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Abstract. We show that any toric Fano manifold of dimension at most
eight with the positive second Chern character is isomorphic to the projective
space by using polymake.
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1 Introduction

Smooth Fano varieties are very important objects in algebraic geometry, though
the definition is very simple, that is, a smooth projective variety with ample anti-
canonical divisor. By Nakai-Moishezon criterion, this condition implies that the
intersection ch1(X) ·C is positive for any curve C on X, where ch1(X) is the first
Chern character of X. Replacing the first Chern character (resp. a curve C) by
the second Chern character (resp. a surface S), the following notion is introduced.
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Definition 1.1. A smooth projective variety X over an algebraically closed field
k = k is said to be ch2-positive (resp. ch2-nef) if

ch2(X) · S > 0 (resp. ch2(X) · S ≥ 0)

for any subsurface S ⊂ X, where ch2(X) = 1
2 (c

2
1 − 2c2) is the second Chern

character of X.

ch2-nef Fano manifolds are first studied by de Jong and Starr [5] in connection
with the existence of rational surfaces on Fano manifolds. However, only few
examples of ch2-positive manifolds are known. For instance, the known examples
of ch2-positive smooth projective toric varieties (not necessarily Fano) are only
projective spaces (see [15] and [17]) at the moment. In this paper, we restrict X
to be a toric Fano manifold. Nobili [9] and the second author [14] proved that
any ch2-positive smooth toric Fano 4-fold is isomorphic to P4. The main result of
this paper is to classify ch2-positive smooth toric Fano d-folds for 5 ≤ d ≤ 8. The
result is similar as the known results.

Theorem 1.2. Let X be a smooth toric Fano d-fold. If X is ch2-positive and
d ≤ 8, then X is isomorphic to the d-dimensional projective space Pd.

Our classification is owed to the database of smooth reflexive polytopes given by
Øbro [10] and Paffenholz [12], and the software called polymake [1] for computa-
tions relevant to polytopes.

This paper is organized as follows: In Section 2, we recall the formula to
compute the intersection number of ch2(X) and a torus-invariant subsurface S
on X whose Picard number is equal to two. This formula is implemented as a
script in polymake in Section 4. Section 3 is devoted to the calculations of the
intersection numbers on so-called pseudo-symmetric toric Fano varieties Ṽ d and
V d. One of them is the exceptional case we cannot apply the script to. In Section
4, we conclude the main result of this paper with the script.

Acknowledgments. The first author was partly supported by JSPS KAKENHI
Grant Number JP17K05233. The second author was partly supported by JSPS
KAKENHI Grant Number JP18K03262. The third author was partly supported
by JSPS KAKENHI Grant Number JP18J00022.

2 The intersection ch2(X) · S for a subsurface S of
Picard number two

First, we collect some basic facts of toric geometry which we need. For details, see
[3], [6], [7], [8], [11] and [13].

Let X = XΣ be the smooth projective toric d-fold over an algebraically closed
field k = k associated to a fan Σ in N := Zd. For {v1, . . . , vl} ⊂ N , ⟨v1, . . . , vl⟩
stands for the cone in NR := N ⊗ R generated by v1, . . . , vl. Let G(Σ) be the set
of primitive generators of one-dimensional cones in Σ. It is well-known that

ch2(X) =
1

2

∑
x∈G(Σ)

D2
x,
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where Dx is the torus-invariant prime divisor corresponding to x ∈ G(Σ).
For a smooth projective toric varietyX and a torus-invariant subsurface S ⊂ X

of Picard number one, it is well-known that the inequality ch2(X) · S > 0 always
holds. On the other hand, the intersection number of ch2(X) and any torus-
invariant subsurface of Picard number two can be easily calculated as follows:
Let X = XΣ be a smooth projective toric d-fold, and S ⊂ X a torus-invariant
subsurface of Picard number two. Let τ ∈ Σ be the (d − 2)-dimensional cone
associated to S and τ ∩G(Σ) = {x1, . . . , xd−2}. There exist exactly four maximal
cones

