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1. Introduction.

Near an irregular singular point (of pole type, say at ) of an ordinary, linear
differential equation, there may exist formal power series solutions 25,z0 y» x™ that
diverge everywhere, but it is relatively easy to show that such formal solutions are in
some Geverey class, i.e., the coefficients y, grow at most like a fixed power of m! as
m —co, While such formal solutions have no meaning in the ordinary sense {as m —>0),
they do have meaning in the asymptotic sense of Poincaré (for fixed m, as x = in
certain sectorial regions). Recently, J.P. Ramis and Y. Sibuya [12] have shown that
this phenomenon is a general property of formal solutions in a Gevrey class.

In the nonlinear case of algebraic differential equations, E. Maillet [9] showed
that all formal solutions must still be in some Gevrey class (we will call such a result
one of Maillet’s type) and further went on to show that such series can be summed in
the sense of Borel. Also see K. Mahler [8] for a proof of this result in a somewhat
more general algebraic setting as well as other interesting number-theoretic consequences.
The proofs of the above results follow by direct estimation of y. from recurrence rela-
tions. Using a majorant argument, R. Gérard [3] has proven another result of Maillets
type for certain more general “algebraic” differential equations (where the coefficients
are allowed to be convergent series instead of just polynomials), but the equation must
also satisfy a certain type of nondegeneracy condition.

In this paper, we wish to consider the corresponding situation for certain kinds of
algebraic difference equations. Already in the linear case, the situation is somewhat more
complicated than for differential equations; for example, there appears to be no apprecia-
ble class of singular difference equations having the so-called singular regular property
with respect to power series, that is, that all formal power series solutions converge.
Norlund [10] has shown, however, that an analogue of the Fuchs-Frobenius theorem does
carry over for linear difference equations when one works in the ring of formal factorial
series, that is, series of the form

a.n y(x) =3 nz0 Ym m!/ x(x+1)-(x+m).
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Here, the difference operators have a simpler structure, but the product formula
for such series is more complicated. (Also see W. A. Harris [5] for an extension of
Norlund’s result to systems.) For certain of the singular irregular cases for linear
difference equations, one can conclude (implicitly) from the work of Birkhoff [1],
Trjitzinsky [13], Turrittin [14], that formal factorial series solutions are also in some
Gevrey class, which is defined analogously to the power series case. Also see Harris and
Sibuya [6] for asymptotic power series solutions of certain nonlinear systems.

R. Gerard and D. A. Lutz [4] have recently obtained some nonlinear extensions of
the singular regular phenomenon for factorial series solutions of certain types of singular
operator equations (also including some differential - difference equations). Here, we
wish to consider algebraic difference equations of the irregular singular type and show
that they too must have all formal solutions in some Gevrey class. Moreover, as in the
case of Maillet or Gérard, an explicit bound for the Gevrey exponent can be given a
priori. To do this, we follow Gerard’s approach and show that after a preliminary scaling
transformation, the problem is mapped into one for which an analogue of our results
on convergent factorial series solutions can be shown to apply. As a by product, we can
also easily show by using well known expansions of factorial series as power series, that
all formal power series solutions are likewise in some Gevrey class.

2. Preliminaries.

We will say that a formal factorial series (1.1) is in the Gevrey class a (where
a is a nonegative real number) if

Q@.n [ yu | = O ((mH*)) as m —>

Especially in the linear case, it also makes sense to consider finer types of Gevrey classes
indexed by (&, 4, 7) with the coefficients satisfying

[y | = O ((mDe B"m") as m — o

In this latter situation, the convergence of (1.1) in some half plane is known from the
results of Landau to correspond exactly to the cases when @ =0 and 0<C8 < 1. When
a =0 and B>>1, the factorial series (1.1) diverges in every half plane, but sometimes it
becomes convergent under a change of variable x = x/ @ for @ sufficiently large.
However, for our purposes here, we will treat only the coarser Gevrey classes (2.1).

