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1. Gauss differential equation is given by

@ x(1—x)

29 4 (r- (a+p+DD 2 - apy =,
where x is a complex independent variable; @, 8 and 7 are complex parameters. In
1872, H. A. Schwarz determined, by means of the Kummer’s solutions, in his famous
paper (Uber diejenigen Fille, in welchen die Gaussische hypergeometrische Reihe eine
algebraische Funktion ihres vierten Elementes darstellt, Jour. fiir die reine und angew.
Math.,75 (1872), pp.292-335), the form of a general solution of equation (G) generated
by rational functions. However, the proof does not seem to be easy to understand. So,
the author would like to reproduce his result in a readable way.

2. As the well known twenty four representations of particular solutions of equation
(G) due to E. E. Kummer suggest, we see that a rational function solution of equation
(G) is written as

x* (1—x) g(x),
where aEZ, cEZ and g(x) is a polynomial in x. Here, Z denotes the set of integers.
The exponent a is one of the characteristic roots of equation (G) at a regular singular
point x=0 and the exponent c is one of those at a regular singular point x=1. Hence,
we have
a=0o0rl—17, c=0or y—a-—28.

The characteristic roots at a regular singular point x=o are a and 8. ‘

Let n be the degree of the polynomial g(x). Then, we must have either

a=—a—c—n or B=—a-—-c¢— n
Since equation (G) is symmetric with respect to the parameters a and B, we can assume
without loss of generality that
a=—a—c¢— n

The possible combinations of the parameters a, ¢, @, B, 7 are, as was done by

Schwarz, given in the table below.

a c a B 4
Case 1 0 0 - n B 7
Case 2 0 vy—a—B| —n—c| n+ 7 7
Case 3 1 -7 0 —n—a B l1—a
Case 4 1 -9 y—a—B| —n—a—c| n+1 1—-—a
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In Case 2, the relation 8=n+ 7 is obtained as follows. Since ¢ =7y —a — B8 and
a=-— n—c, we have ’
B=r—a—c=7—(-n—-0c —c=n+t7.
In Case 4, the relation 8=n+1 is derived as follows. Since c=9 —a — B, a=1— 7 and
a=—n—a—c, we have
B=r—a-c= (1-a) — (—n—a—c) —c=n+1l.
3. The hypergeometric function F (a, B, 7; x) is defined for x& C\{0, 1}, where
C denotes the set of complex numbers. For | x |<1, this function is defined as a holomorphic
solution of equation (G) at x=0 and is represented by the uniformly convergent power
series in x:

) _ cala+D(a+n—1- BB+ (B+n—1)
(F) F(a; B: 7 x) =1+ nz=l 1 2¢ =+ o - 7(7+1) aen (7 +n—1)

n

provided that every coefficient takes on a finite value. If we substitute for y in equation
(G) the power series in x:

@B. D y=1+ aix + a:x*+ - + axt+--,
we find the recursive formula for the coefficients a.’s
3. 2 R+ADE+ ) ar= (R+a)k+ 8)as, (@=1).

In this way, we have the power series (F) in generic. ,

We investigate a degenerated case such that the F is reduced to a polynomial in x.

(i) 7 €&Z\N. Here, N is the set of natural numbers. The power series (F) is always
well defined. Moreover, if and only if at least one of the a and B is equal to a nonpositive
integer, the power series (F) is reduced to a polynomial. When a =—nE2Z\N and BEZ\
N (or B=—n'€Z\N and a &2 \N), the degree of this polynomial is equal to n (or
n'). When a=—n€Z\N and B =—n'€Z\N, it is given by min{n, n’}.

This proposition will be obvious from recursive formula (3. 2).

(ii) Assume that vy =— n"€Z\N. If and only if either a and B belongs to a
set of nonpositive integers {0, —1, -+, —n"}, the power series (F) has the meaning.

Gi—D If a=—n (0= n £ n") and BEZ\N, the power series (F) is reduced to
a polynomial in x of degree n.

In fact, recursive formula (3. 2) is given by
3.3 (k+1) (k=n"aw = (k—n)(k + Ba..
Hence, when n<ln”, the @..: must be zero.In the case of n=n", since the a..: can take
on an arbitrary value, we put a,. =0. Thus, for n<n”, we have a polynomial solution
of degree n, which is expressed by F(—n ,8, —n"; x).