τ + ⟨y1, y3⟩, τ + ⟨y2, y3⟩, τ + ⟨y1, y4⟩ and τ + ⟨y2, y4⟩
in Σ, where {y1, y2, y3, y4} ⊂ G(Σ). Let

y1 + y2 + c3y3 + a1x1 + · · ·+ ad−2xd−2 = 0 and

y3 + y4 + c1y1 + e1x1 + · · ·+ ed−2xd−2 = 0

be the wall relations corresponding to (d−1)-dimensional cones τ+⟨y3⟩ and τ+⟨y1⟩,
respectively, where a1, . . . , ad−2, c1, c3, e1, . . . , ed−2 ∈ Z. Then the following holds:

Proposition 2.1 ([16, Proposition 3.6]).

2ch2(X) · S = −c1
(
2 + c23 + a21 + · · ·+ a2d−2

)
+2 (c1 + c3 + a1e1 + · · ·+ ad−2ed−2)− c3

(
2 + c21 + e21 + · · ·+ e2d−2

)
.

This formula is implemented as a script explained in Section 4.

3 Pseudo-symmetric toric Fano manifolds

In this section, we show the non-positivity of ch2(Ṽ
d) and ch2(V

d), where Ṽ d and
V d are so-called pseudo-symmetric toric Fano varieties studied in [4] and [18]. This
result complements our script in Section 4.

For d = 2n ∈ 2N, we define the d-dimensional smooth toric Fano varieties Ṽ d

and V d as follows (for the precise description of these varieties, please see [2]): Let
{e1, . . . , e2n} ⊂ NR be the standard basis, and put

x1 := e1, . . . , x2n := e2n, x2n+1 := −(e1 + · · ·+ e2n),

y1 := −e1, . . . , y2n := −e2n, y2n+1 := e1 + · · ·+ e2n.

Then Ṽ d is the smooth toric Fano d-fold XΣ̃ such that

G(Σ̃) = {x1, . . . , x2n+1, y1, . . . , y2n},

while V d is the smooth toric Fano d-fold XΣ such that

G(Σ) = {x1, . . . , x2n+1, y1, . . . , y2n+1}.

Ṽ 2 and V 2 are isomorphic to the del Pezzo surfaces of degree 7 and 6, respec-
tively, which are not ch2-positive. Hence we may assume d ≥ 4.
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Theorem 3.1. Ṽ d and V d are not ch2-positive for any d = 2n ∈ 2N.

Proof. For Ṽ d, the Picard number of the torus-invariant surface Sτ associated
to the (d− 2)-dimensional cone

τ := ⟨x1, . . . , xd−2⟩ ∈ Σ̃

is two, because there exist exactly four maximal cones

τ + ⟨xd−1, xd⟩, τ + ⟨xd−1, yd⟩, τ + ⟨yd−1, xd⟩ and τ + ⟨yd−1, yd⟩

which contain τ as a face. The relations

xd−1 + yd−1 = 0 and xd + yd = 0

tell us that Sτ
∼= P1 × P1, and ch2(Ṽ

d) · Sτ = 0 by Proposition 2.1. Therefore, Ṽ d

is not ch2-positive.

For V d, there are no torus-invariant subsurfaces of Picard number two in V d.
So, we cannot apply Proposition 2.1. In this case, we can show the non-positivity
of ch2(V

d) by using the typical method of the calculation of intersection numbers:
It is well-known that the maximal cones of Σ are

⟨xi1 , . . . , xin , yj1 , . . . , yjn⟩,

where 1 ≤ i1 < · · · < in ≤ 2n + 1, 1 ≤ j1 < · · · < jn ≤ 2n + 1 and {i1, . . . , in} ∩
{j1, . . . , jn} = ∅. Let Sτ ⊂ V d be the torus-invariant subsurface associated to the
(2n− 2)-dimensional cone

τ := ⟨x1, . . . , xn−1, yn, . . . , y2n−2⟩.