To see that formal solutions in the exact Gevrey class a= 1 can occur for simple,
algebraic, even linear difference equations, we construct the following example of an
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irregular singular one (in the sense of Norlund):
Let y(x) be as in (1.1) and define the linear difference operator A by

2.2 Ay(x) = G-y —y&—1D} =220 (m+1) mly./ x(x+1(x+m).

(See [4] for details about this operator on factorial series.)
Now for any complex constants a,b,c consider the equation

2.3 A/ DA y(x) = a/x + by(x) + (¢/ 0y

or equivalently

(2.3) A'y(x) = a + bxy(x) + cy(2).

Using the identity 1/ (x+m) = 1/ x—m/x(x+m), it follows easily that
2y(x) = yo+Zmzo {(M+1) Yor1— mytm!/ x(x+1) - (x+m),

hence one sees that (1.1) formally satisfies (2.3’) if and only if a+by.=0 and for
all m=0

(m+1D? yo = b{(m+DYne1 —mYn} +CYm.

If b#0 we see that the formal solutions are all in Gevrey class 1+ & for arbitrary
€ >0. For the special choices b=—1 and c=1 (a#0, but otherwise arbitrary and y.
satisfying a=y.) we even see that

Y = (=)= (m—1)! yo for all m=1,

hence the formal solution is in the exact Gevrey class a =1. Comparing the equation
(2.3) with the result of Norlund on what he called “normal” difference equations or with
the results of Gérard and Lutz on singular regular difference equations, one sees that
the irregularity is caused by the term (1/x)A’y(x) and the fact that our sense the
operator A’ dominates the identity operator appearing on the right hand side. An im-
portant consideration is that the identity operator appears in a term of “degree” one,
while the term (1,/x) A?y(x) has degree two in the sense we now describe.

We consider a “homogeneous polynomial” of degree q in the variables x, Xo, X1, ...,
Xwv to be an expression of the form

Fq(x, Xo, Xu,..., XN)=Z|S|=q bs XS+2r+|s|=q—1 a, s r!Xs/x(x+1)"'(x+r),
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where s = (so, 81,..., sv) is an (N+1) - tuple of nonnegative integers,
lsl= s0 + s ++sy, X = KXo, X1,....Xy), and X° = (Xo)5 (X1)sr-(Xp)S¥ |

Thus, F, is a polynomial of degree at most g in the variables Xo, Xi,...,Xx having coeffici-
ents that are inverse factorial expressions in the independent variable x. If each of the
variables Xo, X.,...,Xx would be replaced by a formal factorial series of the type (1.1),
then F, would have a factorial series beginning with a term of order

1/x(x+1):-(x+g—1), that is, of order O(1.”x%) as x—>oo,

The operator equations we treat here consist of expressions of the form F,(x, 8 .u,
0.u,...,0 yu), where for all i, 0<i<N, 0, is a diagonal linear operator on factorial
series in the sense that

By(x) = Zneo m! 0,0 (Mun/x(x+1)--(x+m)

and the quantities 8., (m) are complex numbers. For example, in (2.3), the operators
A° = identity, A and A? are all linear and diagonal and the term (1,/x) A*? y(x) can
be considered as being generated by

A/ 0)(Xe)® (X1)° (X2)' with 8,y = Ay and .y = Ay,

hence in this sense it has degree 2. Observe that in the ordinary sense, the term (1,/x)
A?y(x) is a linear operator in y so it could also be considered as a first order term.
However, as a linear operator in y it is not diagonal or even lower triangular (see[4]).
Occasionally there are several such interpretations possible and it is convenient to allow
for all consistent interpretations in our theory, although the reader should be aware that
with one interpretation one of results might apply, while with another interpretation
it might not.

If M is a given, fixed positive integer and if we also specify that the degree of F,
in the variables Xo, X1,..., X» does not exceed M, we write Fou (x, Xo, X1,...,X»). The
“quasi-algebraic” operator equations we will consider have the form

(24) ZquFq.u(x, 7] ol, e e, ..., 9Nu) = 0,
where p and M are fixed positive integers, the operators 8, & 1,...,0x~.are all diagonal,

and finally that there exist positive A and & such that for all (x, Xo, X,...,Xx) satisfy-
ing Re x= 1 and | Xo |+ | Xi | +-+ | Xx|<e, the infinite series in (2.4) converges.
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Between such diagonal operators, the order relationship we introduced in (4] takes
on an especially simple form; we say that the operator &; well dominates the operator
6 if for all m=0, | 8,.(m) | £ | 0,0(m) | . If, in addition, we have

limg—w 9.‘_0("‘5)/9;;0(’77«) =0,

then we say that @; strictly dominates the operator 8.. For example, A’ strictly
dominates A‘ for all i<j (including A°® = identity).

