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Abstract. The complete list of the connection relations for the Gauss hy-
pergeometric differential equation is given. In generic case, the connection
relation is well known and can be found in many books. In this paper, the
connection relations for non-generic – logarithmic and apparent – cases are
obtained.

1 Introduction

The Gauss hypergeometric differential equation

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0 (1.1)

(a, b, c ∈ C) appears in various fields in mathematics and physics, and plays an
important role in each field. Among numbers of formulas for the Gauss hypergeo-
metric differential equation, the connection relations are of particular importance.
The purpose of this paper is to give the complete list of the connection relations
for all (a, b, c) ∈ C3 without any exception. The connection relation for generic
(a, b, c) can be found in many books on special functions or differential equations
(cf. [1, 2, 3]). Therefore our purpose is to give the connection relations for non-
generic cases.

After the preliminary given in Section 2, we specify local solutions of (1.1) in
Section 3. Using these local solutions, in Section 4 we describe the connection
relations for (1.1) between fundamental systems of solutions at x = 0 and x = 1.
The symmetry of (1.1) with respect to the positions of the singular points (the S4

symmetry) makes it possible to derive the connection relations between x = ∞ and
x = 0 from ones between x = 0 and x = 1. Section 5 is devoted to this derivation.
In the last section, we explain how to derive the monodromy representation for
(1.1) from the connection relations given in Section 4. The connection relation for
the Legendre differential equation is also derived. In the Appendix, we give two
tables of the determinant or the inverse matrix for the coefficient matrix of each
connection relation. These will be useful to derive the inverse relations.
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2 Digamma function, Pochhammer symbol and
notation

In this section, we introduce the digamma function, the Pochhammer symbol and
notation which will be used in describing the connection relations.

The digamma function ψ(x) is defined by

ψ(x) = (log Γ(x))′ =
Γ′(x)

Γ(x)
.

The digamma function is holomorphic on C\Z≤0, meromorphic on C, and has the
partial fractional expansion

ψ(x) = −γ −
∞∑

n=0

(
1

x+ n
− 1

1 + n

)
, (2.1)

where γ is Euler’s constant defined by

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
.

The formula (2.1) is derived from Weierstrass’s formula for the gamma function.
Also from the formulas

Γ(x+ 1) = xΓ(x), Γ(x)Γ(1− x) =
π

sinπx
(2.2)

for the gamma function, we can derive the formulas for the digamma function

ψ(x+ 1) = ψ(x) +
1

x
, (2.3)

ψ(x)− ψ(1− x) = −π cotπx. (2.4)

Several special values are known:

ψ(1) = −γ,

ψ(n+ 1) = −γ +

n∑
k=1

1

k
(n ∈ Z>0),

ψ

(
1

2

)
= −γ − 2 log 2.

(2.5)

For any a ∈ C and n ∈ Z≥0, we define the Pochhammer symbol (a, n) by

(a, n) =

{
1 (n = 0),

a(a+ 1) · · · (a+ n− 1) (n ≥ 1).
(2.6)

If a 6∈ Z≤0, we have

(a, n) =
Γ(a+ n)

Γ(a)
. (2.7)
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The following formula, although it can be easily derived from (2.7) by taking
n 7→ n+ 1, will be used many times in this paper:

(a+ n)Γ(a) =
Γ(a+ n+ 1)

(a, n)
(a 6∈ Z≤0, n ∈ Z>0). (2.8)

Note that we have

(−n, n) = (−1)nn!, (−n, n+ k) = 0 (n, k ∈ Z>0). (2.9)

The Laurent series expansion of the gamma function at x = −n ∈ Z≤0 can be
represented as

Γ(x) =
1

(−n, n)
· 1

x+ n
+O(1). (2.10)

As notation, in this paper we understand

{k, k + 1, . . . , l} = ∅ (l < k),

{k, k − 1, . . . , l} = ∅ (l > k),

l∑
j=k

aj = 0 (l < k).

3 Hypergeometric series and local solutions

Basically the local solutions of the hypergeometric differential equation (1.1) are
expressed by the hypergeometric series F (a, b, c;x) which is defined by

F (a, b, c;x) =

∞∑
k=0

(a, k)(b, k)

(c, k)k!
xk. (3.1)

If a, b, c 6∈ Z≤0, the hypergeometric series F (a, b, c;x) is a power series of radius
of convergence 1. If a ∈ Z≤0 (resp. b ∈ Z≤0) and c 6∈ {0,−1, . . . , a + 1} (resp.
c 6∈ {0,−1, . . . , b + 1}), the hypergeometric series F (a, b, c;x) is a polynomial of
degree |a| (resp. |b|). If a ∈ Z≤0 (resp. b ∈ Z≤0) and c = a (resp. b = c), we have

F (a, b, c;x) =

∞∑
k=0

(b, k)

k!
xk = (1− x)−b

(resp. the result obtained by b 7→ a). For the other cases, the hypergeometric
series F (a, b, c;x) is not defined.

