G-PRIMITIVE EXTENSIONS FOR LINEAR ORDINARY
DIFFERENTIAL EQUATIONS

Yoshishige HARAOKA
(Received October, 31, 1989)

The notion of primitive extensions is of theoretical importance in the algebraic
Galois theory. In differential algebra we have an analogous notion: G-primitive extensions,
where G stands for an algebraic group. Every Picard-Vessiot extension can be considered,
after some modification, as a G-primitive extension for G, the associated Picard-Vessiot
group. This interpretation furnishes a transformation of a linear ordinary differential
equation into, in some sense, a canonical form.

In this paper we explain the mechanism of the interpretation, and give instructive
examples.

We believe that a similar result holds for linear partial differential equations of
the first order, and then, by using it, we can reconstruct the work of Drach [1].

§1. G-extensions and G-primitive extensions

In this section we introduce several notions and results of differential algebra, which
entirely owe to Kolchin [2]; refer to it for details.

We denote the field of constants of a differential field K by Cx. Throughout this
section we fix a differential field K of characteristic 0 and its field of constants C=Cx.

For a strongly normal extension L of K, it is known that:
(i) L/K is a finitely generated extension,
(ii) Cx=Cx=C,
(iii) the set of all strong isomorphisms of L over K, which is denoted by Gal(L/K),
becomes an algebraic group over C.

When we are concerned with algebraic groups, we have the following definition.
Let G be an algebraic group over C.

Definition 1. We say that L/K is a G-extension if it is a strongly normal extension
and if there is an injective homomorphism

$$Gal(L/K) \rightarrow G_C$$

of algebraic groups over C, where C' is a field of constants of a differential extension
of L.

* Partially supported by the Inamori Foundation.
For example, a Picard-Vessiot extension defined by an \(n \)-th order linear ordinary differential equation is a \(GL(n) \)-extension. This is the subject of the following sections.

Next we introduce \(G \)-primitive extensions. We assume, for simplicity, that \(K \) is an ordinary differential field; we use \(\delta \) for the unique derivation.

For any connected algebraic group \(G \) over \(C \) and for a differential field extension \(L \) of \(K \), we can define canonically the logarithmic derivation \(\ell \delta \) of \(\delta \):

\[
\ell \delta : G_L \rightarrow \text{Lie}(G).
\]

We say that \(\alpha \in G_L \) is a \(G \)-primitive over \(K \) if

\[
\ell \delta (\alpha) \in \text{Lie}(G_K) = g \otimes c K,
\]

where \(g \) denotes the Lie algebra of \(G \).

Definition 2. Let \(G \) be a connected algebraic group over \(C \). We say that \(L/K \) is a \(G \)-primitive extension if there exists a \(G \)-primitive \(\alpha \) over \(K \) such that \(L = K\langle \alpha \rangle \).

We describe the relation between the two definitions.

Theorem 1 (Kolchin [2], p.419). \(K \) and \(C \) being the fixed ones. Let \(G \) be a connected algebraic group over \(C \), and \(\alpha \) be a \(G \)-primitive over \(K \). Then \(L = K\langle \alpha \rangle \), which is by definition a \(G \)-primitive extension of \(K \), is a \(G \)-extension of \(K \).

Remark 1. In the situation of Theorem 1, we can see that \(\text{Gal}(L/K) \) acts on the group \(G_{C'} \) for some \(C' \). Then the injective homomorphism \(c : \text{Gal}(L/K) \rightarrow G_{C'} \) in Definition 1 is obtained by

\[
c(\sigma) = \alpha^{-1} \sigma(\alpha), \quad \sigma \in \text{Gal}(L/K).
\]

The converse of this theorem is substantial for our study; that is

Theorem 2 (Kolchin [2], p.426). Let \(K \), \(C \) and \(G \) be as in Theorem 1. If the ordinary Galois cohomology \(H^1(K, G) = 1 \), then every \(G \)-extension is a \(G \)-primitive extension.

Remark 2. For a strongly normal extension \(L/K \), the differential Galois cohomology \(H^1((L, \delta)/(K, \delta), G) \) is defined. Then there exists a canonical injection

\[
H^1((L, \delta)/(K, \delta), G) \rightarrow H^1(K, G),
\]

which is essential for the proof of this theorem.
§ 2. Picard-Vessiot extensions

Let K be an ordinary differential field of characteristic 0 with a derivation δ. We use the following notation:

$$\delta a = a', \quad \delta^m a = a^{(m)}$$

for every element a of a differential field extension of K.

