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ABSTRACT. We consider the global behavior of the subdominant slotions of the differential -
equation y"— (x'"+ax"") y=0, by utilizing the properties of hypergeomitric difference equations.
When m=1, this is the Weber’s equation. We derive a new extension of it and investigate zero-
free domains, the distribution of zeros and other properties.

1. Introduction. The linear differential equation under consideration is

d’y
. n e

where x is a complex variable, a is a complex parameter and m is a positive integer.

—_ (xEm + axm—l)y i 0’

The point of infinity is an irregular singular point of rank m+1I and the origin is a
transition point of order 2m. Equation (1.1) is important because it is a simple example
of a second order ordinary linear differential equation with such a transition point. For
m=1, equation (1.1) is exactly the Weber’s equation. Y. Sibuya [6] applied the Weber
function to a differential equation with a transition point of order 2. Using the Whittaker’s
parabolic cylinder function, Y. Sibuya [5] investigated the properties of the subdominant
solution of the Weber’s equation.

For a=0, the equation (1.1) is the Airy equation which has a long history of
investigations. C.A.Swanson and V.B.Headley [7] defined the Airy functions of the first
and second kind in terms of the modified Bessel function of the first kind and investigated
continuation formula, zero-free domains, the distribution of zeros and other properties.
M.Kohno [4] defined the Airy function of the first kind as a paticular entire solution
of linear differential equations which is principally recessive on the positive real axis
arg z=0.

In this paper we shall define the Weber function as an entire solution of (1.1)
which is subdominant on the positive real axis and investigate the global behavior of
the Weber function, using hypergeometric difference equations. (cf.[2]) In section 5 and
6, by means of the asymptotic behavior of the Weber function and an application of the
principal of the argument, we show that zeros of it are located in a small sector including
the Stokes line. We know the zero-free domains, by using Lommel’s method.

2. Subdominant solutions. P.F.Hsieh and Y.Sibuya [3] constructed the unique
solution y(x, a) of the equation (1.1) such that

(i) y(x, a) is an entire function of (x, a);

(ii) y(x, @) and ¥ (x, a) admit, respectively, the asymptotic representations



70 Shigemi OHKOHCHI

11 !

@.n y & =z ° exp (=371 U+0k 2,
L -4

2.2 ¥ (x, a)=x% ? exp [—milx"'”] - [—14+0@k %)),

uniformly on each compact set in the a—space, as x tends to infinity in any

closed subsector of the open sector |arg x| < 2”'3_7:2. The solution y(x, @) tends

to zero as x tends to infinity in the sector |arg x| <#+2. Therefore, the

solution y(x, a) is called a subdominant solution in this sector and is uniquely

determined.
If we put
@. 3 »lx, @)=y (0, (—=D*a),
where
_ 1 .
. 4) @ =exp [—m 7'[1,],

then, for each integer %, y.(x, @) is also a solution of the defferential equation (1.1).
The solution y.(x, @) and its derivative y'+(x, a) admit, respectively, the asymptotic

representations
~h- gD e gm - =D gm
@. 5 wlx, d=w X
“ 1
cexpl(—=D L ™ 110G ),
-k[—%(—l)ka-—; m) ——;(-1) I:1+—2!m
@. 8 ¥ilx, d=w x

k+1 ] m+1 R+l

- expl(—=D oy 1 [(-D

uniformly on each compact set in a—space, as x tends to infinity in any closed subsector

1
+0(x 2 )]

of the open sector:

. __k 3z
@D Si: larg x m+1”|<2m+2'
The solution y.(x, @) is a subdominant solution in the sector
T . __k i1
@. 8 Si: larg x m+1”|<2m+2'
Note that
@ 9 wlx, &)=wlx, @) if k=h (mod 2m+2).