Gi—=2) If B=—n" (0 £ n' £ n") and a€Z\N, the power series (F) becomes a
polynomial in x of degree n’.

This proposition can be verified in quite a similar way.

@ii—38) If a=—n, B=—n' and min{n, n'} <n’, the power series (F) is reduced to
a polynomial in x of degree min{n, n'}.
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Indeed, recursive formula (3. 2) is written as
(3. 4) (k+1)(k—n")ak+. = (k—n)(k—n’)ak, (ao=1).

When min{n, n’} < n"—1, as can be easily verified from (3. 4), we have a, =0 for
k=min{n, n'} +1. This proves our proposition. When min{n, n'} =n", let n"=n’ < n.
Then, the a.’s satisfy
(3. 4-bis) (R+1D(k—n"daw = (k—n)(k—n"das (ae=1).
Therefore, the values of a, (1 £ & £ n’) are uniquely determined. But, the a@.+1 can
take on an arbitrary value. And, the values of a, for n' +2 £ 2 £ n+1 are uniquely
determined except for the multiplicative constant and, in particular, we have a..1 =0.
Thus, according to Kummer, this polynomial solution can be written as

F(=n, —n', —n'; x) + apex*'F(—n+n" +1, 1, 2+n"; x).
The degree of the polynomial F(—n, —n’, —n’; x) is equal to »’ (=minf{n, n'}).

4. In 1832, E. E. Kummer discovered twenty four representations of particular solu-
tions for Gauss differential equation (G). We denote them by Ko(x) (=1, 2,---,8), K:1;,(x)
(=1, 2,--,8) and K-(x) (=1, 2, ---,8). The first four solutions are

Koi(x) = F(a,B,7; ©), Ko2(x) =x'"7 Fla—7+1, B—7+1, 2—7; x),

Kos(x) = Q=02 F(y —a,r—B8,7; x),

Kou(x) = x'"7 (1-x)""* % F(l—a, 1-8, 2—7; x),
where the F’s are represented by uniformly convergent power series in x for|x|< 1, if
we substitute the corresponding parameters for (a,B,7) in power series (F). These
solutions can be easily obtained as follows. The Ko (x) is a holomorphic solution at x=
0. If we apply the transformation y=x'""z for equation (G), then the z satisfies Gauss
differential equation with the parameters (a — v +1, A— 7 +1, 2— 7) instead of (e,
B,7) and we have the solution Ko.(x) by means of its solution holomorphic at
x=0. The substitution from y to z by y=(1—x)""*"?z yields Gauss differential equation
with the parameters (7 —a, 7y —8,7) and we have the solution K,3;(x) holomorphic
at x=0. Finally, if we apply the transformation from y to z by y=x'""(1—x)7"" %z,
the z satisfies Gauss differential equation with the parameters (1—a,1—8, 2—17)
which yields the solution Ko (x).

It is known that the substitution from x to £ which transforms the set of singu-
larities {0, 1, o0} into itself makes a group, named the group of anharmonic ratio.
Corresponding to each substitution of the independent variable, a suitable substitution
of the dependent variable transforms Gauss differential equation into itself with a suitable
choice of the parameters. The substitutions, the parameters and the Kummer’s solutions
are listed in the table below.
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Substitutions Parameters Kummer’s solutions
£=x, y=z (a,B8,7) Ko1, Koz, Kos, Kos
E= l-x, y=z (a,8, a+B—71+ D Ki1, K12, Kis, Kis
£E= % , y=x"°2 (a,a—7+ 1, a—B+D Ke1, Koz, Kas, Kei
E=ﬁ, y= A-x)"°z |(a,v—B, a—B+1) Kes, Kas, Kao1, Kes
’E=x—1,y=x“’z (a,a—7+1, a+B—7+1)| Kis, Kis, K11, Ki1s
£= xil ,y= -0z |(a,7—8, 1) Kos, Kos, Kor, Kos

