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Abstract. We show that any symmetric differential polynomial can be
written as a ratio of differential polynomials in the elementary symmetric
polynomials. An application to the twisted cohomology theory is presented.

1 Main theorem

It is well known that any symmetric polynomial in indeterminates x1, x2, . . . , xn

can be written as a polynomial in the elementary symmetric polynomials in the
indeterminates. In this paper, we shall show a similar assertion for symmetric
differential polynomials.

We fix a positive integer n greater than 1. Let (K, ∂) be an ordinary differential
field of characteristic 0, and x1, x2, . . . , xn be differential indeterminates. For 1 ≤
j ≤ n, we denote by sj the elementary symmetric polynomial in x1, x2, . . . , xn of
degree j:

sj =
∑

1≤i1<i2<···<ij≤n

xi1xi2 · · ·xij .

We regard sj as a polynomial in the differential indeterminates. The symmetric
group Sn acts on the set K{x1, x2, . . . , xn} of differential polynomials by

fσ(x1, . . . , xn, ∂x1, . . . , ∂xn, . . . , ∂
kx1, . . . , ∂

kxn, . . . )

= f(xσ(1), . . . , xσ(n), ∂xσ(1), . . . , ∂xσ(n), . . . , ∂
kxσ(1), . . . , ∂

kxσ(n), . . . )

for f ∈ K{x1, . . . , xn} and σ ∈ Sn. A differential polynomial is called symmetric if
it is invariant under the action of Sn. We denote the set of symmetric differential
polynomials in K{x1, . . . , xn} by K{x1, . . . , xn}Sn .

Our main theorem is the following.

Theorem 1. We have

K{x1, . . . , xn}Sn ⊂ K⟨s1, . . . , sn⟩,
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where K⟨s1, . . . , sn⟩ denotes the quotient field of K{s1, . . . , sn}.

Proof. We prove the assertion by induction on the number of differential inde-
terminates. We assume that the assertion holds when the number of differential
indeterminates is n− 1. We set

X = {x1, x2, . . . , xn},

and
Xi = X \ {xi}

for 1 ≤ i ≤ n. We denote by sn,j the elementary symmetric polynomial of degree

j in n indeterminates in X, and by s
(i)
n−1,j the elementary symmetric polynomial

of degree j in n− 1 indeterminates in Xi. We set

sn,0 = s
(i)
n−1,0 = 1.

Take any i ∈ {1, 2, . . . , n}. Since the subgroup Sn−1 ⊂ Sn acts on K{Xi}, we
have the inclusion

K{X}Sn ⊂ K{Xi}Sn−1{xi}.
Then by the assumption, we get

K{X}Sn ⊂ K{Xi}Sn−1{xi} ⊂ K⟨s(i)n−1,1, . . . , s
(i)
n−1,n−1⟩{xi}.

From the identities

sn,p = xis
(i)
n−1,p−1 + s

(i)
n−1,p (1 ≤ p ≤ n− 1),

we obtain

s
(i)
n−1,p =

p∑
q=0

(−xi)
qsn,p−q (1.1)

for 1 ≤ p ≤ n− 1. Hence we have the inclusion

K{X}Sn ⊂ K⟨sn,1, . . . , sn,n−1⟩{xi}. (1.2)

By using (1.1), we get

sn,n = xis
(i)
n−1,n−1

= xi

n−1∑
q=0

(−xi)
qsn,n−1−q

= −
n−1∑
q=0

(−xi)
q+1sn,n−1−q.

Applying ∂l for l = 1, 2, . . . , one gets

∂lsn,n = ∂lxi

n−1∑
q=0

(q + 1)(−xi)
qsn,n−1−q +Rl,
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where
Rl ∈ K{sn,1, . . . , sn,n−1}[xi, ∂xi, . . . , ∂

l−1xi].

Then we have

∂lxi =
∂lsn,n −Rl∑n−1

q=0 (q + 1)(−xi)qsn,n−1−q

. (1.3)

Take any f ∈ K{X}Sn . We regard f as an element in K⟨sn,1, . . . , sn,n−1⟩{xi}
via the inclusion (1.2). Let k be the maximal integer such that ∂f/∂(∂kxi) ̸= 0.
We replace ∂kxi in f by the right hand side of (1.3) for l = k, so that we have

f ∈ K⟨sn,1, . . . , sn,n⟩(xi, ∂xi, . . . , ∂
k−1xi).