There exist exactly six maximal cones

τ + ⟨x2n−1, y2n⟩, τ + ⟨x2n−1, y2n+1⟩, τ + ⟨y2n−1, x2n⟩, τ + ⟨y2n−1, x2n+1⟩,

τ + ⟨x2n, y2n+1⟩ and τ + ⟨y2n, x2n+1⟩

which contain τ . Namely, Sτ is isomorphic to the del Pezzo surface S6 of degree
6. For 1 ≤ i ≤ 2n + 1, let Di and Ei be the torus-invariant prime divisors
corresponding to xi and yi, respectively. Then, we have relations

Di − Ei −D2n+1 + E2n+1 = 0 (1 ≤ i ≤ 2n)

in Pic(V d). Obviously,

E2
1 · Sτ = · · · = E2

n−1 · Sτ = D2
n · Sτ = · · · = D2

2n−2 · Sτ = 0 and

D2
2n−1 · Sτ = D2

2n · Sτ = D2
2n+1 · Sτ = E2

2n−1 · Sτ = E2
2n · Sτ = E2

2n+1 · Sτ = −1.

On the other hand,

D2
1 · Sτ = (E1 +D2n+1 − E2n+1) · (E1 +D2n+1 − E2n+1) · Sτ
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= (E2
1 +D2

2n+1 + E2
2n+1 + 2E1D2n+1 − 2D2n+1E2n+1 − 2E1E2n+1) · Sτ

= 0 + (−1) + (−1) + 2− 2− 2× 0 = −2.

By symmetry, we have

D2
i · Sτ = −2 for 1 ≤ i ≤ n− 1, while E2

j · Sτ = −2 for n ≤ j ≤ 2n− 2.

Therefore, since

2ch2(V
d) · Sτ = −6 + (2n− 2)× (−2) < 0,

V d is not ch2-positive.

4 Main results

In this section, we give a proof of Theorem 1.2. Our proof consists of three
ingredients; the database of smooth reflexive polytopes, a script to compute the
intersection ch2(X) · S for a subsurface S with Picard number two, and Theorem
3.1.

4.1 The database of smooth reflexive polytopes

Our classification is owed to the database of smooth reflexive lattice polytopes.
Øbro [10] provided an algorithm to determine all smooth toric Fano d-folds for any
d ∈ N. By using his algorithm, Øbro classified all smooth toric Fano d-folds for
d ≤ 8. As for d = 9, the classification was done by an improved implementation
of the algorithm by B. Lorentz and A. Paffenholz [12]. As a result, the numbers
of the isomorphism classes of smooth toric Fano d-folds for d ≤ 9 are given as
follows.

d 1 2 3 4 5 6 7 8 9

# of toric Fano d-folds 1 5 18 124 866 7622 72256 749892 8229721

The data of smooth toric Fano varieties for dimensions 3 to 9 is given in polymake

format on the web:

https://polymake.org/polytopes/paffenholz/www/fano.html

We use the files named fano-vkd.tgz (3 ≤ k ≤ 6), fano-v7d-ℓ.tgz (0 ≤ ℓ ≤ 7)
and fano-v8d-ℓ.tgz (0 ≤ ℓ ≤ 74) on the above webpage.

4.2 Implementation

We implement Proposition 2.1 as follows.

1. Obtain a list of all primitive generators of the fan Σ of each smooth toric
Fano d-fold from the files of the database.
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2. Obtain a list of primitive generators consisting of each (d − 2)-dimensional
cone τ in Σ, then enumerate maximal cones containing τ .

3. If the number of maximal cones containing τ is equal to four, then take one
of them as σ1. In addition, obtain the generators of τ as x1, . . . , xd−2, and
the generators of σ1 except x1, . . . , xd−2 as y1, y3.

4. Obtain a maximal cone σ2 such that σ2 contains the (d−1)-dimensional cone
τ + ⟨y3⟩ but does not contain y1 as a generator. Then, we get the generator
of σ2 except {x1, . . . , xd−2, y3} as y2.

5. Obtain a maximal cone σ3 such that σ3 contains the (d−1)-dimensional cone
τ + ⟨y1⟩ but does not contain y3 as a generator. Then, we get the generator
of σ3 except {x1, . . . , xd−2, y1} as y4.

