Kumamoto J. Math.
Vol.27 (2014), 5-21

A note on minimal normal compactifications of C?

Madoka Nobe, Yasuhiro Ohshima and Mikio Furushima

(Received February 2, 2014)
(Accepted March 29, 2014)

1 Introduction

Let M be a smooth connected compact complex surface and C' an analytic subset C

of M. The pair (M, C) is called a compactification of C? if M —C'is biholomorphic

to C2. Then one sees easily that C is of pure codimension one. Namely, C is a
T

divisor. We set C = U C;, where each Cj is an irreducible curve. Then it is known
i=1
that

(1.1) S is a rational surface (cf.[3]).

(1.2) HY(M,Z) = H(C,Z) for i <4 , H'(M,Z) 2 H3(M,Z) = 0 and H?(M,Z) =
Z". In particular, each C; is simply connected and its normalization is a
smooth rational curve.

Definition 1.1 A compactification (M, C') is said to be minimal normal if it sat-
isfies the following conditions:

(i) each C; is smooth,

T
(ii) the singular points of C = U C; are ordinary double points and
i=1

(iii) no non-singular rational component of C with self-intersection number —1
has at most two intersection points with other components of C.

Then Morrow [4], applying the topological results of Ramanujan [7], proved the
following:

Theorem 1.1 Let (M, C) be a minimal normal compactification of C? and we set
C= U C;. Then the dual graph T'(C) of C is one of the types (I'y) ~ (I'y) in

i=1
Table 1.
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Now, in this note, applying the theory of cluster sets of holomorphic mappings
at the essential singular point according to Nishino-Suzuki [5], we shall give an
elementary proof of Theorem 1.1.

n (n#-1)
0

n (n>0)
0

-n—1

-2
any number
) } (—2)-curve

n (n>0)
0

—-n—1

n (n>0)
0

-n—1

-2
any number
) } (—2)-curve

Table I

o =2 }any number

(—2)-curve

‘ =2 any number
‘ 5 (=2)-curve
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2 The cluster set of a holomorphic mapping.

2.1 Analytic curves as a cluster set
S
Let S be a nonsingular compact complex surface and C' = U C; a compact analytic
i=1
curve in S satisfying

(i)’ each C; (1 <1 <s) 0O is a compact irreducible analytic curve,

S
(ii) the singular points of C' = U C; are ordinary double points, and
i=1

(iii) no non-singular rational component of C' with self-intersection number —1
has at most two intersection points with other components of C.

Then Nishino-Suzuki (Théoréme 5 in [6]) proved the following

Theorem 2.1 Assume that for each C; there exists a holomorphic mapping p; :
C — S\ C such that

Ci C g@i<OO;S) = ﬂ QOi(AR> cC s
R>0

where Agp = {z € C : |z| > R} and ¢;(AR) is the closure of p;(Ag) in S.
Then the type of C is one of () ~ (€) in Table 2, in which for the types (Bs)(s 2
2), (7), (), () and (€) each irreducible component of C is a non-singular rational
curve and the graph T'(C) is depicted as Figure 1-5 .

ni

ng—1 _92 O -2

Figure 1 Figure 2
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Figure 3
Figure 4
nm n2 Np_1 Ng
Figure 5
Table 2
Name of type Explication of C'

(@) Aoo(n) An irreducible non-singular elliptic curve with the self

intersection number (C?) = n > 00
(8) Boo(n) An irreducible rational curve with only one ordinary

double point and (C?) =n > 00
(Bs)  Boo(ni,---,ns)(s>2) | Figure 1, all n, = —2 or max{n,;} > 00
(y)  vYeo(ni,---,ns)(s>1) | Figure2, alln; = —2 or max{no+1,n1, -, ns—1,ns+

1} > 00
(") Yae(ni,---,ms)(s>1) | Figure 3, n; = —2 or max{no + 1,n1,- - -,ns} > 00
(6)  d(nolgr/li,q2/l2,q3/ls) | Figure 4, (i) no > -2. (i) (h,l2,l5) =

(¢) €oo(N1, - yms)(s > 1)