Here, the K.,’s are given by the expressions

Kll(x)
Ki.(x) =
K:a(x) =
Kii(x) =

= F(a,B,a+B—17+1; 1-x),

'"Fla—7+1,8—7+1; 1-x),
A-x?F(y—a, =8, v—a—B+1; 1-2),
x'"7(1-x)""**F(l—a, 1-8,7y—a—B+1; 1-x),

where the power series F’s are uniformly convergent for | x—1(< 1;

Ko (x) =x°F(a, a—7+1, a—B+1; %),

Kes(®) =x*F(8, B—7+ 1, B—a+ 1, D),

Kes(x) =x*(— %)1_"_BF(—B+1, 7—8, a—B+1; —ch—),

7-a-§8
Kai(x) =x72(1- %) F(—a+l, v—a, —a+8+1 %),

where the power series F’s are uniformly convergent for|x|>1;

Kos (x) =

Kas (x)

Kor(x) =

Kes(x) =

A-0"Fa, v-8, a—B+L2) ,
-X
1

A-0)"*F(B, v—a, B-a+l;72) ,
71 l B 1
(xi]_) (T:) F(B—7+1, —a+1, B—a-i—l;m.)’
=1, 1 @ 1
(xil) (I—_x) Fla—17+1, —B+1, a—B+1;1—_;),

where the power series F’s are uniformly convergent for|x—1|>1;

Kis(x) =x*F(a, a—7+1, a+B8—7+1;

x—1

))
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Kis(x) =x°F(B, B—v+1, B+a—17+1; x;l)’

— r-a-8 _
K@ = D eir-at, v-a, r-a- gD,
B

Kt = CD 7 rer-g+1, 7-8, r-p-ar D,

where the power series F’s are uniformly convergent for

x_—1| <1 or Re x >l;
x 2

Kos(x) = (1—-x)""F(a, v—8, 7:—),
x—1

Kie() = A-0)*F(B, 7~a, v;-=9),

K@ = () Q-0 Fla-7+1, - B+1, —7+5-50),

x
x—1

K@ = ) A-0"FB-7+1, —a+1, —y+2 50,

= -1

where the power series F’s are uniformly convergent for

x 1
ﬁ’<lOrRex<2 .

For the symbol K.,(x), the first letter a (=0 or 1 or @) in the subindices indicates
a singularity such that the corresponding power series F(a’, B’', v’; ) can be
represented by a uniformly convergent power series in £ = £ (x) for the values of x near
the singularity “a”. These twenty four expressions can be easily obtained if we use the
transformation formulas for Riemann’s P-functions.

By an easy consideration, we see that these twenty four expressions are separated
into six groups with identical relations:

KOI(x) = Koa(x) = Kos(x) = Koe(x);

Ko:(x) = Koa(x) = """ VK1 (x) = ™' PiKoe(x), G =v —1),
with arg(d—x) =0, arg(x—1)=7 for 0 <x <l;

Ki(x) = Ki.(x) = Kls(x) = KlG(x);
Ki:i(x) = Kia(x) = "7 2P 1 (x) = e "7 8K, 4(x)

with arg(l—x) =0, arg(x—1)==7x for %<x <1;

Koi(x) = Kas(x) = €"Kus(x) = "% Kus(x)

with arg(x—1) =0, arg(l—x)=7 for 1 <x <oo;
Kez(x) = Koi(x) = e"Kus(x) = """ Kur(x)

with arg(x—1) =0, arg(l—x)=7 for 1 <x <oo.

5. Case 1. In generic, the functions
Ko(x) = F(a,B,7; x), Ko2(x) =x'""Fla—7v+1, B—7v+1, 2—7; x)
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represent linearly independent solutions around the singular point x = 0. Observe that
=—n.

If v#0, —1, ==+, —n+1, the function K..(x) = F(—n, B8, 7; x) is a polynomial
in x with degree < n. If there is another rational function solution, it must be the Ko:(x).
Since the function F is single valued around x=0, the quantity 1— v must be an integer.

Let 1— 7= n'E€Z. Since a=—n and v =1—n’, we have
G. D {Kol(x) =F(—n, B, l—n'; x),
Ko:(x) =x"F(—n+n', B+n', 0 +1; x).