6. Compute the coefficients a1, . . . , ad−2, c1, c3, e1, . . . , ed−2 in the wall relations.
Then, compute the intersection ch2(X) · S where S is the subsurface corre-
sponding to the cone τ by substituting a1, . . . , ad−2, c1, c3, e1, . . . , ed−2 into
the formula in Proposition 2.1.

Let us see the above implementation in each step. One may consult the website
(https://polymake.org/doku.php) for the installation of Polymake. Download
the files named fano-v*d.tgz of the database of smooth reflexive polytopes from
the website as noted before, then put them on any directory. Our script is written
in Perl which is an interface language of Polymake.

Step (1) We use the application fan to compute calculations on a fan. The
function unpack tarball in the script tarball restores the files fano-v*d.tgz.
We substitute it into the array @a. We extract a data of a smooth reflexive polytope
from @a and substitute it into @Q. The function polarize induces the polar dual
polytope $P to $Q. The function face fan converts the polytope $P into the data
of the fan (named $fan). We extract the set of generators of $fan by the function
RAYS as an array $rays.

Step (2) The function MAXIMAL CONES is applied to $rays and returns the family
of the labelled set of indices of generators in $rays generating a maximal cone.
The function N MAXIMAL CONES returns the number of maximal cones in $fan. The
function CONES->[k] returns the family of the labelled set of indices of generators
in $rays generating a (k+1)-cone. The function incl is to analyze the inclusion
relation of given two sets. The value incl (A,B) is equal to one if A contains
B. Hence, the value $link is equal to the number of maximal cones containing
a ($d−2)-cone $fan->CONES->[$d-3]->row($c0) where $c0 is a loop counter to
indicate a ($d−2)-cone in $fan->CONES->[$d-3].

Step (3) If $link is equal to four at $c0, the corresponding subsurface S has
the Picard number two. Then, we substitute their generators into an array @X.
Here an element in @X denotes the vectors xi as in Proposition 2.1. In addi-
tion, since generators in $rays are not necessarily primitive, we need to con-
vert them to be primitive by the function primitive. By using incl as in
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Step (2), we obtain a maximal cone $fan->MAXIMAL CONES->[$c1] containing
$fan->CONES->[$d-3]->row($c0). Taking the difference between $fan->MAXIMAL
CONES->[$c1] and $fan->CONES->[$d-3]->row($c0), we obtain the set $u of the
indices of the generator rays corresponding to y1, y3. Then, we obtain the vectors
$Y[0], $Y[1] corresponding to y1, y3 and their indices $y1, $y3.

Step (4) and (5) Taking the set of generators of τ+⟨y3⟩ by $fan->CONES->[$d-3]
->row($c0) +$y3, we repeat a similar procedure as Step (3).

Step (6) First, we compute the coefficients c3, a1, . . . , ad−2 in the former of the two
wall relations in Proposition 2.1. Substituting $Y[0], $Y[1] and @X into an array
@M, we convert @M into a d× d-matrix $mat. Then, we compute the coefficients as
$coef1 by using the function cramer (A,b) which gives the solution of the system
Ax = b by Cramer’s rule. Remark that $coef1->[0] is always equal to one, which
corresponds to the coefficient of y1 in the former of the two wall relations. Moreover
$coef1->[1] corresponds to c3, and $coef1->[k] (2 ≤k≤$d-1) corresponds to
ak−1 respectively. Similarly, we obtain the coefficients c1, e1, . . . , ed−2 in the latter
of the two wall relations in Proposition 2.1 as $coef2. Substituting $coef1 and
$coef2 into the formula in Proposition 2.1, we obtain the intersection 2ch2(X) ·S
as $intersection.

See a practical script to determine whether X is ch2-positive or not in the last
of this section.

4.3 Results and conjectures

By using our script, we find the following results.

Proposition 4.1. For any smooth toric Fano d-fold X of d = 5, 7 and ρ(X) ≥ 2,
there exists a torus-invariant surface S ⊂ X such that ρ(S) = 2 and ch2(X)·S ≤ 0.
In particular, X is not ch2-positive.