We say that a differential field extension L/K is a Picard-Vessiot extension if $C_L = C_K$ (which we denote by C) and if L is obtained from K by differential adjunction of a fundamental system of solutions of a linear differential equation over K. Namely there is a linear ordinary differential equation

$$y^{(\omega)} + a_1 y^{(\omega-1)} + \cdots + a_{n-1} y' + a_n y = 0$$

with $a_i \in K$ for $i = 1, \ldots, n$, and there are $\eta_1, \ldots, \eta_n \in L$ such that every η_i is a solution of (E), (η_1, \ldots, η_n) is linearly independent over C and $L = K(\eta_1, \ldots, \eta_n)$. We call (η_1, \ldots, η_n) a fundamental system of solutions of (E).

In this case L/K is a strongly normal extension, and then $Gal(L/K)$ becomes an algebraic group over C. This group is injected into $GL(n)_C$ by using the fundamental system of solutions: Let

$$\eta = \begin{pmatrix} \eta_1 & \cdots & \eta_n \\ \eta'_1 & \cdots & \eta'_n \\ \vdots & & \vdots \\ \eta_1^{(\omega-1)} & \cdots & \eta_n^{(\omega-1)} \end{pmatrix},$$

then $\eta \in GL(n)_L$, because (η_1, \ldots, η_n) is linearly independent over C. We call η a fundamental matrix. Since $Gal(L/K)$ is known to be the group of differential automorphisms of L over K, it naturally acts on $GL(n)_L$. Then we have the injective homomorphism

$$c: Gal(L/K) \rightarrow GL(n)_C$$

by defining $c(\sigma) = \eta^{-1} \sigma(\eta)$ for any $\sigma \in Gal(L/K)$. We denote the image of c by G and call it a Picard-Vessiot group relative to η; it becomes an algebraic subgroup of $GL(n)$ over C.

Recalling Definition 1, we see that the Picard-Vessiot extension L/K is a $GL(n)$-extension, and moreover a G-extension.

The logarithmic derivation $\ell \delta$ for the algebraic group $GL(n)$ (and hence for any algebraic subgroup of $GL(n)$) is defined by
\ell (a) = a' a^{-1}, \ a \in GL(n)\ L.

Now we are interested in the mechanism how Picard-Vessiot extensions are considered as G-primitive extensions. A partial answer is given in the proof of the following theorem.

We denote the component of the identity of an algebraic group G by \(G^0 \).

Theorem. Let \(K \) be an ordinary differential field of characteristic 0, \(L \) be a Picard-Vessiot extension of \(K \) and \(G \) be a Picard-Vessiot group over \(K \) relative to a fundamental matrix. Then there exists a finite algebraic extension \(K^0 \) of \(K \) such that \(K^0 \) is algebraically closed in \(LK^0 \) and, whenever \(C_{K^0} = C_G \), \(LK^0 \) is a \(G^0 \)-primitive extension of \(K^0 \).

Proof. Let \(K, L \) and \(G \) be as in the theorem. We use \(C \) for \(C_K \). First we note the following facts: For any differential field extension \(M/K \), \(LM/M \) is also a Picard-Vessiot extension if \(C_{LM} = C \). Moreover \(\text{Gal}(LM/M) \) is isomorphic to \(\text{Gal}(L/L \cap M) \subset \text{Gal}(L/K) \). \(K^0 \) denoting the algebraic closure of \(K \) in \(L \), \(K^0/K \) is a finite algebraic extension and \(\text{Gal}(L/K^0) = \text{Gal}(L/K)^0 \), in particular it is connected. Now we are given the isomorphism

\[
\gamma : \text{Gal}(L/K) \rightarrow G_C.
\]

Then for an algebraic extension \(K' \) of \(K \) satisfying \(C_{K'} = C \), this isomorphism induces an injective homomorphism

\[
\text{Gal}(LK'/K') \rightarrow G_C.
\]

When \(K' \) is algebraically closed in \(LK' \), \(\text{Gal}(LK'/K') \) is connected, and hence it is injected into \(G_C^0 \).

Let \(\eta = (\eta_i^{(i-1)})_{ij} \) be a fundamental matrix which defines the isomorphism \(\gamma : \text{Gal}(L/K) \rightarrow G_C : \)

\[
c(\sigma) = \eta^{-1} \sigma(\eta), \ \sigma \in \text{Gal}(L/K).
\]

Let \(\mathfrak{p} \) be the prime ideal for \(\eta \) over \(K \):

\[
\mathfrak{p} = \{ \phi = K[Y_i^{(i-1)}]_{ij} \mid \phi(\eta) = 0 \},
\]

and we denote by \(W \) the locus of \(\mathfrak{p} \). Then \(W \) is an algebraic variety over \(K \).