(i) Assume that 1 =n" <n. Then the F appearing in the Ko.(x) is well defined in-
dependently of the value of B. The K,.(x) is a polynomial in x. But, the F appearing
in the Ko1(x) is well defined if and only if B=—n"€Z\N and 0=n"<n’ —1. In this
case, the Ko (x) is also a polynomial in x of degree n”. Then, the degree of the polyno-
mial Ko2(x) is equal to n. Thus, we have two polynomial solutions Y,(x) and Y.(x),
linearly independent. We name this type of solutions Typel :

Yi(x) = F(—n, —n’, 1-0'; x),
6.2 (Type 1) {Yz(x) = x" F(—n+n', =n"+n', n’ +1; x).
Here, n, n’ and n” are nonnegative integers, and 1=<n’ < n, 0 =n”<n’. The degree of
the polynomial Y:(x) is equal to n” and that of the polynomial Y.(x) is equal to n.

(ii—1) Assume that n’ = 0. Since we have Ko.(x) = Ku:(x), a pair of linearly in-
dependent solutions is a linear form of log x with coefficients holomorphic at x=0. So,
this case must be omitted.

(ii—2) Assume that n' < 0. If we write as —n’ instead of n’, we have

Ko (x) =F(—n, B, n’ +1; x), Ko:(x) =x F(—n—n', 8—0n', 1-1'; x).
Observe that n’ €N, 1—n’ €Z\N. The F appearing in the Ko:(x) is well defined in-
dependently of the value of 8. But, the F in the K..(x) has the meaning if and only
if B=n"EN and 1<n"<n’. Then, this power series F becomes a polynomial in x of
degres n’ —n”. And, the Ko:(x) is a polynomial in x of degree n. Thus, we have linearly
independent solutions which are represented by rational functions.

We put

nt+n' =n, n’=n’, 0’ —B(=—-n"-n") =n".
Clearly, 0 =<n\"< n." —1. Thus, we have linearly independent solutions Y:(x) and Y.(x),
which are rational functions, of the form
{Yl(x) =F(—n|+n1' N nl' —nl”, n:’+1; x),
Y:(x) =x~' F(—=n\,—n", 1-n' ; x).
This case is considered as solutions of Type II, which will appear in the section 7. The
polynomial Y (x) is of degree n (=n:—n."). But, the degree of the polynomial appearing
in the Y.(x) is equal to n’ —n"(=n:") and it may exceed n.
(ii—3) Assume that n’ =n+m and mEN. We have
Ko(x) = F(—n, B, —n—m+1; x),

5.3
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Ko:(x) =x""F(m, B+n+m, nt+m+1; x).
The F appearing in the Ko:(x) is a polynomial in x independently of the value of 8.
The F in the Ko:(x) is reduced to a polynomial if and only if B+n+m=—n"EZ\N.
Observe that
Ko(x) = F(B,—n,—n—m+1; x) =F(—(+m)—n",—n,—(n+m)+1; x),
Ko:(x) = x"F(B+n+m, m, ntm+1; x) =x"F(—n", m, (n+m)+1; x),
because of the symmetricity property F(a,8,7; x) = F(B,a,71; x). We put
n+m+n"=n, n+m=n’, n=n",
so that
n=n-n', m=—n+n’'=-n"+n'.
Thus we have two linearly independent solutions, which are expressed by rational functions,
{Yx(x) =F(—n, —m", 1-m"; %),
Y:(x) =x* F(—ni+n, —n"+n’, o’ +1; ).
This case is regarded as solutions of Type I. The polynomial Y:(x) admits n as its