As for d = 4, 6, 8, there exist the exceptional cases we cannot apply our script
to.

Proposition 4.2. For any smooth toric Fano d-fold X of d = 4, 6, 8 and ρ(X) ≥ 2
except for V d, there exists a torus-invariant surface S ⊂ X such that ρ(S) = 2
and ch2(X) · S ≤ 0.

Combining this proposition with Theorem 3.1, it is proved that any smooth
toric Fano d-fold X of d = 4, 6, 8 and ρ(X) ≥ 2 is not ch2-positive. With Propo-
sition 4.1, Proposition 4.2 and the known results for d = 1, 2, 3, we can conclude
Theorem 1.2.

The lists of our main results are available on the web:

https://sites.google.com/a/fukuoka-u.ac.jp/satoric/toricfano_ch2

In the lists, we explicitly describe a surface S ⊂ X such that ch2(X) · S ≤ 0 for
any smooth toric Fano d-fold X of 5 ≤ d ≤ 7 except for P5, P6, V 6 and P7.

Thus, we end this subsection by proposing the following two conjectures:
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Conjecture 4.3. Let X be a smooth toric Fano d-fold. If X is ch2-positive, then
X is isomorphic to the d-dimensional projective space Pd.

Conjecture 4.4. Let X be a smooth toric Fano d-fold. If X is isomorphic to
neither Pd nor V d, then there exists a torus invariant subsurface S ⊂ X of Picard
number two such that ch2(X) · S ≤ 0.

Remark 4.5. Obviously, Conjecture 4.4 implies Conjecture 4.3 by Theorem 3.1.

4.4 Script

In this subsection, we build the scripts explained in Subsection 4.2 into a practical
script to determine whether X is ch2-positive or not. The following script returns
a message “not ch 2-positive” if X admits a surface S ⊂ X such that ρ(S) = 2
and ch2(X) · S ≤ 0.

use warnings;

use utf8;

use application "fan";

binmode STDIN , ’:encoding(cp932)’;

binmode STDOUT , ’:encoding(cp932)’;

binmode STDERR , ’:encoding(cp932)’;

&ch2positive ("fano -v*d.tgz "); #enter the full path of the file.

sub ch2positive {

script (" tarballs ");

my @a=unpack_tarball($_[0]);

my $d=*; #input the dimension of manifolds

my $c0=0; #loop counter

my $c1=0; #loop counter

my $poly_c =0; #loop counter for polytopes

my $link =0; #number of maximal cones

containing a cone of codimension two

my @X = cols(zero_matrix($d -2, $d)); #array for the vectors x_i

my @Y = cols(zero_matrix (4, $d)); #array for the vector y_i

my $y1; #index of vector y_1 in $v1

my $y2; #index of vector y_2 in $v1

my $y3; #index of vector y_3 in $v1

my $y4; #index of vector y_4 in $v1

my $coef1; #coefficients in the first wall relation

my $coef2; #coefficients in the second wall relation

my $square1 =0;

#square sum of x_i in the first wall relation

my $square2 =0;

#square sum of the coefficients in the second wall relation

my $cross =0; #inner product of $coef1 and $coef2

my $intersection =0; #intersection number of ch_2(X) and S

my $pc0 =0; #counter for the number of surfaces

with non -positive intersection number

my $v0; #vector whose elements are indices of 1-cones

my $v1; #vector whose elements are indices of 1-cones

my $u0; #set of indices of 1-cones

my $set; #set of indices of 1-cones
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my @M = cols(zero_matrix($d,$d)); #matrix consisting of @X and @Y

#Step (1)

while($poly_c < $#a+1){

print $_[0];

print "_";

print $poly_c;

print "\n";

my $Q = $a[$poly_c ];

my $P = polarize($Q);

my $fan = face_fan($P);

my $rays = $fan ->RAYS;

my $max_cones = $fan ->MAXIMAL_CONES;

my $N_max_cones = $fan ->N_MAXIMAL_CONES;