Now assume that (2.4) is written in the form
2.5) F(x, O,u, 6.1u,...,0yu) = Ro1.u(x, Oou, 0.11,...,0 yu),
where
R nx, Oou, 01u,...,00w) = zpe1 Foulx, 00y, 61u,...,0 yu).
Here, F, contains all terms of the lowest degree p in the equation.

For example, in 2.3), p = 1, 8, = A/ ,and F.(x, ¥) = a/x + by(x). The other
terms, (1/x) A*y(x) and c¢(1/x)y(x), have degree 2 as noted above.

If in (2.5), it would happen that n = N and if 6. well dominates the identity, then
under a certain mild nondegeneracy condition on F, described below, it would follow
from our previous result [4] that all formal factorial series solutions would converge.
Note that in (2.3), n =0 and N = 2.

Our purpose now is to show that when n <N and 8; = A/, the formal solutions of
(2.5) are nevertheless in some Gevrey class. To do this, we will first consider somewhat

more general operator equations of the form (2.5) and make the following assumptions:

H.: All the operators 0; are all diagonal for 0 £ j < N, 0. strictly dominates all the
operators 0, with i<n, and also well dominates the identity.

Letting
F,,(x, Xo, Xl,-..,Xu) = Z|S|=p bs Xs+z,—+|s|=p-1 Qs T!XS/X(I+1)"'(x+I'),
we form the polynomial

C(D) =2is1= bs(T)50(81,0(OT)S1 (8 0 (O)T)) 5
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+3 1511 @os{1} (1)50(0 1,0 (0TSt (8 40(0)T)) ",

which can be interpreted as F,({1}, T, 6..(0)T,...,0.,,0)T), with the symbol {1} mean-
ing that in the sum, the expression r!/x(x+1)-+(x+r) is replaced by 1. In the same
manner, we form the polynomial

C.(T) = 8F, /3X.{1}, T, 0.,4(0)T....,0 .. (OT).

The nondegeneracy assumption is given by
H: : The two polynomials C(T) and C,(T) have no common roots.

Remark: If p = 1, and if the (constant) coefficient of X, is different from zero, i.e.,
that the operator @, actually appears in the equation, then this assumption is auto-
matically satisfied because C,(T) is just a non-zero constant. These two assumptions
correspond with the ones we made in [4], where we also assumed that the operator
9, well dominates all the other operators in the equation. This last assumption is too
strong for our needs, so we now describe a rather technical, somewhat weaker, condition
which will be substituted for the hypothesis that @, well dominates the operators 6;
for i > n:

Hs: For all mz 1, all ¢ @p=<qg=M), all N+2-tuples (r, so, s1,...,5v) satisfying
r+ | s| =q, and all sequences of nonnegative integers

{mb, md,...mo50 ;mi, mi,...mSv 5 ... m, mi,...omyY }

satisfying the relation r+-Mo.+M,+ - +My=m+p—1, where Mo=mi+mi+---+m 50,
Mi=mi+mi+--+mi°1, etc., the set of all numbers {G(m)} defined by

Gm) =171 6.,(m) | {Hlsusn | 80,0(mé) | Xn!s;ﬁss, | 61.0(mb) |
X X M 1 sassy [ Onolmf) |}

is uniformly bounded by a constant .

(Note that if Hi is satisfied, then by a suitable normalization of 8, we can assume
that G(m) = 1. Also, we allow in the above expressions some of the integers m# to
be zero and we make the convention that in such a case the term 6;.(m? does not
occur in the product.)