(5.4)

degree. But, the polynomial Y.(x) is of degree (n+m)+n" and this quantity exceeds n.
For Type I, we have
a=—n, B=—n", v=1-n".
The characteristic exponent (A, g, v) is defined by the triple
5. 5) (2, u, v) = U-7, v—a—B, a—8),
where every entry is a difference of the two characteristic roots at the corresponding
singularity. Hence,
(5. 6) (A, ¢, v) =, 1=-n +n+n", n" —n).
Therefore, the four quantities @; (=1, 2, 3, 4) defined by
G. 7 {Qn =A+u+v (=14 2n"), @:=—A+u+v (=1-2n"+2n"),
Q:=A—u+v (=—1+ 20" —2n), @=2+u—v (=1+2n)
are all odd integers.
6. Case 2. The solution has the form
xe(1—x)glx) = (1—x)g(x).
In generic, the two solutions given by
Kos(x) = A—x)""**F(y—a, v—B, 7; %),
Koilx) = x'"Q—=x)"**F(l—a, 1—-8, 2—7; x)
are linearly independent. Since, as is shown in the table,
a=—-n—c, B=n+7,
the two solutions become
6. D {Koa(x) = (I=x)F(n+c+7,—n,7; %),
Koi(x) = x' "Q—x)F(pn+c+l, 1-n—17, 2—7; x).
The function (1—x)° and the hypergeometric function F are single valued around x=0.
So, the quantity 1— 7 must be an integer, because we look for rational function solutions.
Let 1— v = n’ €Z. Then, we have
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©. 1-bis) {Koa(x) = (1=-x)F(n+l4+c—n',—n, 1=-n"; x),
Koi(x) = x* Q—x)F(n+1+c, n' —n, n" +1; x).
(i) Assume that 1= n' £ n. The F appearing in the Ko:(x) becomes a polynomial
in x if and only if
n+l+ec—n' €Z\N and n+1+c—n' =0,~1,--, — (' ~1D
or, what it is the same thing,
n+c=n"€{N, 0} and 0 n"<n'.
Thus, we have linearly independent solutions Y:(x) and Y.(x) which are rational functions.
We call this type of solutions Type II:
Yi(x) = Q—x)"*"F"+1-n",—n, 1-n' ; x),
©. 2) (Type ) {Yz (x) = A—x)""x" Fr"+1, o’ —n, ' +1; x).
Here, n, n’ and n” are nonnegative integers and 1=n’ <n, 0=<n"<ln’'. Obviously, the degree
of the polynomial in x appearing in the Y, (x) is equal to n’ —n” —1. The Y.(x) involves
a polynomial in x of degree n.
(ii—1) Assume that n’ =0. Then, a pair of linearly independent solutions is a linear
form of log x with coefficients holomorphic at x=0. Hence, this case must be excluded.
(ii—2) Assume that n’ =n+m and mEN. The two solutions Ko3(x) and Ko (x) are
written in the form
Kos(x)= (1—=x)F(c+1—m,—n, 1-n—m; x)=1—x)F(—n, c+1—m, 1—-n—m; x),
Koi(x)=x""(1—x)F(n+c+1l, m, 1+n+m; x)=x""1—x)F(m, n+c+1, 1+n+m; x).
The F appearing in the Ko.(x) is reduced to a polynomial if and only if
n+c+1=—n"€Z\N.
Put
n+n"+m=n., n+tm=n , m—1=n".
An easy consideration implies that
=—n—1-n"=—(+n"+m) + (m—1) =n"—n,,
—n=m—-n'= (m—1) +1—n,'=n"+1-n",
ctl—-m=—n—n"—m=—n,,
ntetl=—n"=n+m—n=n'—n.
Thus, we have a pair of linearly independent solutions
©. 3 {Yl(x) = (l—x)"‘:""F(n,l"+1-n1’,—n|, n' +1; x),
Y. (x) Q- maxm By " +1, nd —ns, m’ +1; x).
This case is considered as solutions of Type II. The degree of the polynomial appearing
in the Y:(x) is equal exactly to n (=n." —n\”—1). But, that in the Y.(x) is equal to
ni(=m’ +@i—n’)) and exceeds n.
(i1—3) Assume that n’ <{0. Changing the sign of the number n’, we have the solutions,
owing to (6. 1—bis),
Kos(x) = A—x)F(n+1+c+n',—n, n' +1; x),
Koi(x) = x* Q1—=x)F(n+1l+c, —n—n', 1-0n'; x).
Here, n' EN.
The power series F appearing in the Ko.(x) is well defined if and only if
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n+l+c=—n"€Z\N and 0=n"=n’ —1.
We put
n+n =n, 0 =n', n"=n".
Then we have
c=—n—1-n"= (—m+n')—n"—-1=—n+n' —n"—1.
Thus we have linearly independent solutions, which are represented by rational functions,
of the form

Yi(x) = (1—-x) _mﬁ' U B~ —mtn, ml +1; %),

Y.(x) = x—"'l(l—x) Tt F(—n,—nm, 1-n"; x),

with ni, mi’, n.” € {N, 0}. This type of solutions is considered as Type IV, which will

6. 9

appear in the section 8. The degree of the polynomial appearing in the Y:(x) is exactly
equal to n (=n1—n."). And, the Y:(x) involves a polynomial in x of degree n." (=n").