#Step (2)

$c0=0;

$pc0 =0;

while ($c0 < $fan ->F_VECTOR ->[$d -3]){

$c1=0;

$link =0;

my $ind_surface = $fan ->CONES ->[$d -3]->row($c0);

while ($c1 < $N_max_cones ){

if (incl($max_cones ->[$c1], $ind_surface )==1){

$link ++;

}

$c1++;

}

if ($link ==4){

$square1 =0;

$square2 =0;

$cross =0;

$c1=0;

$v0 = new Vector <Int >( $ind_surface );

while ($c1 <$d -2){

$X[$c1]= new Vector (primitive($rays ->[$v0 ->[$c1 ]]));

$c1++;

}

#Step (3)

$c1=0;

while ($c1 <$N_max_cones ){

if (incl($max_cones ->[$c1], $ind_surface )==1){

$u0 = $max_cones ->[$c1] - $ind_surface;

$v1 = new Vector <Int >($u0);

$Y[0] = new Vector(primitive($rays ->[$v1 - >[0]]));

$Y[1] = new Vector(primitive($rays ->[$v1 - >[1]]));

$y1 = $v1 - >[0];

$y3 = $v1 - >[1];

$c1=$N_max_cones;

} else{

$c1++;

}
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}

#Step (4)

$c1=0;

$set = $ind_surface +$y3;

while ($c1 <$N_max_cones ){

if (incl($max_cones ->[$c1], $set )==1){

$u0 = $max_cones ->[$c1] - $set;

$v1 = new Vector <Int >($u0);

if ($v1 - >[0]!= $y1){

$Y[2] = new Vector(primitive($rays ->[$v1 - >[0]]));

$y2 = $v1 - >[0];

$c1=$N_max_cones;

} else {

$c1++;

}

} else {

$c1++;

}

}

#Step (5)

$c1=0;

$set = $ind_surface +$y1;

while ($c1 <$N_max_cones ){

if (incl($max_cones ->[$c1], $set )==1){

$u0 = $max_cones ->[$c1] - $set;

$v1 = new Vector <Int >($u0);

if ($v1 - >[0]!= $y3){

$Y[3] = new Vector(primitive($rays ->[$v1 - >[0]]));

$y4 = $v1 - >[0];

$c1=$N_max_cones;

} else {

$c1++;

}

} else {

$c1++;

}

}

#Step (6)

$M[0]=$Y[0];

$M[1]=$Y[1];

$c1=2;

while($c1 <$d){

$M[$c1] = $X[$c1 -2];

$c1++;

}

my $mat= transpose(new Matrix (@M));

$coef1=cramer($mat ,( -1)*$Y [2]);

$M[0]=$Y[1];

$M[1]=$Y[0];

$mat= transpose(new Matrix (@M));

$coef2=cramer($mat ,( -1)*$Y [3]);
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$c1=2;

while ($c1 <$d){

$square1 += ($coef1 ->[$c1 ])*( $coef1 ->[$c1 ]);

$square2 += ($coef2 ->[$c1 ])*( $coef2 ->[$c1 ]);

$cross += ($coef1 ->[$c1 ])*( $coef2 ->[$c1 ]);

$c1++;

}

$intersection =

- $coef2 - >[1]*(2+ $coef1 ->[1]*$coef1 ->[1]+ $square1)

+2*( $coef1 ->[1]+$coef2 ->[1]+ $cross)

-$coef1 - >[1]*(2+ $coef2 ->[1]* $coef2 ->[1]+ $square2 );

if ($intersection <=0){

$pc0 ++;

$c0 = $fan ->F_VECTOR ->[$d -3];

last;

}

}

$c0++;

}

if ($pc0 !=0){

print "not ch_2 -positive ";

print "\n\n";

} else {

print "cannot determine via surfaces of Picard number two";

print "\n\n";

}

$poly_c ++;

}

}

Remark 4.6. The function F VECTOR->[k] returns the number of (k+1)-dimensional
cones in a given fan.
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