With the above definitions and notation we now state:

THEOREM A. Under the assumptions Hi, H:, and Hs, every formal factorial series solution
of the equation (2.5) is convergent in some half plane.
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3. Proof of Theorem A.

1°) Existence of formal solutions.
With the same kind of computations as in the proof of TheoremI of [4] (see §.6),
the coefficients (u,) .20 of a formal inverse factorial series solution

u(x) = Znz0 un m!/x(x+1)-(x+m)

of the equation (2.5) are obtained by formal substitution and equating coefficients. For
uo we obtain

Z|s|=p bs Hos;s,. (9,-.0(0))51 (Uo)'s'
+Zr¢'|8|=p-l a,s nos,ws.. (9;‘,0 (O))si (UO)ISI = 0,

and, for all m =1, by identification of the coefficients of (m+p—1)!/x(x+1)--(x+m
+p—1), we have

u.,,F,,,,,.(Uo)
=fm(uo. Utyeoylhm=1 5 6 1,0(0)1&0, 7] |,o(1)l.h, cany 6, ,o(m—l)um-l Yoot
ej,o(O)Uo, ej_o(l)ul, . Bj,o(m—l)u,..-u yeees 9,,,o(O)uo, 9,.,0(1)111,...,

Ono(m—=Dun-1 5.;0 001,00 w0, Brer oDty ey Boer o m—DUm—1 ;.uu;
BN,O(O)UO, Hn,o(l)ui,...,0~,o(m—1)um-: ;(a)),

where

Fon(@o) =20151=, bs 2o0sjs. 55 0;,0(m)(0;,6(@ua)5" 14w (01 0(@uo)ss
+Zr+|s|’=p-l ars Zos,-s» S; 0;,o(m)(0,~,o(0)u<a)si_' l'I,,,,- (0;._0(0)1&0)3" .

Here, fn is a polynomial in its indicated arguments and the symbol (a) stands for the
coefficients of R,+1,u. For the argument in [4], this form sufficed for constructing a
majorant equation. With our present weaker assumption on the dominance of the operators,
we now require a more precise form showing the dependence on the quantities 8; (k).
This comes about because our equation is quasi-algebraic. To simplify these expressions,
we introduce the following notation: '

For each set of admissible indices mo, m,...,m, and so, s,...,8, we denote certain
universal positive constants coming from the product fromula for factorial series (see
[4]) by the symbols

Co(mo, 80) = Cs,(mb, mi,..., mo®0), Ci(mu, 1), ... ,Colma, 8.).

Then using these symbols we obtain
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Fom(uo) un =
- {Zrﬂsl=p—l ar s 2r+mo+"'+mn=m+p-l I 154859, mbsm Co (m.o, So) 7] o,o(mu")u,,.g
X 1I 1kSS,, miwm C: (mn, 5$1)6 1, o(m’t)u,,,{'
XX 1l 1SkSS, mbem Cn(mn) sn)en. O(mﬁ)um{: }

- {lel =p bs Zm0+--~+m,.=m+p—l I 1548Sg, mb#m Co (mo, So) o 0, o(mé‘)umg
X HlShss,, mbtm Ci (M|,Sl)e l,o(mf)umﬁf
XX Iigiss, nhen Calimn, s2) 0. f(mBuas )

+{Xop 2o isi=aisisu Qs Zﬁmowm,\, mip-1 11 15485, Co (mo, 50) 0 0, 0 (mb) uny
X HISth| Cx(ml,SI)Gn,o(m{‘)umg
Xeee X Ilisass, Cn(mu, sw) On.o (m;’é)um{; }

+ {ZKISI M bs z’“o*"'*"‘

N =t n 15558, Co (mo, So) (7] 0.0 (ms) Un

X Hlshssl Cl(ml,Sl)el.o(m'f)um‘;
Xooo X I sass,, Cx(my, SN)ON.o(mﬁ)Um,’a }.

We have the following conclusions:
For each root u. of

cm = §l3|=1> bs Hosjsa (01.0(0))si (7'
+3 o+ 1s1=p-1 Qrs HOSiSu (9;.0(0))sf (m's

satisfying F,»(us) # 0, the equation Du = 0 admits a formal factorial series as a solu-
tion whose first term is uo,/x ; but F,, »(zo) = 0 does not necessarily exclude the existence
of a formal factorial series solution.