(3,3,3),(2,4,4) or (2,3,m) with m = 3,4,5,6. (iii)
for each i = 1,2, 3, (gi,1;) is a pair of coprime integers
such that 0 < ¢; < [; and that

li = Ni1 — !
qi ’ 1
N2 — -1
n;,3 — 1

nlvri

(continued fraction expansion)
where n; ; > 2 are integers appearing in Figure 400
Figire 5, max{n;} > 00




A note on minimal normal compactifications of C2 9

2.2 Fundamental groups of the tubular neighborhoods.

Let S and C = U C; be as in 2.1. Let K be the boundary of a tubular neighborhood
i=1

of C'in S. Let e; (1 <4 < r) be aloop in K that goes once around C; with positive

orientation. Then one has the following (cf. Mumford [5]).

Lemma 2.1 The fundamental group w1 (K) is the group generated by e1,ea, ..., e, with
relations:

(Rl) e;ej = e;je; if Cin C]' # 0
(R2) H e;” =1,i=1,2,...,7, where s;; =(C;-Cj) (intersection number)
j=1
i.e.,
7T1(K) = <61, €2,...,€Er ‘ (Rl), (R2)>
Let us introduce the integer [ny,na,...,n,] € Z for n; € Z (1 < i < r) inductively as
follows:

(2-a) [0] =1, where 0 denotes the empty set.
(Q-b) [nl] =MNni.
(2-¢) [n1,n2,...,n;] =ni[ng,...,ni] —[ns,...,n;] (2<j<r).

Then one can easily verify the following

Lemma 2.2 (1) [n1,n2,...,n:] = [N, nim1, ..., 0] [Rig1, .oy ] —[i1, ooy ] [iga, -
(2) [n1,n2,...,nr] = [Ny, ..., N2, 01].
3) [-n1,—n2,...,—n,] = (=1)"[n1,n2,...,n..

(4) Ifni #0 (1 <i<r), then we have the continued fractional expansion

[nl,ng,...,nr]:nl_ 1
[n2,...,n] 1
o —
? 1
ng — ——

1

T

(5) [n1,m2,...,n] > [n2,n3,...,np] > - > Mp_1,ny] > [ne] > 1 0f 0y >1 (1<
i< r).

(6) Suppose that n; > 2 (1 <1i <r). Then,
[n1,n2,n3...,n:] — [n2,n3,...,n,] =1 iff ni=no=---=n,=2.
Then we obtain the following:

Proposition 2.1 Let C' and K be as above. Assume that w1 (K) = {1}. Then the curve
C belongs to the type (€).

7”7“]'
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Proof.

It is easy to see that m1(K) # 1 for the types (), (8) and (8)s. Thus we
need only to show that 71 (K) # {1} for the types (v), (7’) and (4).

The case of type (). O We set

C=Cp1UCpUCi;3UCuUCoUCLU---UC.

Let us denote by eo; (1 < i < 4), €; (0 <4 < s) the vertices of the graph I'(C) corre-
sponding to the curves Co; and Cj.

€01 €04
-2 -2
no ni Ns
€0 €1 €s
-2 -2
€02 €03
max{no+ 1,n1, -+ ,ns—1,ns +1} >0

Let a; (1 <i<4)ande; (0<j<s)be theloopsin K corresponding to the vertices
€i (1 <i<4), ¢ (0<j<s)of I'(C). Then we have the following relation between
generators:

(R1) aseo = epa; (1 <1i<2), aes =esa; (1 =3,4), e;eirieir1e; (0<i<s—1)0
(R2) e1 =af = a3, € =aj =aj,

n _ ny _ MNs—1 _ n _
arazey’er =1, egeylea =1,---, es_2e .’ es =1, azases®es—1 =10
From this one has

{m(K)/<eo,es >279%7Zs if s>0

7r1(K)/ < ey > XLy kLo * Lo *Laf(ar1a2a3aa =1) if s=0.
This implies that m (K) # {1}.

The case of type (7).