In a similar way, by applying (1.3) repeatedly, we come to the expression

f =
u(xi)

v(xi)

with
u(T ), v(T ) ∈ K⟨sn,1, . . . , sn,n⟩[T ].

Since f is symmetric, it can be expressed as

f =
1

n

n∑
i=1

u(xi)

v(xi)
.

If we reduce the right hand side into the form U/V , we see

U, V ∈ K{sn,1, . . . , sn,n}[X]Sn .

Evidently we have K{sn,1, . . . , sn,n}[X]Sn = K{sn,1, . . . , sn,n}, which completes
the proof. □

Note that the above proof gives an effective algorithm to express a symmetric
differential polynomial as a differential polynomial in s1, s2, . . . , sn. For example,
by applying the process in the proof, we get

x′
1x

′
2 =

s1s
′
1s

′
2 − s′1

2
s2 − s′2

2

s12 − 4s2
,

where we denote ∂(a) = a′.

Corollary 2. We have

K⟨x1, x2, . . . , xn⟩Sn = K⟨s1, s2, . . . , sn⟩.

Proof. Clearly we have K⟨x1, x2, . . . , xn⟩Sn ⊃ K⟨s1, s2, . . . , sn⟩.
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Take any f = u/v ∈ K⟨x1, x2, . . . , xn⟩Sn with u, v ∈ K{x1, . . . , xn}. If u ∈
K{x1, . . . , xn}Sn , we have v ∈ K{x1, . . . , xn}Sn , which shows f ∈ K⟨s1, s2, . . . ,
sn⟩ by Theorem 1. If u ̸∈ K{x1, . . . , xn}Sn , we rewrite f as

f =
u
∏

σ∈Sn\{1} u
σ

v
∏

σ∈Sn\{1} u
σ
.

Then the numerator of the right hand side is in K{x1, . . . , xn}Sn , and hence it is
reduced to the first case. □

Historical Remark. After obtaining our results, we noticed some results con-
cerning a similar problem from another viewpoint. Consider a linear ordinary
differential equation

dnx

dtn
+ a1(t)

dn−1x

dtn−1
+ · · ·+ an(t)x = 0, (1.4)

where a1(t), . . . , an(t) are elements of a differential field K. Let (x1, x2, . . . , xn) be
a fundamental system of solutions of (1.4). We define the action of GL(n,CK) by

(x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn)g, g ∈ GL(n,CK),

where CK is the field of constants of K. Appell [1] showed that, if a polynomial
in x1, . . . , xn and their derivatives is invariant under the action of GL(n,CK) up
to scalar multiplication, the polynomial is a polynomial in a1(t), . . . , an(t), their
derivatives and the inverse of the Wronskian W (a1, . . . , an)(t). The same assertion
was shown in purely algebraic way by Kung and Rota [4], who noted that the
coefficients a1(t), . . . , an(t) can be written as ratios of determinants of matrices
with entries in x1, . . . , xn and their derivatives. They call the determinants the
generalized Wronskians. Then it may be natural to thinks of Schur functions
which are defined by using determinants and appear in the invariant theory. In
this direction, Kung [3] defined differential Schur functions, and showed several
fundamental properties. In particular, differential Schur functions are invariants
of GL(n,CK) action. Thus, these results are concerned with the invariant theory
for the action of the general linear group, while our results are concerned with the
invariant theory for the action of the symmetric group.

Since the symmetric group Sn can be regarded as a subgroup of GL(n,CK),
differential Schur functions are symmetric in our sense. Then, thanks to Corollary
2, we see that differential Schur functions can be written as ratios of differential
polynomials of elementary symmetric functions.

2 Application

Our result can be applied to explicit calculations of twisted de Rham cohomologies.
As an example, we derive the Picard-Fuchs equations satisfied by periods of elliptic
curves. We consider an elliptic curve

y2 = x3 − s1x
2 + s2x− s3, (2.1)
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where s1, s2, s3 are functions in some variable t. The periods of (2.1) are given by
the integral

u(t) =

∫
∆

dx√
x3 − s1x2 + s2x− s3

, (2.2)

where ∆ is a path which connects two of the zeros of the right hand side of (2.1).