2°) Convergence of a formal solution.

Recall that from our assumptions, among the operators 8,8 ,..., 0. the operator
@, strictly dominates the others and also well dominates the identity. Hence we have

1 Zco0l0.0(m)lfor all m = 0,1, ..., with co,o #0. By a normalization of 6. we
can assume with no loss in generality that co.o = 1. Since

limpaw Fp m(ue)/ 6, 0(m) =
{le|=p bs s. (9., 0(0))8a"1 | PO (ek.o(o))s" uo '8!
="t 1s1mp-1 @r.s Sa (O, 0 (0))5at Thw; (B4, 0(0))%k wo's' '} =C.(uo)#0,

there exists a number ¢ >0 such that for all m = N,

IFp,m(uD) | 20’ I en,o(m) | .
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If moreover, F, .(uo) #0 for all m< N, there exists a (possibly different) number
o >0 such that for all m,

|F, u(u) | 20| 6,.0(m) .

We now also assume without loss in generality that this occurs for all m, since other-
wise by changing a finite number of terms in the solution we could bring this about
and not affect the convergence. It follows that

lunl {1701 6. 0(m) |}
X {Zﬁls|=p—l 2,+...n+...+,,,n=,,,+p—| | Q, s | I 15ks5,, mbrm Co (So, mo) | 7} 0, o(mﬁ) ”Um{,‘|
X ITisesst, m ¥k, Ci (Sl, mu) | 6., O(m'l‘)“umfl
XX i sussn, mbom CalSa, ma) | 6 0(m®) luas |

+2300s0 =p Zmo+:}'+mn=m*p | bs | Hlsnsso,msfm Co (Su, mo) | @ 0,0 (m#§) I umgl
X Hisass, .mbem Ci(s1, m) | 61, 0(md) ”Um{tl
Xeee X 11 L SASS, mb+m C. (samd | 8.0 (mD “um{',I

+Z,,<qs.u 2o ist=g | a... |Zr+mo+~~+m~=m+,—| I 15kSS,) Co(so, mo) | 8o, o (mBIl Un} |
X Hls:.ssl CI(Sl, mn) l elo(m{‘)" Unk I
Xeeo X Misss,, Culsy, mw) | G5, o(mB)| Unp | }

+ { Zp<|8l5M bs Zmo+"'+mN=m+p I 1 SkSSg Co (So, mo) l e 0, o(mﬁ‘) " u,,.g |
X n!ass, Cl(sl,ml) | 91,o(mf)||u,,.;=|
XX I 1shs8y Culsw, mw) | On. 0o (mPl Um},' }.

Now using assumption (Hs) we obtain,

lun | £ 170 {2#Isl=y—l | a,. IZﬁmo+~~+mn=m+,-| I 1SkSS |, mdwm Co(m.o, s0) Iu...gl
X Hlsnss,,mf,.,,, Ci(my, s1) | unt|
X X n 15488, mgs‘m Cn(mm su) I um", I

+Z|S|=p Zmo+--~+m,,=m+p [bs| 10 15885, mfan Co(mo, s0) | Umf l
x 1 L5aS5 |, mbrm Ci(m, s1) | Unk |
XX [issss, mbem Calmn, 80) | uni

2o p<osu S 15120 | Qs |zr+mo+~--+mN=m+p—n I 1sas8, Co (mo, s0) | Unb |
X Hlskssl Cu(ml,s|)|um';|
X=X 1SSy, Cv(mu, sn) | U.m}',I }
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3 <1sisu | bs |Emo+"'+"'n""*ﬁ 1 154555, m{em Colima, s0) | un |
X Tisiss,. miem G (m1, 81 |t |
Xeoo X M isass, mism Cx(my, sx) Iu""“ :

Consider now the analytic (majorant) equation:

(x) o, {L/x(x+D)(x+qg—DIY = {1/x(x+1)(x+g—1} +
Sist=p | bsl HOSjsn (Y)sf+2r+lsl=p-1 | ar,:' r!/x(x+1)"°(x+r)l]os,~s.. (Y)si+ lRp+l,M | f

where 0. and g are real parameters and | R+« | is a majorant series for the function
R,+1 u. By setting in this equation Y = (1/x) Z, it is easy to see that the implicit function
theorem for factorial series [4] can be applied. This means that for each admissible Yo
described below, the equation has a unique solution of the form

Y=3,:0 Yo m!/(x, x+m+1)

convergent in some half plane Re x > €. Our objective is to show for a suitable choice
of the constants o and g that this series is a majorant series of each formal solution
that we have computed for the equation (2.6). In the same way as above, we calculate
explicit recursion formulas for the coefficients Y. of the series solution of the given
analytic equation (*). This procedure yields for Y. the equation

1Yo =+ 1515 | bs | Mosjsa (Yo)5 =2 is1=p-1 | @rs | Mosjsa (Yo)%,

{(Note that there are, in general, p possible solutions Y, for each choice of the parameters.)
For m >0, we have

{o. —>ist=p [ bs | 20sjsa S (Yo)sm I 4s; (Yo)ss ~—
Sisiep-1 | @rs | Zo0sjsa 85 (Yo)5i7! My (Yo)Sk }Y, =
{Zr+|s|=p—l Zﬁm0+"'+mn=m+p—l la.s| I 1SksS), mfvm Co(mo, s0) Ymg
X nlsygssl, mirm C.(m, Sl)Ym';
XX HlSkSsN. mirm Cv(my, SN)Ym‘,'fI }

+2|3|=p Zr*mo+"'+mn=m+p—l ‘ bs| II LSkSS g, m.‘;m Co (mo, So) Y,,.g
X Misiss,. mbem Ci(mi, §1) Yns

1

XX Iisassy, mbem Cu(muy, sw) Yop )

T3 p<osr 2151 = Zr‘*mo +tmy=mtp- 1 lars| Misiss, Co (mo, s0) Y...g
X Tlisuss, Ci(my, s1) Ym’l‘
Xeoo X Il isass, Cy(mn, sw) Ymk, }
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2o <isi<u 2m0+-~-+m,,=m+p | bs | 1T 15435, mfrm Co(m., So)Ymg
x 1l 1SkSS |, miem C (M|, SI)Y,.,I;
XX 11 1SkSSy, mi*m Cx(my, sw) Y”‘;‘a }.

Now make the following choices:

First select any positive real number Yo such that |ue | £Yo.
Next, select a real number 0. such that

<o _Z|S|=p | bs [ 205;5,. Sy (Yo)si! l'l,.*,- (Yo)s»
—> isi=k-1 | Qs |Zos;sn S; (Yo)si! nkﬁj (Yo <o.

Finally, select the real number g defined by

01Ye = +3s12, 1 bs | Mosjsa (Yo)5i+ E 151251 1 @ns | Mosjsa (Yo)Si

21

1.e., such that the above-selected Y. becomes a solution of the required equation for the
first coefficient in the majoorant series. Now we will prove by induction that for all
m, lu.| £ Y,..For m=0 this is already clear by our selection. Now assume that for

all i, 1 £i< m—1, |u;| £Y.. The formula majorizing u. shows that we have,

lun | £ 1/ 0 {2 151551 ermo+m+m,.=m+p-l {la.sl Hlsksso, nkem Co (m., So)Ym’,;
X Tisass,. mbem Ci(mi, $1) Yt

X eee X Hlskssn‘ mk#m CN(TnN,- SN)Ym{f, }

+Z|s|=p z'no*"'+m,.=m+p | bs | I 15559, mh+m Co(Mo, So) Ymg
X ﬂlskss,.m{'.-,,. Ci(m,, s:)Y,,.llt
Xere X n 15ksS,, mk#m Cn(mn) sn) Ymﬁ

+Zp<qsu 2ot is =q Zr+mo+”'*nt~=m*p—l | Qs [ I 15kSS Co (mo, So) Ym’g
X Hlsass, Ci:(m., s1) Ym’f
XX I 15kSS, Cnv(my, sx) Ym{\‘,

+2p<|S|SM Zm“*"-fm’l:m"'p | bs| H:sksso, mEam Co (mo, So)Ymg
X Hxs;.ss,, mbem C, (m:, Sn)me]c
X eee X nxs:.ss,,,. mhem Cv(mu, sn) Y”‘h }.