€01
-2
no ni Ns
€0 €1 €s
—2
€02

max{no + 1,n1, - ,ns—1,ns} >0

Let a; (1 <i<2)ande; (0<j<s) be the loops in K corresponding to the vertices
€i (1<i<2)ande; (0<j<s)inI(C).
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By Lemma 2.1, we have

m(K)=(ai(1<i<2), ¢ (0<j<s)|(Ri),(Ra) ),

where
(Rl) a;ep = epa; (1 S 7 S 2),eiei+1 = €i+lei(0 S 7 S S — 1)
2 2 n n MNg_1
(R2) eo = ai = a3, eplarazer =1, epeflea =1,---, es—2e," es, es—1€5° = 1.

Then we have
m(K)/ <e>= <a1,a2|af = a5 = (ara2)" = 1> & Zo * Lo * Lo [(ara2b = 1) # {1},
where @ = [n1, - ns] and b = a1a2, and hence 71 (K) # {1}.

The case of type (9).

€27y Q —MNiry

€21 —n21
€1ry €11 €0 €31 €3r3
Or----m--- O O O ------- -O
—Nir —MNni1 no —na31 —MN3rg

Let a; (1 <14 < 3) be a loop in m(K) corresponding to the vertex €;; (1 <4 < 3) of
I'(C) and e a loop corresponding to the vertex eg Then one has

Wl(K)/ < €0 > Ly * Loy * Lag/(ar1a2a3 = 1) # {1},
where a; = [ns1, -+ - nir,] (1 <4 < 3)0 hence we have 71 (K) # {1}.

Consequently the graph I'(C') must belongs to the type (¢). This completes the proof.

3 Rational ruled surfaces.

3.1 A linear trees of rational curves on a rational surface.

Definition 3.1 Let S be a smooth rational surface and A = U A; a curve on S. A is
i=1
called a linear tree of (smooth) rational curve if

(i) each A; is a smooth rational curve,
(i) (Ai-Aig1)=1(1<i<r-—1) and
(iii) (Ai-A;)=0 if |i—j|>2.

We set m; := (A?) (1 <4 < 7). Then the graph I'(A) of the curve A is depicted as

Then we have
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Lemma 3.1 (see Lemma 6 in Suzuki [8] ) Let (S, A) be as above. Then

(3-a) If there ezists a pair i, j (1 < i < j < 1) such that (A7) > 0, (A3) >0 d
AiNA; = 0,then (A7) = (A3) = 0 and there exists only one component Ay (k #
which intersects A; U A;. The graph T'(A) is depicted as

v

o0—0O0—o0
0 m 0

(3-b) If there exists a pairi, j (1 <1i < j < n) such that (A7) >0, (A}) >0, thenn =2
and (A7) = (A}) = 1. The graph T'(A) is depicted as

o0—>0
1 1

Corollary 3.1 Assume that r > 3. Then there exists only one component A;, with
(A7) > 0. In particular, (A7) <0 for A with AN Ay, = 0.

3.2 An elementary transformation.

Assume that the graph I'(A) contains the following subgraph:

D 0 q
Oo——0O0—~0
A; A, Ay

Blowing up at the intersection point of A; and Ay (resp. A; and A;) and contracting
the proper transform of A;, which is a (—1)-curve, to a smooth point, we obtain the
following;:

p+1 0 q—1 p—1 0 qg+1
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In the next section 4, we will treat the following special type of the elementary
transformations:

(ET)y : O——0—"20 <2 o—O0—-0 P o0—O0—~=0

4 A classification of minimal normal compatifica-
tions of C2.

4.1 The type of the boundary divisor.

Let (M,C) be a minimal normal compactification of C? and set C = U C; , where C;
i=1

is an irreducible component of C'. According to (1.1) and (1.2) in Introduction, we know

that

(4-a) M is rational (see [3]).
(4-b) HY(M,Z) = H'(C,Z) for i < 3.
(4-c) HY(M,Z) = H*(C,Z) = 0 and H*(M,Z) = Pic S = QTB ZOm(Cy).

=1

Then we have

Proposition 4.1 For each C;, there exists a holomorphic mapping ¢; : C — M \ C
such that
C; C pi(oo; M) C C,

where @;(co; M) := ﬂ vi(AR) and Agr = {z € C: |z| > R}.