We define y(x, a) as an extended Weber function and in the following section we investigate
the global behavior of the extended Weber function.
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3. Difference equations. We shall consider the differential equation (1.1). The
solution y(x, @) is subdominant on the positive real axis, so its Mellin transformation

(CAN)) F(s)= So y(x, @)+ x5'dx
exists as a holomorphic function in the right half-plane Re (s)>0. Moreover, it is a
solution of a difference equation

CAD)) s (s+1) F()—F(s+2m+2)—a- F(s+m+1)=0.
Let us put

3 3 s =(m+Dt ,

and

(G F@=F((m+D)=T (OW(®).

Then, the difference equation (3. 2) becomes

3. 5) E+DWE+2) +a- Wit+D—[(m+D*t+(m+DIW()=0.

This equation is called the hypergeometric difference equation. (cf. P. M. Batchelder [1])
We define two constants p;, 0: by the roots of the characteristic equation of the
difference equation (3. 5)
o= (m+1*=0.
That is
@Q. 6 o= m+l1, p.=—(m+1D).
Furthermore, we define three constants by the equation

,8,+ Bz+ Ba+2=1,
Bip:t+ B:p01=—a,
010:8:=—(m+1).

That is

Set

3. 8 T=t+ B
and

G 9» H(z)=W(r — 82).
Then, H(7) satisfies the difference equation
3.10) (z+Bi+ B:+2) H(z+2)

—[(pi+pd(c+B:4+D+ Bip:+ B0 lH(x + D+ p1p:7 H(z )=0.
We need the following theorem. (P.M. Batchelder[1])

THEOREM 3.1. There exist two solutions hi/(t) and h:(t) analytic throughout
the finite part of the plane except for pole, and such that, for j=1,2,

»

h(D)=p; 27 b +%+T—;’+ ------ Yo,

where b;’s are constants. These solutions called the principal solutions. Furthermore,
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h; () may be written in the form

.10 ri()=(=p)" (01— 09" (0.F FF((?E%I?:;)D
1
- F (ﬁl+1,—ﬁg,f+b1+1, m)
and
(3.12) BT =(= 097 (o= 00" (0* TLEILCEAD

F'(z+B:+D
CF (Betl— Bot + Bl 2L R0

where F (,+,*,*) is the hypergeometric series

_ a- B a(a+1)3(/3+1) P
3.13) F (a,B,7, 2 =1+ 17 2 I+ 2 y(7+D 2t

Using this theorem and (3. 3), (3. 4), (3. 5) and (8. 8), we obtain the general
solution of the difference equation (8. 2) as follows;

F()=p ()T (Dh(t+ B+ 0" (DT (DAt + Ba)

=p@) (=D* 28 (m+DPPTE (m+D):

3.14) . LQOLULBILLCOAD . (g1, Bot+ Bot Bit], )

+0' () (=D BB (Pt EE (D)

T T+ r +1 1
T (¢t+ Bs+ Bt 1) F (B:+1,— 8,t+ Bs+ Bz+1,?)

’

where o (s) and p’ (s) are arbitrary periodic functions of period m+1. In order to seek
a explicit solution of the difference equation (3. 2), we have to determine p (s) and
o’ (s). To do this, we use the asympotic representation (2. 1) of a subdominant solution
y(x, a). In order to know the asymptotic condition of the Mellin transformation F(s)
of y(x, a), we need the following lemma. (See Wyrwich [8])

LEMMA 3.2. Let G(t) be summable in the sence of Lebesgue on each compact
subset of the interval (0,) and satisfies the two conditions:
(i) GW=0@"°) t—0, cER;
(i) G@) =expl—at?lt™", t—>, a,B>0, v €C.
Then the Mellin transformation g(s) of G(t) exists in the half plane Re(s)>0 and
satisfies

g = a7 r g,

as s—><° in any half strip

Re()>0, | Im(s) | <d.
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Now, we can easily obtain from (2. 1) and lemma 3.2 that

at+m s

—-1-
(3.16) F() = (m+D " (m+D™"'
Therefore, it follows from (3.14) and (3.15) that