The chase of the proof of Theorem 2 shows that, \(K \) denoting an algebraic closure of \(K \), we can take \(u \in W_K \) such that

\[
a \equiv u^{-1} \eta
\]
is contained in G_{K^0}. Take a finite algebraic extension K' of K so that $u \in W_{K'}$, and let K^0 be the algebraic closure of K' in $L K'$. We assume that $C_{K'} = C$. Then as we noted above K^0 is a finite algebraic extension of K, and $Gal(L K^0 / K^0)$ is injected into G_{K^0} by c. Obviously $\alpha \in G_{K^0}$. Now we show that α is a G^0-primitive over K^0, and $L K^0 = K^0 \langle \alpha \rangle$.

For any $\sigma \in Gal(L K^0 / K^0)$, $\sigma(u) = u$, then

$$
c(\sigma) = \eta^{-1} \sigma(\eta)$$

$$= (ua)^{-1} \sigma(ua)$$

$$= \alpha^{-1} u^{-1} \sigma(u) \sigma(\alpha)$$

$$= \alpha^{-1} \sigma(\alpha).$$

Therefore $\sigma(\alpha) = c(\sigma).$ Since $c(\sigma)$ is a C-valued point of G^0, we see

$$\sigma(\ell \delta(\alpha)) = \sigma(\alpha' \alpha^{-1})$$

$$= (\sigma(\alpha))'(\sigma(\alpha))^{-1}$$

$$= (\alpha c(\sigma))'(\alpha c(\sigma))^{-1}$$

$$= \alpha' c(\sigma) c(\sigma)^{-1} \alpha^{-1}$$

$$= \alpha' \alpha^{-1}$$

$$= \ell \delta(\alpha)$$

for any $\sigma \in Gal(L K^0 / K^0)$. This implies $\ell \delta(\alpha) \in Lie(G_{K^0})$, because $L K^0 / K^0$ is a strongly normal extension; namely α is a G^0-primitive over K^0. $L K^0 = K^0 \langle \alpha \rangle$ is clear, and hence $L K^0$ is a G^0-primitive extension of K^0.

In the viewpoint of transformations of differential equations, we can interpret the theorem as follows: A differential equation (E) over K with a fundamental matrix η is always transformed, by a transformation $u^{-1} \eta$ for some $u \in GL(n, K^0)$ into an equation

$$(E') \quad z' = Az$$

such that the coefficient A is a K^0-valued point of the Lie algebra of the Picard-Vessiot group for (E) over K relative to η, where K^0 is a finite algebraic extension of K, and z denotes an $n \times n$ matrix of differential indeterminates. We call u simply a transformation. In general, however, we have no way to obtain the transformation.

§ 3. Examples

We cite here several examples which illustrate how we can consider a Picard-Vessiot extension as a G-primitive extension. In this section we fix the differential field $(K, \delta) =$
(C(x), d/dx); then the field of constants C=C, the complex number field.

\textbf{Example 1.}
\[(E_1) \quad y'' + \frac{1}{x} y' = 0. \]

This equation has a fundamental system of solutions (1, log x). Then we have a fundamental matrix

\[\eta = \begin{pmatrix} 1 & \log x \\ 0 & 1/x \end{pmatrix} \]

The Picard-Vessiot group relative to \(\eta \) is

\[G = \left\{ \begin{pmatrix} 1 & c \log x \\ 0 & 1 \end{pmatrix} \mid c \text{ arbitrary} \right\}, \]

which is isomorphic to \(G_+ \) and hence is connected. The Lie algebra of \(G \) is

\[\mathfrak{g} = \left\{ \begin{pmatrix} 0 & \ell \log x \\ 0 & 0 \end{pmatrix} \mid \ell \text{ arbitrary} \right\}. \]

Now we can take a transformation

\[u = \begin{pmatrix} 1 & 0 \\ 0 & 1/x \end{pmatrix} \]

to obtain a \(G \)-primitive

\[\alpha = u^{-1} \eta = \begin{pmatrix} 1 & \log x \\ 0 & 1 \end{pmatrix} \]