For Type LI, we have
6. 5) a=—n", B=n+1-n", vy=1-n".
Hence, the characteristic exponent is given by
6.6) (A,u,v) =U-7,7v—a-B,a—B) = (' ,—n+n",—n+n’ —n"—-D.
So, the four quantities @;(j=1, 2, 3, 4) defined by (5. 7) become
6. D {Q.=—2:¢+2n;—1, Qz=—gn—1,

Qs= 2n' —2n" -1, @=2n"+1

and they are all odd integers.

7. Case 3. The solutions under consideration have the form

x*(1—x)glx)=xg(x).
In generic, the two solutions due to Kummer
Koi(x) = F(a,B,7; x), Ke:(x)=x'""Fla—7+1, B—7+1, 2—7; %)
are linearly independent. As was shown in the table, we have
a=—-—n—a, 7=1—a.
Henca, @ — ¥ +1=—n. Thus, the solutions are written as
Ko(x)=F(—n—a, 8, 1—a; x), Ko:(x)=x°F(—n, B+a, 1+a; x).
Observe that the F is a single valued function around x=0. Hence, the quantity a must
be an integer. Let a=—n' €Z. Then, we have
. 1) {KOl(x) = F(—n+n', B8, 1+n'; 1),
Ko2(x) = x* F(—n, B—n', 1—n"; x).

(i) Assume that 1= n’ £ n. The function F appearing in the Ko.(x) is reduced to

a polynomial, if and only if
B—n'=—n"€Z\N and 0=n"=n —1.

Notice that 8=n" —n" € N. The Ko.(x) is a polynomial in x of degree n—n’. Thus we
have two linearly independent solutions Y(x) and Y.(x), which are expressed by rational
functions. We name this type of solutions Type II:
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Yi(x) = F(—n+n', n' =n", n' +1; x),
Y. (x) = x F(—n,—n",1-1n"; x).
Here, n, n’ and n” are nonnegative integers, and 1= n'< n, 0= n"< n' —1. The F

(7. 2) (Type W) {

appearing in the Y,(x) is a polynomial in x of degree n—n’. The degree of the polynomial
appearing in the Y.(x) is equal to n”, since min{n, '} = n"< n’ —1.
(ii—1) Assume that n’ =0. Since we have Ko:(x)=K,:(x), a pair of linearly independent
solutions is necessarily a linear form of log x. So, this case must be excluded.
(ii—2) Assume that n’ <0.If we write —n’ instead of n’, the solutions (7. 1) are
written as
Koi(x) = F(—n—rn', B, 1-1'; x),
Ko:(x) = x% F(—n, B+n', n +1; x),
where n” €N. The power series F appearing in the Ko:(x) is well defined if and only if
B=—n"€Z\N and 0=n"<n’ —1.
Then, the F becomes a polynomial in x of degree n”. Obviously, the F appearing in the
Ko:(x) is a polynomial in x of degree n.
Now we put
n+n =n, 0 =n', ”"=nm".
Then, we have linearly independent solutions of the form
a. 3 {Yl(x) =F(’—n1, -n’, 1-n.; x),
Y.(x) =x™ F(—ni+n, n.'’ —n)", ' +1; x).
This pair of solutions is regarded as solutions of Type 1. The degree of the polynomial
Y:(x) is equal to ni(=n+n’) and exceeds n, but that of the F appearing in it is exactly
equal to n.
(ii—3) Assume that n’ >n. The solutions are rewritten as
Ko (x) = F(—n+n', B, 0’ +1; x) = F(B, —n+n’, n’ +1; %),
Ko:(x) = x™ F(—n, B—n', 1-n"; x) = x* F(B—-n', —n, 1—0n"; x).
Note that n” —12n. Hence, the F appearing in the K,.(x) is a polynomial in x independently
of the value of 8. The F in the Ko:(x) is reduced to a polynomial in x if and only if
B=—n"€EZ\N.
The degree of the Ko:1(x) is equal to n”. That of the polynomial appearing in the Ko
(x) is equal to n, since min{n’ — 8, n}=n=<n" —1.
We set
n +n”=n1, n' =n1', n=n|”.
An easy consideration yields the relations
B=—n"=—n+n =—n.+n/’
—n+n' =n' —n.’,
B—n =-n"—n=—n..
Thus we have a pair of linearly independent solutions of the form
a. o {Y; (x) = F(—m+n!/, n/'’ —n", n' +1; x),
Y.(x)
This pair of solutions can be regarded as solutions of Type II. The degree of the polynomial