1 1 1
I‘(m (s—ga—fm)).

atm

0@ (=D 2% (m+D™? T (B+D- NI MR D) -
[ (t+ B:+B8.:+DT (t__a—”Lzm+2)
(3.16) +0°() (=D 2B (D™ T(BAD- (=D
IO T:D) ~ 1
atm :
Since
rri+ By _ _
=1+0@™")
atm
T+ B+ B,+DT (¢— omt s )
and
T(OT (t+ B4) -
atm. .=t (1+0 (¢)].
T+ Bs+ B:+DT (t— m+2 )
we can get
m+2—a m+2+a _mta
@ID o = (=D "7 27 (map " pZEmy
and
3.18) p'(s) =0.
Here we used (3. 7) and the asympotic property of T (z):
(3.19) LGt _ caprioe.

T'(z+d)
Since p(s) and p’ (s) were supposed to be periodic, we even have equalities in (3.1
and (3.18), and finally obtain from (3.14) that

atm
2m+2

(8200 F()=(m+D

C et D B R(B i1~ By b+ Bt B L)

atm s

2m+2 . (m+1)m+l

_1—
=(m+1)

s s+1
re m+1)r(m+1) . pemte mt2+a 2s+2+m+ta _1)
2s+2+m+a “2m+2’ 2m+2 2m+2 27
="
2m+2

The subdominat solution y(x, a) of the differential equation (1. 1) is holomorphic

73
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at x=0. Therefore, the residues of the transform F(s) of y(x, a) are given by

3.2D Res [F(s);s=—k] =,% i'Ld%“q)— x=0.

Using the property of T (z) and hypergeometric series:

lim AT @="D

F(a,B,a; 2)=F(B,a,a; 2=1-2)"*,

we can get
3.22) (0, a)=Res [F(s),;s=0]
—;(m+l)(a+m) F( 1)
=(m+D TaimtI,
2m+2
. F( m+a atm+2 at+tm+2 1
2m+2’ 2m+2 ' 2m+2 ’ 2
mta m+a 1
2m+2( +1) 2m+2 l-‘(m+1)
T 2m+2
and
(3.23) ¥y (0, @)= Res [F(s); s=—1]
—l-'—(m+1) (a+m) F( )
=(m+D ° _I;
l-\( mrTa )
2m+2
. F( atm atmt2 at+tm 1
2m+2’ 2m+2 ’ 2m+2° 2
atm+2 e at+m ( — )
o Zmt2 m+2 m+1
=2 (m+1) TeEn,
2m+2

Thus we solved the central connection problem for (1. 1).

4. Stokes phenomenon. We shall now show linear dependence relations. Using
(2. 5) and (2. 6), we can calculate the Wronskian

k1 1
-(=n Setymk

Wron [y.(x, @), yw:(x, @);x] =2+ w

From this, it follows that y.(x, a) and y.:(x, @) (k=0,1,--,2m+1) make a fundamental
set of solutions of the linear defferential equation (1. 1). Then we have

“ D y(x, @=ci(@y:(x, a)+dii(@yiri(x, a),
where

(U=-(-DYa
2m+2
“. 2 c.(a)= (m+1)
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—k—1

w _ 1
m+t(—=D"a\ ., mta+t? mta m+ (=D a+2
P pmrs T2 Tl 5 05 )
w—k—l 3 w-k
cm+(=D""a | m+(=D"*a+2 m+(=D"a \mt(=D"""a+2
P v T onye ) &g 15 I¢ mr2 )
a--n ¥y,
.2 m+2
(4.3) dk+](a)_(m+l)
w " _ 1
cm+(=D*a ... mta+2 m+a m+(=D *a+2
P omtz 2T %mes ) Toua T sy )
w—k 3 w—k—l
,m+(—1)ka m+(—1)k+1a+2 m+(—1)k+la m+(—1)ka+2
P2 2T gz ) T otz 2T one )

Here we used (3.22) and (3.23).
We shall now investigate the Stokes phenomenon of y(x, a).

