ϵ) in Table 2 (see also Figure 5).

4.2 The classification of Γ(C).

First by Theorem 4.1, the graph Γ(C) is depicted as

⃝ ⃝ ⃝ ,

n1 n2 nr

max
1≤i≤r

{ni} ≥ 0, ni ̸= −1.

By Proposition 2.1, one has π1(K) ∼= Zα = {1}, where α = [n1, n2, . . . , nr] ∈ Z.
Hence we have



14 M. Nobe, Y. Ohshima and M. Furushima

Proposition 4.2 [n1, n2, . . . , nr] = ±1.

Applying Proposition 4.2, we shall determine the graph Γ(C) below. Here we note that
r > 0 is the number of vertices of the graph Γ(C).

4.2.1 The case for r = 1.

Since b2(S) = b2(C) = 1 and S is rational, S ∼= P2, and hence, C ∼= P1 and (C2) ≤ 2.
By Proposition 4.2, one can see that (C2) = 1, and thus we obtain the graph:

⃝
1

(Γa)

4.2.2 The case for r = 2.

Since b2(S) = 2, one has S ∼= Fn(n ≥ 0) (Hirzebruch surface) with max{n1, n2} ≥ 0.
We may assume that n1 ≥ 0． Since α = [n1, n2] = ±1, one has n1n2 − 1 = ±1, that is,
(n1, n2) = (2, 1) or (0, n2).By Lemma 3.2-(3-b), the case (n1, n2) = (2, 1) cannot occur．
Hence we obtain the graph:

⃝⃝
0 m

(m ̸= −1)(Γb)

4.2.3 The case for r = 3.

By Proposition 4.2, one has ±1 = [n1, n2, n3] = n1n2n3 − n1 − n3. First we claim that
n2 = 0. In fact, if n2 > 0, then n1 ≤ 0 and n3 ≤ 0 by Lemma 3.1-(3-b). Hence
n1n2n3 − n1 − n3 > 1, which is absurd. If n2 < 0, then by Lemma 3.1-(3-b), n1 ≥ 0
or n3 ≥ 0. We may assume that n1 ≥ 0 and n3 < 0 by Lemma 3.1-(3-b). Hence
n1(n2n3 − 1) − n3 > 1, which is absurd. Consequently we get n2 = 0. Then we have
−n1 −n3 = ±1. Since ni ̸= −1 (i = 1, 3), one sees easily that n1n3 < 0. We may assume
that n1 > 0. Applying the elementary transformation of type (ET )N , we have

⃝ ⃝ ⃝
0 < n1 0 n3

99K ⃝ ⃝ ⃝
0 0 n1 + n3

By Lemma 3.1-(3-b), one has n1+n3 = −1. Putting n1 = m > 0, we have the graph:

(Γc) ⃝ ⃝ ⃝
m 0 −m− 1

(m > 0)

4.2.4 The case for r ≥ 4.

Lemma 4.1 max
1≤i≤r

{ni} > 0.

Proof. Assume that max
1≤i≤r

{ni} = 0. Let ν > 0 be the number of irreducible compo-

nents Ci of C with ni = (C2
i ) = 0. Then ν ≤ 2 by Lemma 3.1-(3-a) since r ≥ 4. If ν = 2,

then Γ(C) can be depicted as:
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i i i i i i−ps −p1 0 0 −q1 −qt

(s, t ≥ 0, s+ t ≥ 2, pi ≥ 2, r = s+ t+ 2, qj ≥ 2)

By Proposition 4.3, we have −[ps, . . . , p1, 0, 0, q1, . . . , qt] = 1. On the other hand, an
easy computation yields the following:

−[ps, . . . , p1, 0, 0, q1, . . . , qt] = −[0, p1, . . . , ps][0, q1, . . . , qt] + [p1, . . . , ps][q1, . . . , qt]

= [p1, . . . , ps][q1, . . . , qt]− [p2, . . . , ps][q2, . . . , qt]

> [p2, . . . , ps][q1, . . . , qt]− [p2, . . . , ps][q2, . . . , qt]

= [p2, . . . , ps] ([q1, . . . , qt]− [q2, . . . , qt])

> · · · · · ·
> [p2, . . . , ps] ([qt]− 1)

> [p2, . . . , ps] > 1.

This contradicts the fact that −[ps, . . . , p1, 0, 0, q1, . . . , qt] = 1. If ν = 1, then we have
the graph:

i i i i i−ps −p1 0 −q1 −qt

(s, t ≥ 0, s+ t ≥ 3, pi ≥ 2, r = s+ t+ 1, qj ≥ 2)

Then we have

±1 = −[ps, . . . , p1, 0, q1, . . . , qt]

= [p1, . . . , ps][0, q1, . . . , qt]− [p2, . . . , ps][q1, . . . , qt]

= −[p1, . . . , ps][q2, . . . , qt]− [p2, . . . , ps][q1, . . . , qt].

This cannot occur since [p1, . . . , ps][q2, . . . , qt]+[p2, . . . , ps][q1, . . . , qt] > 1. Hence max
1≤i≤r

{ni} > 0.

