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The notion of primitive extensions is of theoretical importance in the algebraic
Galois theory. In differential algebra we have an analogous notion: G-primitive extensions,
where G stands for an algebraic group. Every Picard-Vessiot extention can be considered,
after some modification, as a G-primitive extension for G, the associated Picard-Vessiot
group. This interpretation furnishes a transformationof a linear ordinary differential
equation into, in some sense, a canonical form.

In this paper we explain the mechanism of the interpretaion, and give instructive
examples.

We believe that a similar result holds for linear partial differential equations of
the first order, and then, by using it, we can reconstruct the work of Drach [1].

8 1. G-extensions and G-primitive extensions

In this section we introduce several notions and results of differential algebra, which
entirely owe to Kolchin [2]; refer to it for details.

We denote the field of constants of a differential field K by Ck. Throughout this
section we fix a differential field K of characteristic 0 and its field of constants C=Cx.

For a strongly normal extension L of K, it is known that:
(i) L/K is a finitely generated extension,
(ii) C.,=Ck=C,
(i) the set of all strong isomorphisms of L over K, which is denoted by Gal(L/K),
becomes an algebraic group over C.

When we are concerned with algebraic groups, we have the following definition.
Let G be an algebraic group over C.

Definition 1. We say that LK is a G-extension if it is a strongly normal extension
and if there is an injective homomorphism

Gal(L/K) - G¢

of algebraic groups over C, where C’ is a field of constants of a differential extension
of L.

* Partially supported by the Inamori Foundation.
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For example, a Picard-Vessiot extension defined by an n-th order linear ordinary
differential equation is a GL(n)-extension. This is the subject of the following sections.

Next we introduce G-primitive extensions. We assume, for simplicity, that K is an
ordinary differential field; we use & for the unique derivation.

For any connected algebraic group G over C and for a differential field extension
L of K, we can define canonically the logarithmic derivation £ of &:

£6: G. — Lie(G).
We say that ¢ €G, is a G-primitive over K if
26 (a)ELie(Gx) = 8Qc K,
where g denotes the Lie algebra of G.

Definition 2. Let G be a connected algebraic group over C. We say that L/ K is
a G-primitive extension if there exists a G-primitive @ over K such that L=K<{a).

We describe the relation between the two definitions.

Theorem 1 (Kolchin [2], p.419). K and C being the fixed ones. Let G be a connected
algebraic group over C, and a be a G-primitive over K. Then L=K<{a), which is
by definition a G-primitive extension of K, is a G-extension of K.

Remark 1. In the situation of Theorem 1, we can see that Gal(L/K) acts on the
group Gic for some C’. Then the injective homomorphism ¢ : Gal(lL/K) — G¢ in Definition
1 is obtained by

c(o)=a"'c(a), o€GaL/K).
The converse of this theorem is substantial for our study; that is

Theorem 2 (Kolchin [2], p.426). Let K, C and G be as in Theorem 1. If the ordinary
Galois cohomology H'(K, G) = 1, then every G-extension is a G-primitive extension.

Remark 2. For a strogly normal extension LK, the differential Galois cohomology
H'((L,8)./(K,8), G) is defined. Then there exists a canonical injection
H'((L,6)/(K,6), G) ~ H'(K, O,
which is essential for the proof of this theorem.
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§ 2. Picard-Vessiot extensions

Let K be an ordinary differential field of characteristic 0 with a derivation 6. We
use the following notation:

da=a',
dma=a", m=0, 1, 2, -

for every element a of a differential field extension of X.

We say that a differential field extension LK is a Picard-Vessiot extension if C,=
Cx (which we denote by C) and if L is obtained from K by differential adjunction of a
fundamental system of solutions of a linear differential equation over K. Namely there
is a linear ordinary differential equation

6] YO+ ay® P+t a1y + ay =0

with a.€K for i=1,:-,n, and there are 7,,---,7.€L such that every 7;is a solution of
(E), (my, =+, n.) is linearly independent over C and L=K{7n,, -, 7.>. We call (7., -,
n.) a fundamental system of solutions of (E).