The table of the local exponents of the hypergeometric differential equation
(1.1) is given by x = 0 x = 1 x = ∞

0 0 a
1− c c− a− b b

 ,

which we call the Riemann scheme of (1.1). According to this Riemann scheme,
we specify local solutions at the singular points x = 0, 1,∞.
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First we specify the local solutions at each singular point when the difference
of the local exponents is not an integer. We call these cases the generic cases.
At x = 0, if c 6∈ Z, there exists a fundamental system of solutions (y1(x), y2(x))
defined by

y1(x) = F (a, b, c;x), (3.2)

y2(x) = x1−cF (a− c+ 1, b− c+ 1, 2− c;x). (3.3)

At x = 1, if c − a − b 6∈ Z, there exists a fundamental system of solutions
(y3(x), y4(x)) defined by

y3(x) = F (a, b, a+ b− c+ 1; 1− x), (3.4)

y4(x) = (1− x)c−a−bF (c− a, c− b, c− a− b+ 1; 1− x). (3.5)

At x = ∞, if a−b 6∈ Z, there exists a fundamental system of solutions (y5(x), y6(x))
defined by

y5(x) = x−aF (a, a− c+ 1, a− b+ 1;x−1), (3.6)

y6(x) = x−bF (b− c+ 1, b, b− a+ 1;x−1). (3.7)

Next we give the local solutions at each singular point when the difference of
the local exponents is an integer.

We assume c ∈ Z. The difference of the local exponents at x = 0 becomes an
integer. If c = 1, both y1(x) and y2(x) are defined, however, coincide. In this case,
in order to get another solution independent of y1(x), we define

ŷ2(x) = lim
c→1

1

1− c
(y2(x)− y1(x)). (3.8)

Since a linear combination of solutions is also a solution and c is independent of x,
ŷ2(x) becomes a solution if the limit converges. It actually converges. We regard
y1(x), y2(x) as functions in (x, c), and denote them by y1(x, c), y2(x, c). Since
y1(x, 1) = y2(x, 1) holds, we have

lim
c→1

1

1− c
(y2(x, c)− y1(x, c)) = −∂y2

∂c
(x, 1) +

∂y1
∂c

(x, 1).

Thus we obtain

ŷ2(x) = log x

∞∑
k=0

(a, k)(b, k)

(k!)2
xk+

∞∑
k=1

(a, k)(b, k)

(k!)2

k∑
j=1

(
1

a+ j − 1
+

1

b+ j − 1
− 2

j

)
xk.

(3.9)
If c ≥ 2, we have Re(1− c) < Re(0), and then y1(x) remains a solution. If c ≤ 0,
we have Re(1− c) > Re(0), and then y2(x) remains a solution. If

c = m ∈ Z≥2, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1},



Connection relations for Gauss hypergeometric differential equation 5

as explained above, y2(x) is not defined. We extract the divergent factor in y2(x)
by rewriting as

y2(x) = x1−c
m−2∑
k=0

(a− c+ 1, k)(b− c+ 1, k)

(2− c, k)k!
xk

+
1

m− c
· (a− c+ 1,m− 1)(b− c+ 1,m− 1)

(2− c,m− 2)(m− 1)!

× xm−c
∞∑
k=0

(a− c+m, k)(b− c+m, k)

(m− c+ 1, k)(m, k)
xk.

Then we define another solution ŷ2(x) by

ŷ2(x) = lim
c→m

(
(2− c,m− 2)(m− 1)!

(a− c+ 1,m− 1)(b− c+ 1,m− 1)
y2(x)−

1

m− c
y1(x)

)
. (3.10)

We shall show the convergence of the limit. We have

(2− c,m− 2)(m− 1)!

(a− c+ 1,m− 1)(b− c+ 1,m− 1)
y2(x)−

1

m− c
y1(x)

=
(2− c,m− 2)(m− 1)!

(a− c+ 1,m− 1)(b− c+ 1,m− 1)
x1−c

m−2∑
k=0

(a− c+ 1, k)(b− c+ 1, k)

(2− c, k)k!
xk

+
1

m− c

(
xm−c

∞∑
k=0

(a− c+m, k)(b− c+m, k)

(m− c+ 1, k)(m, k)
xk −

∞∑
k=0

(a, k)(b, k)

(c, k)k!
xk

)
.