Using the positivity of the coefficients C,(s., my), it follows directly that
[tnl Y,

and implies the convergence of the formal factorial series



22 R.GERARD and D.A.LUTZ

Sun m!/x(x+1) - (x+m)
solution of (2.6).

4. A Maillet-type theorem for factorial series solutions of quasi-algebraic
difference equations.

Consider first a quasi-algebraic difference equations that can be expressed in the form
“.D F.(x, v, Ay, ..., AY) = R ulx, v, Ay, ..., A¥y)

and where 0 £ n<{N. We assume that the polynomials C(T) and C, (T) constructed as in
Section 2 satisfy H.. Then (4.1) has a formal factorial series solution

y(x) =20 Ym m!x(x+1)(x+m).
Recall from (2.2) that for the operator A we have for each k=0,
A* y(x) =X n20 (=1)* (m+1D* yo m! x(x+1)(x+m),

so the assumption H, is also satisfied, however, one can show that Hs; is not satisfied.
(Indirectly, we already know this by the example (2.3) and Theorem A.) To be able to
apply Theorem A, we now introduce a kind of scaling operator as follows:

For each a =0, consider the diagonal operator ¢ defined by

dulx) = yo /x+mz1 m—D11° up m!x(x+1) - (x+m).

The quantity @ will be treated like an undetermined parameter that will be selected
later. Let y = ¢u and define the operators

9,‘ = AI’ o ¢
for all j = 0,1,2,...,N. Then (4.1) can be expressed equivalently as
4.2 F.(x,00u,0.u, ...,0 ,u)=Rye1,2(x,00u,0 1, ..., 0 yu).

Observe that the operators 8; satisfy H.. Although the identity operator does not
explicitly appear in (4.2), note that 6.=¢ well dominates the identity. Clearly the
assumption H: in not changed by this identification. So it remains to check assumption
H:. We now show that if a is selected appropriately, then the operators @; will satisfy
H:, so that every formal factorial series solution u of (4.2) converges. Once we show
this, it follows immediately from the definition of ¢ that each formal solution y = ¢u
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of (4.1) is in the Gevrey class a@. We now state this result as

THEOREM B. Assume that F, satisfies the nondegeneracy condition H:. Then every formal
solution of (4.1) is in a Gevrey class.

PROOF: It remains to check H: and see how the parameter a could be selected. Note
that for all nonnegative integers pi, pz,..., Pm,

@D @) (a) £ (Pi+pe+-+p)t,
hence it follows from the definition of M; that
Migss, ((m} =D (mi+1) = (M =) Misss; (mf+1)7 .
Also, from the definition of the operators @; we have

I 1s4ss; | 0,-, o(mf) | =1I 1 SkSS; ((m; _1)!)'l (m?+1)f
and ‘

0. om)={(m—DN* (m+D=
Therefore we obtain the estimates

G(m) (l/((m—l)')" (m.+1)")“os,~s~ ((M,-—S;)!)“ HOSjSN HlSkss’. (m,”--i-l)"

<
= (1/((”1“1)!)" (m+1)") ((zos;sn ((Mj—81))!)" nos,'sw HISkssj (m}+1)i

Using
Zos;sn m; =m-—r and Zos,sn 8§; =q—r,
we have
Gm) £ L/ {(m=DN° (m+DN(m—)N* Nosjsn Misiss; (m}+1)
< A/ {m-DN° (m+DD}(m—g1)° nosisn_(Mi"'l)jsi
£ A/ {m=DD* (m+DI}(m—g))=(m+1)Zosin
£ W/ AWm—DD* M} Um—@))* (m+p)Eosmn?
< {(m+p)Eosisn®} /{m* ((m+1—q@)(m+1—g+1)--(m—1)° }.