R>0
Proof. The proof is done by the idea similar to that of Lemma 1 in [1] (see also
Lemma 2 in [8]).

By (4-c), the type of boundary C' is one of the types (o) — (e) in Table 2. Let K
be the boundary of a tubular neighborhood of the curve C' in S as before. Since C? is
simply connected at infinity, 71 (K) = {1} (trivial). By Proposition 2.1, we have

Theorem 4.1 The curve C belongs to the type (€) in Table 2 (see also Figure 5).

4.2 The classification of I'(C).
First by Theorem 4.1, the graph I'(C) is depicted as

1> . —1.
O—0O------- O, pax{nd =0 mni#-1

By Proposition 2.1, one has m(K) & Zo = {1}, where o = [n1,n2,...,n,] € Z.
Hence we have
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Proposition 4.2 [ni,ns,...,n,| = £1.

Applying Proposition 4.2, we shall determine the graph I'(C') below. Here we note that
r > 0 is the number of vertices of the graph I'(C).

4.2.1 The case for r = 1.

Since ba(S) = ba(C) = 1 and S is rational, S = P?, and hence, C' = P and (C?) < 2.
By Proposition 4.2, one can see that (C?) = 1, and thus we obtain the graph:

(Ta) O

4.2.2 The case for r = 2.

Since bz(S) = 2, one has S = F,(n > 0) (Hirzebruch surface) with max{ni,nz} > 0.
We may assume that n; > 00 Since o = [n1,n2] = %1, one has niny — 1 = +1, that is,
(n1,m2) = (2,1) or (0,n2).By Lemma 3.2-(3-b), the case (ni,n2) = (2,1) cannot occurl]
Hence we obtain the graph:

T  O——0 m#-1)

4.2.3 The case for r = 3.

By Proposition 4.2, one has +1 = [n1, n2,n3] = ningns — n1 — ng. First we claim that
nzy = 0. In fact, if no > 0, then ny < 0 and n3g < 0 by Lemma 3.1-(3-b). Hence
ninens — n1 —ng > 1, which is absurd. If no < 0, then by Lemma 3.1-(3-b), ny > 0
or nz3 > 0. We may assume that n; > 0 and n3 < 0 by Lemma 3.1-(3-b). Hence
ni(n2ns — 1) — ng > 1, which is absurd. Consequently we get na = 0. Then we have
—n1 —ns = £1. Since n; # —1 (i = 1, 3), one sees easily that ning < 0. We may assume
that n1 > 0. Applying the elementary transformation of type (ET)n, we have

0<n 0 ns 0 0 ni +ns

O——0O——0O -—3 O——O—0O

By Lemma 3.1-(3-b), one has ni +ns = —1. Putting n1 = m > 0, we have the graph:

m 0 —-m-—1

(Te) O——0O0—~0 (m >0)
4.2.4 The case for r > 4.
Lemma 4.1 max {n;} > 0.
1<i<r

Proof. Assume that max {ni} = 0. Let v > 0 be the number of irreducible compo-

nents C; of C with n; = (C?) = 0. Then v < 2 by Lemma 3.1-(3-a) since r > 4. If v = 2,
then T'(C) can be depicted as:
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(5,620, s+1>2, pi 22, r=s+t+2, ¢ >2)

By Proposition 4.3, we have —[ps,...,p1,0,0,¢1,...,¢:] = 1. On the other hand, an
easy computation yields the following;:

_[p87"'ap170703q17"’7qt] = _[0,p1,~~~;ps”qul,---7qt]+[p17~~~7ps“q17~-~7qt]
1, spsllars - qe] = [p2, s psllae, - - ge]

> [p2,..upsllar, .o qe] = [p2s .o pslaes ]
= [an"'ypS]([q17"'7qf]_[q27"~7qt})

> ......

> [p27"~7ps] ([qt} - 1)

> [p27...,ps]>1.