Theorem 3. Let (2.1) be an elliptic curve with holomorphic functions s1, s2, s3
in t as coefficients. Then the Picard-Fuchs equation satisfied by the periods u(t)
in (2.2) is given by

d2u

dt2
+ p(t)

du

dt
+ q(t)u = 0,

where

p(t) = − 2(s2
2 − 3s1s3)s

′′
1 − (s1s2 − 9s3)s

′′
2 + 2(s1

2 − 3s2)s
′′
3

(2(s22 − 3s1s3)s′1 − (s1s2 − 9s3)s′2 + 2(s12 − 3s2)s′3)

−
(
2(2s1s2

4 − 15s1
2s2

2s3 + 6s2
3s3 + 24s1

3s3
2 − 81s3

3)(s′1)
2

− (s1
3s2

2 − 8s1s2
3 + 4s1

4s3 − 18s1
2s2s3 + 108s2

2s3 − 135s1s3
2)(s′2)

2

− 4(s1
2 − 3s2)(2s1

3 − 9s1s2 + 27s3)(s
′
3)

2

− (s1
2s2

3 + 12s2
4 − 12s1

3s2s3 − 54s1s2
2s3 + 216s1

2s3
2 − 243s2s3

2)s′1s
′
2

− 2(s1
3s2

2 − 8s1s2
3 + 4s1

4s3 − 18s1
2s2s3 + 108s2

2s3 − 135s1s3
2)s′1s

′
3

+ (8s1
4s2 − 57s1

2s2
2 + 84s2

3 + 12s1
3s3 + 54s1s2s3 − 405s3

2)s′2s
′
3

)
/
(
(s1

2s2
2 − 4s2

3 − 4s1
3s3 + 18s1s2s3 − 27s3

2)

× (2(s2
2 − 3s1s3)s

′
1 − (s1s2 − 9s3)s

′
2 + 2(s1

2 − 3s2)s
′
3)
)
,

q(t) = − (s2s
′
2 − 2s1s

′
3)s

′′
1 − (s2s

′
1 − 3s′3)s

′′
2 + (2s1s

′
1 − 3s′2)s

′′
3

2(2(s22 − 3s1s3)s′1 − (s1s2 − 9s3)s′2 + 2(s12 − 3s2)s′3)

+
(
−2(s2

4 − 9s1s2
2s3 + 12s1

2s3
2 + 18s2s3

2)(s′1)
3

− 3(s1s2
2 + 4s1

2s3 − 21s2s3)(s
′
2)

3 + 30(s1
2 − 3s2)(s

′
3)

2

− (s1s2 − 9s3)(s2
2 + 12s1s3)(s

′
1)

2s′2

+ 2(5s1
2s2

2 − 7s2
3 − 4s1

3s3 − 18s1s2s3 + 54s3
2)(s′1)

2s′3

+ 2(s1
2s2

2 + s2
3 + 4s1

3s3 − 18s1s2s3 − 54s3
2)(s′2)

2s′1

+ 6(4s1
2s2 − 9s2

2 − 9s1s3)(s
′
2)

2s′3

+ 2(8s1
4 − 36s1

2s2 + 45s2
2 − 27s1s3)(s

′
3)

2s′1

− 3(8s1
3 − 21s1s2 − 27s3)(s

′
3)

2s2

− 2(8s1
3s2 − 15s1s2

2 − 36s1
2s3 + 27s2s3)s

′
1s

′
2s

′
3

)
/
(
4(s1

2s2
2 − 4s2

3 − 4s1
3s3 + 18s1s2s3 − 27s3

2)

× (2(s2
2 − 3s1s3)s

′
1 − (s1s2 − 9s3)s

′
2 + 2(s1

2 − 3s2)s
′
3)
)
.
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Proof. Let f(x) denote the right hand side of (2.1). We factorize f(x) as

f(x) = (x− e1)(x− e2)(x− e3),

and then have
e1 + e2 + e3 = s1,

e1e2 + e2e3 + e3e1 = s2,

e1e2e3 = s3.

We regard e1, e2, e3 as elements in a differential field extension of (Q(s1, s2, s3),
d/dt). Let D be a divisor defined by f(x). We set

U(x) = (x− e1)
1
2 (x− e2)

− 1
2 (x− e3)

− 1
2 ,

ω =
dU

U
,

∇ω = d+ ω ∧ .

We can take

φ1 =
dx

x− e1
, φ2 =

dx

x− e2

as a basis of the twisted cohomology group H1(Ω•(∗D),∇ω). By using the basis,
we define

ui(t) =

∫
∆

Uφi (i = 1, 2),

so that we have u(t) = u1(t).
In the following we sometimes use ′ for d/dt. We have

du1

dt
=

∫
∆

U

(
1

2

e′1
(x− e1)2

+
1

2

e′2
(x− e2)(x− e1)

+
1

2

e′3
(x− e3)(x− e1)

)
dx,

du2

dt
=

∫
∆

U

(
−1

2

e′1
(x− e1)(x− e2)

+
3

2

e′2
(x− e2)2

+
1

2

e′3
(x− e3)(x− e2)

)
dx.