In the right hand side, the limit of the first term is obtained only by putting m
into c. We set

f(c) = xm−c
∞∑
k=0

(a− c+m, k)(b− c+m, k)

(m− c+ 1, k)(m, k)
xk,

g(c) =

∞∑
k=0

(a, k)(b, k)

(c, k)k!
xk.

Then we see f(m) = g(m), and hence the limit of the second term becomes
−f ′(m) + g′(m). Therefore we get

ŷ2(x) = log x

∞∑
k=0

(a, k)(b, k)

(m, k)k!
xk

+ x1−m (2−m,m− 2)(m− 1)!

(a−m+ 1,m− 1)(b−m+ 1,m− 1)

×
m−2∑
k=0

(a−m+ 1, k)(b−m+ 1, k)

(2−m, k)k!
xk

+

∞∑
k=1

(a, k)(b, k)

(m, k)k!

k∑
j=1

(
1

a+ j − 1
+

1

b+ j − 1
− 1

j
− 1

m+ j − 1

)
xk.

(3.11)
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If

c = −m (m ∈ Z≥0), a, b 6∈ {0,−1, . . . ,−m},

y1(x) is not defined. In this case, we define another solution ŷ1(x) by

ŷ1(x) = lim
c→−m

(
(c,m)(m+ 1)!

(a,m+ 1)(b,m+ 1)
y1(x)−

1

c+m
y2(x)

)
. (3.12)

In a similar way as ŷ2(x), we get

ŷ1(x) = x1+m log x
∞∑
k=0

(a+m+ 1, k)(b+m+ 1, k)

(2 +m, k)k!
xk

+
(−m,m)(m+ 1)!

(a,m+ 1)(b,m+ 1)

m∑
k=0

(a, k)(b, k)

(−m, k)k!
xk

+ x1+m
∞∑
k=1

(a+m+ 1, k)(b+m+ 1, k)

(2 +m, k)k!

×
k∑

j=1

(
1

a+m+ j
+

1

b+m+ j
− 1

j
− 1

m+ 1 + j

)
xk.

(3.13)

We call these cases the logarithmic cases. On the other hand, if

c = m ∈ Z>1, a− c or b− c ∈ {−1,−2, . . . ,−m+ 1},

y2(x) is defined and remains a solution which is independent of y1(x). Or if

c = −m (m ∈ Z≥0), a or b ∈ {0,−1, . . . ,−m},

y1(x) is defined and remains a solution which is independent of y2(x). We call
these two cases the apparent cases.

Similarly, if c − a − b ∈ Z, we have the logarithmic cases and apparent cases
at x = 1. If c − a − b = 0, y3(x) and y4(x) coincide. In order to get another
independent solution, we define

ŷ4(x) = lim
c→a+b

1

c− a− b
(y4(x)− y3(x))

= log(1− x)

∞∑
k=0

(a, k)(b, k)

(k!)2
(1− x)k

+

∞∑
k=1

(a, k)(b, k)

(k!)2

k∑
j=1

(
1

a+ j − 1
+

1

b+ j − 1
− 2

j

)
(1− x)k.

(3.14)

If

c− a− b = −n (n ∈ Z≥1), c− a, c− b 6∈ {0,−1, . . . ,−n+ 1},
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y3(x) remains a solution, and we get another solution ŷ4(x) defined by

ŷ4(x) = lim
c→a+b−n

(
(c− a− b+ 1, n− 1)n!

(c− a, n)(c− b, n)
y4(x)−

1

c− a− b+ n
y3(x)

)
= log(1− x)

∞∑
k=0

(a, k)(b, k)

(n+ 1, k)k!
(1− x)k

+ (1− x)−n (1− n, n− 1)n!

(a− n, n)(b− n, n)

n−1∑
k=0

(a− n, k)(b− n, k)

(1− n, k)k!
(1− x)k

+

∞∑
k=1

(a, k)(b, k)

(n+ 1, k)k!

k∑
j=1

(
1

a+ j − 1
+

1

b+ j − 1
− 1

j
− 1

n+ j

)
(1− x)k.

(3.15)
If

c− a− b = n ∈ Z≥1, a, b 6∈ {0,−1, . . . ,−n+ 1},

y4(x) remains a solution, and we get another solution ŷ3(x) defined by

ŷ3(x) = lim
c→a+b+n

(
(a+ b− c+ 1, n− 1)n!