This completes the proof.

Lemma 4.2 There exist components Ci0 and Ci1 of C such that

n := (C2
i0) > 0, (C2

i1) = 0, (Ci0 · Ci1) = 1 and max
i ̸=i1,i2

{ni} ≤ −2.

Proof. Since r ≥ 4, by Corollary 3.1 , there exists only one component Ci0 with
n := (C2

i0) > 0 and then the graph Γ(C) can be depicted as:

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps −p1 n −q0 −q1 −q2 −qt

(s, t ≥ 0, s+ t ≥ 2, q0 ≥ 0, pi, qj ≥ 2, r = s+ t+ 2)

Let Ci2 be the component of C corresponding to the vertex ⃝
−q0

. Then we only need
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to show that q0 = 0. In fact, if we assume that q0 > 1, then we have

±1 = [ps, . . . , p2, p1,−n, q1, q2, . . . , qt]

= [p1, p2, . . . , ps][−n, q1, q2, . . . , qt]− [p2, . . . , ps][q0, q1, . . . , qt]

= −[q1, q2, . . . , qt]{n[p1, . . . , ps] + q0[p2, . . . , ps]} − [q2, . . . , qt]{[p1, . . . , ps]− [p2, . . . , ps]},

which is absurd since

[q1, q2, . . . , qt]{n[p1, . . . , ps] + q0[p2, . . . , ps]}+ [q2, . . . , qt]{[p1, . . . , ps]− [p2, . . . , ps]} > 2,

Hence q0 = 0.

Remark 4.1 In case of r ≥ 4, one has t ≥ 1. In fact, if t = 0, then s ≥ 2. By
Proposition 4.2, we have

±1 = [ps, . . . , p1,−n, 0] = [0,−n, p1, . . . , ps] = −[p1, . . . , ps] ,

which cannot occur since [p1, . . . , ps] ≥ 2.

Proposition 4.3 Assume that t = 1. Then q1 = n + 1 and the graph Γ(C) can be
depicted as:

(Γd) ⃝ ⃝ ⃝ ⃝ ⃝
−2 −2 n 0 −n− 1

Proof. We have

±1 = [ps, . . . , p1,−n, 0, q1]

= [−n, p1, p2, . . . , ps] · [0, q1]− [p1, . . . , ps] · q1
= (n− q1)[p1, . . . , ps] + [p2, . . . , ps]

< (n+ 1− q1)[p1, p2, . . . , ps].

This shows that n− q1 < 0 and n+ 1− q1 ≥ 0, hence q1 = n+ 1. In particular, we have

[p1, p2, . . . ps]− [p2, . . . , ps] = 1.

This implies that p1 = p2 = · · · = ps = 2 by Lemma 2.2-(6).

Proposition 4.4 Assume that s = 0. Then q1 = n+ 1 and Γ(C) is depicted as:

(Γe) ⃝ ⃝ ⃝ ⃝ ⃝
n 0 −n− 1 −2 −2

Proof. From

±1 = [−n, 0, q1, . . . , qt]

= (n− q1) · [q2, . . . , qs] + [q3, . . . , qt],
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it follows that n − q1 < 0. Hence we have (q1 − n) · [q2, . . . , qs] ± 1 = [q3, . . . , qt] <
[q2, . . . , qs], that is,

(q1 − n− 1) · [q2, . . . , qs] < ∓1.

This shows that q1 = n+ 1 and then we have

[q2, . . . , qs]− [q3, . . . , qt] = 1.

This implies q2 = · · · = qt = 2 by Lemma 2.2-(6).

Proposition 4.5 Assume that the graph Γ(C) is depicted as:

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps −p1 n 0 −q0 −q1 −qt

(s, t ≥ 1 , pi, qj ≥ 2, r = s+ t+ 3)

Then we have q0 = n+ 1 and p1 = 2 or q1 = 2.

Proof. From

±1 = [ps, . . . , p1,−n, 0, q0, q1, . . . qt]

= [−n, p1, . . . , ps] · [0, q0, q1, . . . , qt]− [p1, . . . , ps] · [q0, q1, . . . , qt]
= (n− q0)[p1, . . . , ps] · [q1, . . . , qt] + [p2, . . . , ps] · [q1, . . . , qt] + [p1, . . . , ps] · [q2, . . . , qt]
< (n− q0 + 2)[p1, . . . , ps] · [q1, . . . , qt],

it follows that n− q0 < 0 and n− q0 + 2 > 0, hence q0 = n+ 1. Thus we have

[p1, . . . , ps] · [q1, . . . , qt]± 1 = [p2, . . . , ps] · [q1, . . . , qt] + [p1, . . . , ps] · [q2, . . . , qt].

This implies that

[p2, . . . , ps] · [q2, . . . , qt]∓ 1 =
(
[p1, . . . , ps]− [p2, . . . , ps]

)(
[q1, . . . , qt]− [q2, . . . , qt]

)
=

(
(p1 − 1)[p2, . . . , ps]− [p3, . . . , ps]

)(
(q1 − 1)[q2, . . . , qt]− [q3, . . . , qt]

)
.