In this case LK is a strongly normal extension, and then Gal(L, k) becomes an
algebraic group over C. This group is injected into GL(n)c by using the fundamental
system of solutions: Let

n 1 soe nn
n= n’l ves n’n

n l(.-;—x) T]n(n'l)

then 7 EGL(n)., because (71, - 7,) is linearly independent over C. We call 7 a Sfunda-
mental matrix. Since Gal(L/K) is known to be the group of differential automorphisms
of L over K, it naturally acts on GL(n).. Then we have the injective homomorphism

c: GallL/K) = GL(n)c

by defining ¢(o) =750 (5) for any 0 EGal{L/K). We denote the image of ¢ by
G and call it a Picard-Vessiot group relative to 7; it becomes an algebraic subgroup of
GL(n) over C.

Recalling Definition 1, we see that the Picard-Vessiot extension LK is a GL (n)-
extension, and moreover a G-extension.

The logarithmic derivation £6 for the algebraic group GL(n) (and hence for any
algebraic subgroup of GL(n)) is defined by
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¢6(a)=a'a™', a€GL()..

Now we are interested in the mechanism how Picard-Vessiot extensions are considered
as G-primitive extensions. A partial answer is given in the proof of the following theorem.
We denote the component of the identity of an algebraic group G by G°.

Theorem. Let K be an ordinary differential field of characteristic 0, L be a Picard-
Vessiot extension of K and G be a Picard-Vessiot group over K relative to a fundamental
matrix. Then there exists a finite algebraic extension K'of K such that K°is algebraically
closed in LK® and, whenever Cux= Cx, LK® is a G°-primitive extension of K°.

Proof. Let K, L and G be as in the theorem. We use C for Cx. First we note the
following facts : For any differential field extension M/K, LM/ M is also a Picard-
Vessiot extension if C.uw=C. Moreover Gal(LM /M) is isomorphic to Gal{(L/LNM) C
Gal(L/K). K° denoting the algebraic closure of K in L, K°/K is a finite algebraic
extension and Gal(L/K°)=Gal(L/K)®, in particular it is connected. Now we are given
the isomorphism .
¢: Gal(L/K) — Gc.

Then for an algebraic extension K’ of K satisfying C.x = C, this isomorphism induces an
injective homomorphism

Gal(LK' /K') — Gc.
When K’ is algebraically closed in LK’, Gal(LK' /K') is connected, and hence it is
injected into Gc°.
Let 7 = (7,9). be a fundamental matrix which defines the isomorphism c:

Gal(L/K) - G¢:

c(o) =n"'c(n), 0€GaL/K).

Let P be the prime ideal for 7 over K:
p= {¢=K[Y,"" V], |¢(n)=0},
and we denote by W the locus of p. Then W is an algebraic variety over K.

- The chase of the proof of Theorem 2 shows that, K denoting an algebraic closure
of K, we can take u€ Wy such that
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is contained in G.°. Take a finite algebraic extension K’ of K so that u€ Wy , and let
K°® be the algebraic closure of K" in LK. We assume that C.x =C. Then as we noted
above K° is a finite algebraic extension of K, and Gal(LK°,/K"°) is injected into G¢° by
¢. Obviously @ €EG.xo’. Now we show that a@ is a G°-primitive over K°, and LK°=
Ka).

For any 0 €Gal(LK*/K®), 0 (1) = u, then

e(o)= n"'a(n)

= (wa)'o@a)
a'uv'owo(a)
= a'o(a).