x ' F(—n,—n", 1—n; x).
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Y (x) is equal to n” (=n,—n,"). If n">n, the degree of this polynomial does exceed n.
The degree of the polynomial appearing in the Y.(x) is exactly equal to n, because of
the inequalities min{n,, n:"} =n=<n’ —1=n," —1.
For Type I, we have
(1. 5 a=-n+n", B=n"—-n">0, y=1+n".
Hence, the characteristic exponent (A,4,v) is given by
(7.6) (A,u,v) = AQ—-7,7v—a—-B,a—B) = (=n', n—n' +n"+1, —n+n").
The four quantities &; given by (5. 7) are calculated as
a. D {Qn =—2n"+2n"+1, Q.=2n"+1,
@s=—2n—1, @«=2n—2n" +1
and they are all odd integers.
8. Case 4. The solutions have the form x*(1—x)° g(x). In generic, the solutions due
to Kummer
Kos(x) = Q—x)"**F(y—a, v—8, 7; ©,
Koi(x) = x'77Q=x)"**F(l—a, 1—-8, 2—7; x)
are linearly independent. As is seen from the table, the parameters a, 8,7 are related
with the relations
a=—n—a—c, B=n+l, v=1l-q, 7v—a-—-B8=c.
Hence, these solutions are written as
Kos(x) = (A1—x)F(n+c+1, —n—a, 1—a; x),
Koi(x) = x*(1—x)F(n+a+c+l, —n, 1+a; x).
Since the functions (1—x)c and F are both single valued around x=0, the quantity a
must be an integer. Let a=—n' €Z. Then, the solutions can be given by
G. 1 {Kos(x) = (1—-x)F(n+c+l, —n+n’, 1+n'; %),
Koi(x) = A—x)x™ F(n—n' +c+1, —n, 1—-n"; x).
(i) Assume that 1= n’ < n. The power series F' appearing in the Ko (x) has the
meaning if and only if
n—n +c+1=—n"€EZN\N and 0=<n"< n' —1.
Hence, the quantity ¢ is also an integer and
c=—n+n —n"—1€42.
Thus we have two linearly independent solutions Y)(x) and Y.(x), which are expressed
by rational functions. We call this type of solutions Type IV:
Yi(x) = A—x)""' F(n' —n", —n+n’, n’ +1; x),
Y:(x) = x* (1—x) "1 F(=n", —n, 1-n'; x).
Here, n, n’ and n” are nonnegative integers, and 1< n' < n, 0= n”"< n’ —1. The degree

8. 2) (Type IV) {

of the polynomial appearing in the Y,(x) is equal to n—n’ and that in the Y.(x) is
equal to n” since min{n", n}=n"<n’ —1.
(ii—1) Assume that n’ =0. The both solutions coincide. Hence, a pair of linearly
independent solutions is necessarily a linear form of log x. This case must be omitted.
(ii—2) Assume that n’ <0. By changing the sign of the number n’, we have the
solutions, by virtue of (8. 1),
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Kos(x) = A—x)Fn+c+l, —n—n', 1-0"; x),
Koi(x) (A—x)x" Fln+n +c+1, —n, 1+0"; x).
with n' EN. The power series F appearing in the Kos(x) is well defined, if and only if
nt+et+l=—n"€Z\N and 0=n"=n’ -1