As m tends to +oo the right hand side member of this inequality is equivalent to
(m) osmn™)=n= (@-Da



24 R.GERARD and D.A.LUTZ

Hence if we select
(4.3) a =2 SUP p<gsnm {sup|s|s, {((Zos;sn js;)—n)/(q—l))}.
then with this choice of @, we have for all m =1, G(m) £ 1.

Hence by Theorem A the formal factorial series ¥ =>.nz0 u. m!/(x, x+m+1) solution
of (4.2) is convergent. This completes the proof of Theorem B.

Remark 1: In the proof in [8], the existence of a formal power series solution of an
algebraic differential equation is shown to be equivalent to the non-vanishing of a certain
polynomial. This necessary condition is related to, but not exactly the same as our
nondegeneracy assumption H:, which seems to be a “limiting situation” of that condition.

Remark 2: All quasi-algebraic difference equations of the form

4.4) G(x, v, y(x—1), ..., y(x—N)) =0,

where G(x, Xo, X\, ..., Xy) is a polynomial in the variables X,, Xi, ..., Xy with
coefficients that-are-convergent factorial series in x, can be expressed in the form (4.1).
To see this, first observe that from the definition (2.2) of the operator A, it follows
by induction that for all positive integers k, y(x—k) is a linear form in y, Ay, A°%y,...,
A¥y with coefficients that are rational in x. Then substituting such forms into (4.4),
dividing bysuitable powers of (x—m), ones sees that (4.4) is equivalent to a quasi-algebraic
difference equation of the form (4.1). If in the expansion, the terms of lowest order
F, would satisfy the nondegeneracy assumption, then all formal solutions are in a Gevrey
class. In particular, if p = 1 and if F.(x, X,, X1, ..., X,) non-trivially depends upon at
least one of Xo, Xi, ..., X, l.e., F1 #a/x, then as we have observed earlier, the
assumption H: is automatically satisfied. So if a quasi-algebraic difference equation
has any nontrivial linear terms, all formal solutions are in a Gevrey class.

Remark 3: If in the example (2.3), we would apply the eatimate (4.3) on a we obtain
a = supisisz {(osjs2 js;—0),/1} =4, hence one sees that the estimate is not sharp. In the
case of many linear difference equations, the possible Gevrey classes can be determined
from a Newton-type diagram. For nonlinear equations, this remains an open problem.

5. A Maillet-type result for formal power series solutions of quasi-algebraic
difference equations.

Using the formal correspondence between power series in x~' and factorial series, one
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can immediately see that any formal factorial series solution can be expressed as a formal
power series. Applying Theorem B and some easy estimates on the coefficients, we thereby
also obtain as a matter of course,

THEOREM C. If y(x) =3.:1a../x" is a formal solution of (4.1), where F, satisfies
assumption H:, then y(x) is in a Gevrey class.

ProoF: If y(x) is expressed as the factorial series
¥y =220 Yo m!/x(x+1) - (x+m),
then we know from Theorem B that there exist K and a such that for all m =0,
[y ! £ R(mDe .
Since for all m =0
m!/x(x+1)-(x+m) =X, 2ne1 (D' m! Sn, 2,

where the quantities S» are known as Stirling numbers of the second kind and can be
expressed as

Sp = (n'/m') Zr,+r1+---+rm=n. 20 (r:! 7‘2!"'7’,,.!)_1.
(See [7], p.178 and p. 193 for details.) Then
Zmzo Yo m!x(x+ D) (x+m) =221 @, x7°,

where @, =2 ocmsa-1 ¥m (—1)"™ m!Sx, . Using the above estimate for |y.| and
estimating all terms in the above sum for S by 1, we see that

lan| € K Zosnse-1 (m1)2 n! (n—1)" = O((n!)=*2+¢)
for any &0, hence the formal power series is also in a Gevrey class.
Remark: In the above argument, we have used some very crude estimates, but since the
bound on a is also not sharp, we do not chose to make sharper ones at this time. It

remains an open problem to determine a precise set of possible values for the Gevrey
classes of formal power series solutions.
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