Since [p2, . . . , ps]− [p3, . . . , ps] ≥ 1 and [q2, . . . , qt]− [q3, . . . , qt] ≥ 1, one has(
(p1 − 2)[p2, . . . , ps] + 1

)(
(q1 − 2)[q2, . . . , qt] + 1

)
≤ [p2, . . . , ps] · [q2, . . . , qt]± 1.

This yields

{(p1−2)(q1−2)−1}[p2, . . . , ps][q2, . . . , qt]+(p1−2)[p2, . . . , ps]+(q1−2)[q2, . . . , qt]+1 ≤ ±1.

This shows that p1 = 2 or q1 = 2.

Finally we shall determine the graph Γ(C) for the remaining cases where r ≥ 4. Let
us start with the following:

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps −p1 n 0 −n− 1 −q1 −qt

(s, t ≥ 1 , pi, qj ≥ 2, r = s+ t+ 3)
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We have shown that p1 = 2 or q1 = 2. Applying the elementary transformation of
type (ET)N in Section 3, we may assume that q1 = 2 and that Γ(C) is represented as;

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps −p1 0 0 −1 −2 −2 −qj1 −qt

(qj1 ≥ 3)︸ ︷︷ ︸
k1

The curves corresponding to the subgraph ⃝ ⃝ ⃝
−1 −2 −2

︸ ︷︷ ︸
k1 + 1

, called a
(−1)-graph,

which can be contracted to a smooth point. Then one has the following:

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps −p1 0 k1 + 1 1− qj1 −qt

Γ(1) : ( p1 = k1 + 2 by Proposition 4.2)

Next, let us consider the elementary transformation

⃝ ⃝ ⃝
−k1 − 2 0 k1 + 1

99K ⃝ ⃝ ⃝
−k1 − 1 0 k1

99K ⃝ ⃝ ⃝ ,

−1 0 0

which yields

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ .

−2−ps −pi2 −2 −1 0 0 1− qj1 −qt

︸ ︷︷ ︸
ℓ1

Contracting the above (−1)-graph to a smooth point, we obtain:

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps −pi3 1− pi2 ℓ1 0 1− qj1 −qj2 −qt

(qj1 = ℓ1 + 2)Γ(2) :

The following elementary transformation
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⃝ ⃝ ⃝
ℓ1 0 −ℓ1 − 1

99K ⃝ ⃝ ⃝
ℓ1 − 1 0 −ℓ1

99K ⃝ ⃝ ⃝
0 0 −1

changes Γ(2) into

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps −pi3 1− pi2 0 0 −1 −qj2 −qt

(qj2 = 2)

⇓

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps −pi3 1− pi2 0 0 −1 −2 −2 −qt−qj3

︸ ︷︷ ︸
k2

⇓

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps −pi3 1− pi2 0 k2 1− qj3 −qt

(pi2 = k2 + 2)Γ(3) :

Continuing the operation as below:

⃝ ⃝ ⃝
−k2 − 1 0 k2

99K ⃝ ⃝ ⃝
−k2 0 k2 − 1

99K ⃝ ⃝ ⃝
−1 0 0

⇓

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps −pi3 −1 0 0 1− qj3 −qt

(pi3 = 2)

⇓

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ,

−2−ps −pi4 −2 −1 0 0 1− qj3 −qt

︸ ︷︷ ︸
ℓ2

we have the graph:
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⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps 1− pi4 ℓ2 0 1− qj3 −qj3 −qt

(qi3 = ℓ2 + 2).Γ(4) :

We note that at this stage the graph Γ(C) is represented as

⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ps −pi4 −2 −2 −2 −k1 − 2

ℓ2

︸ ︷︷ ︸

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−2 −k1 − 2 n 0 −n− 1 −2 −2 −2−2

k1ℓ1

︸ ︷︷ ︸ ︸ ︷︷ ︸

⃝ ⃝ ⃝ ⃝ ⃝ ⃝
−ℓ1 − 2 −2 −ℓ2 − 2−2 −qt−qj4

k2

︸ ︷︷ ︸

Repeating these operations, we have a sequence of birational transformations:

Γ(1) → Γ(2) → · · · → Γ(2k)
(
or Γ(2k+1))

)
,

where k > 0 is an integer and

Γ(2k) : ⃝ ⃝ ⃝ ⃝ ⃝
−2 −2 ℓ2k 0 −ℓ2k − 1

︸ ︷︷ ︸
any

Γ(2k+1) : ⃝ ⃝ ⃝ ⃝ ⃝
ℓ2k+1 0 −ℓ2k+1 − 1 −2 −2

︸ ︷︷ ︸
any

The inverse operation Γ(2k) ( Γ(2k+1) ) → Γ(1) → Γ(C) yields the graphs (Γg) and
(Γh) as desired. The proof is completed.
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