Since then
c=—n—n"—1€Z\N,
the solutions are written as
Kos(x) = (A—x)""' F(=n", —n—n', 1-n'; x),
Koi(x) (A=x)"r' x* F(' —n", —n, ' +1; x).
Put

n+n =m€N, = n'EN, n —1-n"=n"€{N, 0}.
An easy consideration implies that
ntn"+1= (ui—n') + &' —n") =n—n’,
-n"==n'+n"+1,
r-n"=n"+1,
—n=—m+n =—n+n’'.
Thus, the above solutions can be written in the form
@. 9 {Y:(x) = (A—-x)" ™ F(—n/ +n"+1, —n, 1-n; x),
Y:(x) = Q=) ™ xn Fln”+1, —ni+n, ' +1; x),.
which can be regarded as solutions of Type II. The degree of the polynomial appearing
in the Y, (x) is equal to the number n”, because of n.’ —n," —1=n' —(n' —=1-n")—-1=n".
The degree of the polynomial in the Y:(x) is equal to ni(=n" +(n1—n.")) and exceeds
n, but that of the F is exactly equal to n.
(ii—3) Assume that n° >n. Note that the solutions (8. 1) can be written as
Kos(x) = A—x)<F(n+c+l, —n+n', n’ +1; x)
= (1—-x)F(—n+n', ntc+l, n' +1; 0
Koi(x) = x (1—-x)F(n—n' +c+1, —n, 1-1n'; x)
= 3" (1-x)F(—n, n—n" +c+1, 1-n"; x).
Since —n+n’ €N, the F appearing in the Ko:(x) becomes a polynomial in x if and only
if
n+ct+tl=—n"€Z\N or c=—n—-n"—-1.
Note that n—n’' +c+1=—n"—n". If we put
n +n"=n, n =n’, n=n",
it follows by an elementary calculation that
c=—n—n"—1=—n—(@ +n") +n' —1=—n"—n+n' -1
=—n1+n|' ——nn”—l,
ntetl=—n"=—@ +n")+n =—n+n/’,
n—n' +c+l=—n,.
Thus, we have a pair of solutions of the form
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CA)) {Y'(x) = A-0 "™ PGy’ —n, —m+n’, o’ +1; x),

Yo = ™ Q=) """ p(=n, —n, 1=n; x).
Since the power exponent of (1—x) is a negative integer, this pair of solutions is included
in Type IV. The degree of the polynomial appearing in the Y:(x) is equal to n” (=n,—
ni’). That in the Y.(x) is equal to n.”(=n), because we have min{n.”, n.}=n<n’ —1=
lel -1.

For Type IV, as was shown, we have

T—a—B=c=—n+n —n"-1,
vy—a=n —n",
Y—B=-n+n,

1-y=-n".

Hence, the characteristic exponent given by (5. 5) is

8. 5 (A,p,v) = (=n', —n+n' —n"—1, —n+n")

and the four quantities Q; defined by (5. 7) become

@. 6 {Q1=—2n’—1, ] Qz=—2n;i-2n'—l
Q:=—2n"+2n"+1, @:=-2n"-1,

which are all odd integers.
9. Conclusion. Summarizing the above discussions, we have the following.
Theorem. When Gauss differential equation admits a pair of linearly independent
solutions Yi(x) and Y.(x), which are represented by rational functions, the solutions
must be one of the four types:
Type 1: Y\ (x) and Y.(x) are both polynomials in x;
Type I: Y\ (x) and Y.(x) are both polynomials in x divided by a monomial in 1—
x with the same form;
Type W: Y\ (x) is a polynomial in x, while Y.(x) is a polynomial in x divided by
a monomial in 1—x;
Type V: Y (x) is a polynomial in x divided by a monomial in 1—x, and Y:(x) is
a polynomial in x divided by the product of a monomial in x and a
monomial in 1—x with the same form as in Y,{(x).
In any type, the four quantities Q; (j=1, 2, 3, 4) defined by (5. 7) are all odd
integers.

Department of Mathematics
Faculty of Science and Engineering
Chuo University