Therefore o (a)=ac(o). Since c(o) is a C-valued point of G°, we see

o(gé(a)) =o(a’"a™")
=(o(a)) (g(a))!
=(ac(0)) (ac(o))!
=a’c(ag)c(o) 'a™!
=a’'a"!
=¢5(a)

for any o EGal(LK®°,/K"). This implies £6(a) € Lie(Gxs), because LK°/K° is a
strongly normal extension; namely @ is a G°-primitive over K°. LK°=K°(a) is clear,
and hence LK® is a G°-primitive extension of K°.

In the viewpoint of transformations of differential equations, we can interpret the
theorem as follows: A differential equation (E) over K with a fundamental matrix 7
is always transformed, by a transformation u™'n for some uEGL(m)xo into an equation

E9 2 =Az

such that the coefficient A is a K°-valued point of the Lie algebra of the Picard-Vessiot
group for (E) over K relative to 7, where K° is a finite algebraic extension of K, and
z denotes an nXn matrix of differential indeterminates. We call u simply a transformation.
In general, however, we have no way to obtain the transformation.

§ 3. Examples

We cite here several examples which illustrate how we can consider a Picard-Vessiot
extension as a G-primitive extension. In this section we fix the differential field (X,8)=
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(C(x), d”dx); then the field of constants C=C, the complex number field.

Example 1.
(El) y”+—y’=0_

This equation has a fundamental system of solutions (1, log x). Then we have a funda-

1 log x
7 0 1/x

The Picard-Vessiot group relative to 7 is

() )

which is isomorphic to G, and hence is connected. The Lie algebra of G is

0 ¢
g ={(0 0 n) |£xz arbitrary} .

Now we can take a transformation

mental matrix

Ci2 arbitrary} ,

to obtain a G-primitive

1 log«x
=py-! —1
azwon (o 1)

Thus L=K(7n) is a G-primitive extension over K, and the equation (E:) is transformed
into

. , [0 1/%
(El) z —<0 0 >z.

Example 2.
(E») x(1—x)y" + (-%— —x)y +%zy =0, vEC\Q.
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This is the Gauss hypergeometric equation with parameters (—v /2, v.72, 1,/2). It
has a fundamental system of solutions (7., 7)=(Y x+v x—1)*, W x—v x—1)*), where
we take branches of these functions (at a point in P'\{0, 1,}) so that n.7.= 1. Set

<nl nz)
7’= L4 4 ’
m N2

a fundamental matrix. The Picard-Vessiot group relative to 7 is

G = { cu 0) (£0 c.z)

G is not connected and has the component of the identity

o5 1)

The Lie algebra of G° is

8= {(0 " gu lﬂu'i' £2=0 } .

Define K’ =K(y x(x—1)), then K" CL=K (7), and we have a K'-valued transformation

“ 2 xx—

to obtain a G°-primitive
) (7’ | >
a=u'np=
/]

over K'. Thus L is a G’-primitive extension of K', and the equation (E.) is transformed

Cusz=1, Ciz2 Cn=1} M

cucz= 1 }

into

(E3) 7 = <a )z.
—a

Example 3.
(E:)
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This equation is regular singular at x = 0 and irregular singular at x =o0. It has a
fundamental system of solutions (7,720 = (V x cos x, v x sin x). Set

m N
- ( | )
/RS ]
The Picard-Vessiot group relative to 7 is

G=S0(2),

which is connected, and hence, as we noted in the proof of the theorem, K is algebraically
closed in L=K(#7). The prime ideal for 7 over K is

, 1 , 1
=(Y12+Yz’—x, Yi—Y. + Yz, Yz—_Yz“Yl),
2x 2x

then it follows that, W denoting the locus of P, Winxk=Wsx= ¢. Thus we need an algebraic
extension of K to obtain a transformation u. For example let K’ = K(y x), then we
have

( vE 0
“=\am vz )

We obtain a G-primitive

a=u'n= (—COS * sin x) ESOQ2) .k .

sin x cos x

Hence LK is a G-primitive extension of K, and the equation (E;) is transformed into

. , 0 1
(E3) 2 —<_1 0>z.
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