Then, by expressing the twisted 1-forms in the above integrand as linear combi-
nations of the basis φ1, φ2, we obtain the system of differential equations

d

dt

(
u1

u2

)
=

(
a b
c d

)(
u1

u2

)
, (2.3)

where

a = −1

2

e′2 − e′1
e2 − e1

, b =
1

2

(
e′2 − e′1
e2 − e1

− e′3 − e′1
e3 − e1

)
,

c =
1

2

(
−e′1 − e′2
e1 − e2

+
e′3 − e′2
e3 − e2

)
, d =

1

2

e′1 − e′2
e1 − e2

− e′3 − e′2
e3 − e2

.
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The Picard-Fuchs equation for the integral (2.2) is now derived from the system
(2.3) as a single differential equation satisfied by u1. Thus we obtain

d2u

dt2
+ p

du

dt
+ qu = 0, (2.4)

where

p = −
(
a+ d+

b′

b

)
, q = −a′ +

ab′

b
+ ad− bc.

Since u(t) = u1(t) is symmetric in e1, e2, e3, we know a priori that p, q are ratios
of symmetric differential polynomials in e1, e2, e2. In fact, we see that p and q are
rational functions in e1, e2, e3, e

′
1, e

′
2, e

′
3, e

′′
1 , e

′′
2 , e

′′
3 which are invariant under the

action of the symmetric group S3.
By using the result in the previous section, we have

e′1 =
e1

2s′1 − e1s
′
2 + s′3

3e12 − 2e1s1 + s2
,

e′2 =
e2

2s′1 − e2s
′
2 + s′3

3e22 − 2e2s1 + s2
,

e′3 =
e3

2s′1 − e3s
′
2 + s′3

3e32 − 2e3s1 + s2
,

and

e′′1 =
e1

2s′′1 − e1s
′′
2 + s′′3 + 4e1e

′
1s

′
1 − 2e′1s

′
2 + 2(e′1)

2s1 − 6e1(e
′
1)

2

3e12 − 2e1s1 + s2
,

e′′2 =
e2

2s′′1 − e2s
′′
2 + s′′3 + 4e2e

′
2s

′
1 − 2e′2s

′
2 + 2(e′2)

2s1 − 6e2(e
′
2)

2

3e22 − 2e2s1 + s2
,

e′′3 =
e3

2s′′1 − e3s
′′
2 + s′′3 + 4e3e

′
3s

′
1 − 2e′3s

′
2 + 2(e′3)

2s1 − 6e3(e
′
3)

2

3e32 − 2e3s1 + s2
.

Put these expressions into p and q. Then we have rational functions symmetric in
e1, e2, e3 with coefficients in Q{s1, s2, s3}. Then they can be written as elements in
Q⟨s1, s2, s3⟩. The explicit forms of p, q in the theorem can be easily obtained from
the above process by the help of Symmetric Reduction Algorithm of any symbolic
computing systems. □

Theorem 3 gives one way to get the Picard-Fuchs equation, where we need only
a formal computation. There is no need to study the behavior of the integral (2.2).
We note that one factor in the denominator of p and q is just the discriminant of
f(x). Namely we have

s1
2s2

2 − 4s2
3 − 4s1

3s3 + 18s1s2s3 − 27s3
2 = (e1 − e2)

2(e1 − e3)
2(e2 − e3)

2.

The other factor comes from b, whose zeros may give apparent singular points for
the Picard-Fuchs equation.

Beukers [2] showed the irrationality of ζ(2) by using the integral (2.2) with

s1 = − t2 + 6t+ 1

4
, s2 =

t(t+ 1)

2
, s3 = − t2

4
(2.5)
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(without using the expression ζ(2) = π2/6, of course). In this case, the Picard-
Fuchs equation for the integral has one accessory parameter. Beukers determined
the special value of the accessory parameter by calculating a Taylor expansion of
the integral. We can apply Theorem 3 directly to this case. Namely we put (2.5)
into p(t) and q(t) in Theorem 3, and get the Picard-Fuchs equation

t(t2 + 11t− 1)
d2u

dt2
+ (3t2 + 22t− 1)

du

dt
+ (t+ 3)u = 0.
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