Note that
- T & -k ___ T
§,=S,,uSuUS, Ularg x=_T7 2m+2}
__k I 1
Ularg x = m+17" 2m+2}
and
S NS . =S N{arg x= 52— +—k 7z }N3
k k+1 k 2m+2 " m+l1 k+1

Using the fact that y(x, @) is subdominat in the open sector S, it follows from (4. 1)
that

~

ex(@yi(x, @) in Sy
“ 9 y(x, a) =
dkH (a)ykn(x, a) in §k
(R#0,—1)
Therefore, the half-line
. 5 6,~arg x =3 Eo+—Ez (=12 2m—1,2m)

are the actual Stokes lines of y(x, @) in the whole comples plane 0<larg x<27z.

5. The distribution of zeros. In the following sections, we assume that the
parameter a is a positive real number. From the global behavior derived in the preceeding
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section we can now investigate the distribution of zeros of y(x, @) on the actual Stokes

lines.

Let @, P:and P:be points of intersection of the circle | x| =po with one of the
Stokes lines 8,(k=1,2,--,2m), therays 8§ =0,— € and 8 = 0,+ €, € being an arbitrarily
small positive number, respectively. From (4. 1) and (4. 4), we then have for a suffi-
ciently large positive number p

6. D A,

6. A,

.9 Dy,

G. O Ay,

,arg y(x, a)=arg d

o 2T y(x, a) = [arg d,, @+ argy,,, ( a)]

é6=0 —s
—k-1 _%(_I)HI "-é'"
=| arg (w %) +
—k-1 m+1
arg {exp [——( x) J+o(D :l
m+1 o=0, -
_i( D R+l m+1
7 (= a— 2m)£+ oy {sin ((n+D6 —k+Dr+n)

—sin ((m+D0.—e)—Gk+Dr+nd)}+o(D) .
m+1
arg y(x, @ =(—2(~D *a—Lm)(= &)+ L7 Gin((m+D 6, —k7 +7)
—sin((m+1) (B,+e)—kn+z)}+o(D),

@+(~L(-D*" a=Lm) (2L 719, - )

kt1 m+1

+ma°—+1 - sin ((m+D) (Ok— e)—(k+Drm+xm)+o(l)—arg ylx, a) Ix=0

Jarg y(x, a)=arg ¢, (@+(— ( DFa- —m) (— 77+ 6 ot e

m+l

+& 5 sin (m+D (8, +e)—ha+n)+o(D—arg y(x, @) | .y

Hence we have for a sufficiently large p and a sufficiently small ¢

4.5 A

op.qpio 878 Y (%, @)
—arg d,,, @—arg ¢, @+(-L(-D"" a=Lm) (- XLz +0,)
m+1
~(-L-pra-Lm) (-E77+6,)+% 7 Gin(m+D 6, —k7)

—sin ((m+1) 6, —kr+ 7} +o(D)
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i7" M@ + o),

where

M(a)=arg d,, (a)—arg c, (@)

k+1

_ m+a ypom+(=D*at+2y -k _m+(=D'a | mta+2
e[ T T gy D o Ty DN g5

k+1

k1
at2, w—k—l_r(m-i-(—l) ayp@mtat?, ]

—arg[ T ( mtd yp mt (1) 2m+2 2m+2

2m+2 2m+2
and

_ T
MO =n+—5 "%

It follows from (5. 5) that putting
1

_r.mtl __mm_ _ ml
(. 6 p= Ty eLn -5 ~M@Y]™,
6. D A p qpio ATE y(x, @) =2Ln +o(l).

Consequently, we obtain the following result on the distribution of zeros of y(x, a) on
the Stokes lines.