This contradicts the fact that —[ps,...,p1,0,0,q1,...,¢] = 1. If v = 1, then we have
the graph:

Q
O
O -
Q
O

(5,6 >0, s+t>3, pi>2, r=s+t+1, ¢ >2)
Then we have
+1 = 7[p87"'ap1705q17"'7qi}

= [p1,--,ps[0,q1, .-, qe] — [Py, psllan, - qi]
= —[p1,...,psllae, - @) = [p2, -, ps]lan, - - o5 Ge)-

This cannot occur since [p1, . . ., ps][g2, - - -, qe)+[p2, - - -, Ps)[q1, - - -, @] > 1. Hence Jmax {n:} > 0.

This completes the proof.

Lemma 4.2 There exist components Cy, and C;; of C' such that

n = (C’fo) >0, (C’fl) =0, (Cij - Cs;) =1and max {n;} < —2.

#0150

Proof. Since r > 4, by Corollary 3.1 , there exists only one component C;, with
n:= (C}) > 0 and then the graph I'(C) can be depicted as:

—Ps —Dp1 n —qo —q1 —q2 —qt
O------ O—O0—O0—0—0------ O

(s,t>0,s+t>2, >0, pi, ¢ =22, r=s+1t+2)

—q0
Let C;, be the component of C' corresponding to the vertex (O . Then we only need



16 M. Nobe, Y. Ohshima and M. Furushima

to show that go = 0. In fact, if we assume that go > 1, then we have

+1 = [p57"'7p27p1a_n7q17q27"'7qt}
= [p17p2a"'ap3][7n7q17q27'"aqt] - [va"pr”qO?ql?"'vqt}
—la, a2, a{nlpy, .. ps] + qolp2, - psl} = (a2, - a{[pr, - ps] = (P2

which is absurd since
[q17q27' . 'aqt]{n[plv' . 7p3] +q0[p23 v 7p5]} + [qu .. 'aqt]{[ph' .. ,ps} - [p27' .. ,ps}} > 27
Hence g0 = 0.

Remark 4.1 In case of r > 4, one hast > 1. In fact, if t = 0, then s > 2. By
Proposition 4.2, we have

+1= [psv' "7p177n70] = [07 7nap17"'7p5} = 7[p17"'ap3} )
which cannot occur since [p1,...,ps|] > 2.

Proposition 4.3 Assume that t = 1. Then g1 = n+ 1 and the graph I'(C) can be
depicted as:

n
Ta)  O------ O O O O

Proof. We have

+1 = [ps,...,p1,—n,0,q1]
[—n,p1,p2, .., ps] - [0, 1] — [p1,. .o ups] - @1
= (n—q)p1,. - ps] + [p2,- .., ps]
(n+1—q)p1,p2,...,ps]-

This shows that n — g1 < 0and n+1— g1 > 0, hence g1 = n+ 1. In particular, we have
[p1,p2; ... ps] — [P2,. .., ps] = 1.
This implies that p1 = p2 = -+ = ps = 2 by Lemma 2.2-(6).

Proposition 4.4 Assume that s =0. Then ¢t =n+ 1 and I'(C) is depicted as:

n 0 -n—-1 =2 —2
) O—O—O—Ommmmmm e
Proof. From
+1 = [-n,0,q1,...,q]

(n—aq1) g2, --5qs) + g3, - -, qe],
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it follows that n — g1 < 0. Hence we have (g1 — n) - [q2,...,¢s] £ 1 = [g3,...,q] <
[q27-~~7QS]7 that iS,
(ql_n_l)'[q%”'aqs} < F1.

This shows that g1 = n 4 1 and then we have

[g2,---,qs] — [g3y--.,q¢) = 1.
This implies g2 = - -+ = ¢ = 2 by Lemma 2.2-(6).
Proposition 4.5 Assume that the graph I'(C) is depicted as:

0
0

¢
o
O =
4
ok
¢
o

(5,t>1,pi, ¢ 22, 7=5+t+3)
Then we have qo =n+1 and p1 =2 or q1 = 2.
Proof. From

+1 = [ps,---,p1,—1,0,q0,q1,- .-G

[=n,p1,--5ps] 0,90, g1, - qe] = [P1s- -, ps] - (90, q1, - - -, gt

= (m—qo)lp,---»ps] [qr, - @] + [p2so o ps] - lan, @] + [p1y o ps] - a2, - - g
(n—qo+2)[p1,...,ps] - a1, ...,