Thus \(L = K(\eta) \) is a \(G \)-primitive extension over \(K \), and the equation \((E_1)\) is transformed into

\[(E_1') \quad z' = \begin{pmatrix} 0 & 1/x \\ 0 & 0 \end{pmatrix} z. \]

\textbf{Example 2.}
\[(E_2) \quad x(1-x)y'' + \left(\frac{1}{2} - x \right)y' + \frac{\nu^2}{4} y = 0, \quad \nu \in \mathbb{C}/\mathbb{Q}. \]
This is the Gauss hypergeometric equation with parameters \((-\nu/2, \, \nu/2, \, 1/2\)). It has a fundamental system of solutions \((\eta_1, \eta_2) = (\sqrt{x+1}, \, \sqrt{x-1})^*, \, (\sqrt{x-1}, \, \sqrt{x+1})^*)\), where we take branches of these functions (at a point in \(\mathbb{P}^1 \setminus \{0, \, 1, \infty\}\)) so that \(\eta_1 \eta_2 = 1\). Set

\[
\eta = \begin{pmatrix} \eta_1 \\ \eta_2^* \\ \eta_1^* \\ \eta_2 \end{pmatrix},
\]

a fundamental matrix. The Picard-Vessiot group relative to \(\eta\) is

\[
G = \left\{ \begin{pmatrix} c_{11} & 0 \\ 0 & c_{22} \end{pmatrix}, \begin{pmatrix} c_{12} \\ c_{21} \end{pmatrix} \middle| c_{11} c_{22} = 1, \, c_{12} c_{21} = 1 \right\}.
\]

\(G^s\) is not connected and has the component of the identity

\[
G^s = \left\{ \begin{pmatrix} c_{11} & 0 \\ 0 & c_{22} \end{pmatrix} \middle| c_{11} c_{22} = 1 \right\}.
\]

The Lie algebra of \(G^s\) is

\[
g = \left\{ \begin{pmatrix} \ell_{11} & 0 \\ 0 & \ell_{22} \end{pmatrix} \middle| \ell_{11} + \ell_{22} = 0 \right\}.
\]

Define \(K' = K(\sqrt{x(x-1)})\), then \(K' \subset L = K(\eta)\), and we have a \(K'\)-valued transformation

\[
u = \begin{pmatrix} 1 & 1 \\ a & -a \end{pmatrix}, \, a = \frac{\nu}{2} \cdot \frac{1}{\sqrt{x(x-1)}}
\]

to obtain a \(G^s\)-primitive

\[
a = u^{-1} \eta = \begin{pmatrix} \eta_1^* \\ \eta_2 \end{pmatrix}
\]

over \(K'\). Thus \(L\) is a \(G^s\)-primitive extension of \(K'\), and the equation \((E_1)\) is transformed into

\[
(E_1') \quad z' = \begin{pmatrix} a \\ -a \end{pmatrix} z.
\]

Example 3.

\[
(E_2) \quad y'' - \frac{1}{x} y' + (1 + \frac{3}{4x^2}) y = 0.
\]
This equation is regular singular at $x = 0$ and irregular singular at $x = \infty$. It has a fundamental system of solutions $(\eta_1, \eta_2) = (\sqrt{x} \cos x, \sqrt{x} \sin x)$. Set

$$\eta = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta'_1 \\ \eta'_2 \end{pmatrix}.$$

The Picard-Vessiot group relative to η is

$$G = \text{SO}(2),$$

which is connected, and hence, as we noted in the proof of the theorem, K is algebraically closed in $L = K(\eta)$. The prime ideal for η over K is

$$= (Y_1^2 + Y_2^2 - x, Y'_1 - \frac{1}{2x} Y_1 + Y_2, Y'_2 - \frac{1}{2x} Y_2 - Y_1),$$

then it follows that, W denoting the locus of p, $W_{L \cap K} = W_K = \phi$. Thus we need an algebraic extension of K to obtain a transformation u. For example let $K' = K(\sqrt{x})$, then we have

$$u = \begin{pmatrix} \sqrt{x} \\ 0 \\ 1/\langle 2\sqrt{x} \rangle \\ \sqrt{x} \end{pmatrix} \in W_{K'}.$$

We obtain a G-primitive

$$\alpha = u^{-1} \eta = \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \in \text{SO}(2)(K').$$

Hence LK' is a G-primitive extension of K', and the equation (E_2) is transformed into

$$(E_2')$$

$$z' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} z.$$

References

Graduate School of Science and Technology,
Kumamoto University,
Kumamoto, 860, Japan