THEOREM 5.1. There exists an integer L, such that for any L=L, exactly L zeros

. _ T k _ .
of y(x, a) are located on each Stokes line arg x= e +——m g a4 (k=1,2,---,2m) in the

disk | x| <p,p denoting the number (5. 6).

6. Lommel’s method. The well-known Lommel’s method is very effective for the
investigation of the location of zeros of y(x, @) satisfying a second order linear differential
equation of the form (1. 1). Suppose that @ =re® is a non real zero of y or ¥ . The
following identity can easily be obtained from the differential equations satisfied by
y(at) and y(B¢t) and Green's symmetric identity:

6. D (a2m+2_B2m+2)Sc’t2m yat)y(Bodt
=(a™' - g™y (= Sj at™ ! y(at)y(Be)dt)

+[ay (at)y(B)— By (B y(ad]!,

2m+2 2m+2
(a

1
6. 2 —8™ (4 yan Lypoa

+ m+ m m 1 m—
=(am Iﬁz z_az +2B +1)S at Iy(at)y(ﬁt)dt

[
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+[a™ By (BOy(an)—a 8™y (a)y(BO]L,

where B is an arbitrary complex number and c is an arbitrary real number. Putting
B =Ta in these indentities (6. 1) and (6. 2), we can investigate zero-free domains of
y(x, a).
_ T A S, ; i b-
If - 57 2<9< om i3 then, taking account of the fact that y(x, a) is a su
dominant solution and letting ¢ tend to infinity in (6. 1), we have

2™ cos(m+D 6 S”tzm | y(at) I? dt=—a Sl ¢! | y(at) |2dt<0,
1

which is a contradiction. If x is positive real, y"(x, @) and y (x, @) have the same sign

from (1. 1). Since y(0, a)>0, lim y(x, a)=0 as x—>, it follows that y and y’ have no

. . . z 4
zeros. Thus there are no zeros of y(x, a) in the sectorial domain: — St o 8< mt o

We now put ¢=0 and then obtain

1
6. 9 M2 Omt2) 0 Sotzmly(at) e
m . I m=
=r™sin (m+D 6 {—S at lly(at) 1® dt)
0
+r- sinf - y(0,a)y’ (0, a),
. 1 2
6. 9 sin (2m+2) 0 Soly'(at) 1° de

m . 1 m-—
= ™ sin (m+D 6 {— Soat " y(ad) I® dy)
+re sinCm+D 0 - y(0,0)y (0,0).

Taking account of y(0,a)y’ (0,a)<0, we can see that sectorial domains where one of the
relations (6. 3) and (6. 4) does not hold are zero-free domains of y(x, a). For instance,
it is easily seen that the sectorial domains

sin(m+1) 6 sin 6
6. 9 o1 SinGm+6 0 sinGm+00 0 )
and

sin(m+1) 6 sin(@Pm+1) 6
©. 6) 0] GnGm+98 >0 “sin(mr2e>0)

are zero-free domains.

Next we shall investigate the location of zero on a ray: arg x=¢.
Let us put

6.7 x=pe'
where ¢ is constant. Then we have



AN EXTENSION OF WEBER'S EQUATION 79

3 0 5 A “ o 2

(. ) 2i¢ g ..m+ —m ! 2 _ dy _ S ﬂ 2

e g(x ax )|yl dp y%[} ,|do dp.

: i, cjy(pew @) :

Putting y(pe " a)- T =0, we have from imaginary parts of (6. 8 that
(6. 9 S‘O {o o sin2(m+1) ¢ +apm715in(m+1)d)} [y \Edﬁ =0.
Therefore, if 4
(6.10) sin(m=+1) ¢ - {2pm+1 cos(m+1) ¢ +a}

does not change sign sign on the ray arg x= ¢, the product, v- % has no zero on the

ray. Furthermore, if (6.10) does not change sign for p,p<p., there is at most one
zero on this ray segment. As an example, we illustrate these results for the case in

which m=2. See fig. 1.

Stokes line

fig. 1
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