N

it follows that n — qo < 0 and n — go + 2 > 0, hence go = n + 1. Thus we have

[P, ps] - lqrs - qll 1= [p2, . sps] - lau, s @] + [p1, - 0s] - (g2, -+, i)
This implies that
[p2;---sps] g2, -, @] F1 = ([pl,...,ps} - [pg,...,ps}) ([ql,...,qt} - [qg,...,qt])

= ((zn = Dlp2,...,ps] = [ps,...,ps]) ((ch = Dlgz, - qi] = [qa,---,qt])-

Since [p2,...,ps] — [p3,...,ps] =1 and [g2,...,q] — [g3,-..,q] > 1, one has

((p1 —=2)[p2, .., ps] +1) ((q1 —2)[g2, .-, ) + 1) Slpzeep] oo a] 1.
This yields
{(p1=2)(n=2)=1}[p2, ..., ps]laz, - - -, @]+ (P1=2)[p2, - -, ps]+H (1 =2) a2, - -, ] +1 < £1.
This shows that p1 =2 or ¢1 = 2.

Finally we shall determine the graph I'(C) for the remaining cases where r > 4. Let
us start with the following:

¢
o
O =
O =
0O
¢
o

(,6>1,pi, g =2, r=s+1+3)
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We have shown that p1 = 2 or ¢1 = 2. Applying the elementary transformation of
type (ET), in Section 3, we may assume that g1 = 2 and that I'(C) is represented as;

—DPs —p1 0 0 -1 -2 -2 —45, —qt
O------ O O O O ----- - O—0O------ O (6, 23)
N ——
k1
-1 —2 —2
The curves corresponding to the subgraph O——0O--------- O , called a

—1)-graph,
(—1)-grap PR

kr+1  1—gqj —qs

0
. O------ O O O O Or------ O  (p1 = k1 + 2 by Proposition 4.2)

Next, let us consider the elementary transformation

—k1 -2 0 ki+1 —k1—1 0 k1 —1 0

which yields

—Ps —Dis -2 -2 -1 0 0 1—qj —qt
O------ O—Or------ O O O O O O------- O
5

The following elementary transformation
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01 0 —4—-1 Li—1 0 —{, 0 0 -1
--O—0—O0 - o—0—=0 - o—0—~=0
changes I'® into
—Ps —pis 1 —pi, 0 0 -1 —j> —qt
O----- O O O Or-------- O (25 =2)
I
—Ps —pis 1 —pi, 0 0 -1 -2 —2 —Qjs —qt
O----- O O O O O ----- O——0O-----+ O
— —
ko
U
—ps —Dis 1-pi, O ko 1—4qj —q
re O-mmmmm - O O Or------ - O (pi = k2 +2)
Continuing the operation as below:
—ky—1 0 k2 —ko 0 ky —1 -1 0 0
--O—0—O0 - o—0—~=0 --* o—_0—~20
U
—Ps —Diy —1 0 0 1—gqj, —qt
O----- O O O O O Or---mm- - O (pis =2)
U
—Ds —Diy -2 —2 —1 0 0 1—gqj, —qt
O------ OoO—0------ O O O O O ------- O,
—_— ——
£2

we have the graph:
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e s ® O——O -=-=-=-- O (@ ="t+2)

—Ds —Diy -2 -2 -2 —k1—2
O -mmmmmmmmm o O—O—O - O—O—
4
—2 —2 —k1—2 n 0 —n-—1 —2 —2 —2
— OO O—0 O o o
—_—
41 kl
—51 -2 —2 —2 —ZQ -2 —Qjy4 —qt
— OO - @ S G S o UL O
k2

Repeating these operations, we have a sequence of birational transformations:
PO 5 T® 55T (o 1MW)

where k > 0 is an integer and

-2 -2 Lok 0 —lop, — 1
O O—O0—0—0
N————
any
Lok41 0 —lop41—1 -2 —2
T(2k+1) . O M) O O-------- -O

N————

any

The inverse operation I'?*) ( T2+ ) 5 1M 5 P(C) yields the graphs (I'y) and
(T'n) as desired. The proof is completed. O
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