(a, n)(b, n)
y3(x)−

1

a+ b− c+ n
y4(x)

)
= −(1− x)n log(1− x)

∞∑
k=0

(a+ n, k)(b+ n, k)

(n+ 1, k)k!
(1− x)k

+
(1− n, n− 1)n!

(a, n)(b, n)

n−1∑
k=0

(a, k)(b, k)

(1− n, k)k!
(1− x)k

+ (1− x)n
∞∑
k=1

(a+ n, k)(b+ n, k)

(n+ 1, k)k!

×
k∑

j=1

(
1

j
+

1

n+ j
− 1

a+ n+ j − 1
− 1

b+ n+ j − 1

)
(1− x)k.

(3.16)

These are the logarithmic cases. The apparent cases occur if

c− a− b = −n (n ∈ Z>0), c− a or c− b ∈ {0,−1, . . . ,−n+ 1},

or if

c− a− b = n ∈ Z≥1, a or b ∈ {0,−1, . . . ,−n+ 1},

and in these cases (y3(x), y4(x)) is a fundamental system of solutions at x = 1.

Also at x = ∞, we have the logarithmic cases and the apparent cases if a−b ∈ Z.
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If a− b = 0, y5(x) and y6(x) coincide, and then we define

ŷ6(x) = lim
b→a

1

a− b
(y6(x)− y5(x))

= x−a log x

∞∑
k=0

(a, k)(a− c+ 1, k)

(k!)2
x−k

+ x−a
∞∑
k=1

(a, k)(a− c+ 1, k)

(k!)2

k∑
j=1

(
1

a+ j − 1
+

1

a− c+ j
− 2

j

)
x−k.

(3.17)
If

a− b = m ∈ Z≥1, b, b− c+ 1 6∈ {0,−1, . . . ,−m+ 1},

we define

ŷ6(x) = lim
b→a−m

(
(b− a+ 1,m− 1)m!

(b,m)(b− c+ 1,m)
y6(x)−

1

b− a+m
y5(x)

)
= x−a log x

∞∑
k=0

(a, k)(a− c+ 1, k)

(m+ 1, k)k!
x−k

+
(1−m,m− 1)m!

(a−m,m)(a− c−m+ 1,m)
xm−a

m−1∑
k=0

(a−m, k)(a− c−m+ 1, k)

(1−m, k)k!
x−k

+ x−a
∞∑
k=1

(a, k)(a− c+ 1, k)

(m+ 1, k)k!

k∑
j=1

(
1

a+ j − 1
+

1

a− c+ j
− 1

j
− 1

m+ j

)
x−k.

(3.18)
If

b− a = m ∈ Z≥1, a, a− c+ 1 6∈ {0,−1, . . . ,−m+ 1},

we define

ŷ5(x) = lim
a→b−m

(
(a− b+ 1,m− 1)m!

(a,m)(a− c+ 1,m)
y5(x)−

1

a− b+m
y6(x)

)
= x−b log x

∞∑
k=0

(b, k)(b− c+ 1, k)

(m+ 1, k)k!
x−k

+
(1−m,m− 1)m!

(b−m,m)(b− c−m+ 1,m)
xm−b

m−1∑
k=0

(b−m, k)(b− c−m+ 1, k)

(1−m, k)k!
x−k

+ x−b
∞∑
k=1

(b, k)(b− c+ 1, k)

(m+ 1, k)k!

k∑
j=1

(
1

b+ j − 1
+

1

b− c+ j
− 1

j
− 1

m+ j

)
x−k.

(3.19)
In Section 5 we study the connection relations between x = 0 and x = ∞. There
we will use another set of slightly different solutions, and y5(x), y6(x), ŷ5(x), ŷ6(x)
will not be used in the following of this paper.
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4 Connection relations between x = 0 and x = 1

Connection relations for the hypergeometric differential equation (1.1) mean lin-
ear relations between two fundamental systems of local solutions at two singular
points. As will be explained in the next section, the hypergeometric differential
equation has a highly symmetric nature, and then we can obtain all connection
relations from connection relations for any pair of singular points. Therefore, in
this section, we restrict ourselves to show the connection relations between x = 0
and x = 1.

We consider the solutions yj(x) and ŷj(x) (1 ≤ j ≤ 4) defined in the previous
section. By the analytic continuation, we may regard these as functions defined
on the complex plane with cuts

D01 = C \ ((−∞, 0] ∪ [1,+∞)),

where (−∞, 0] and [1,∞) denote intervals on R. We fix the branches of yj(x) and
ŷj(x) by assigning

arg x = arg(1− x) = 0

on the interval (0, 1).

Theorem 4.1. Let y1(x), y2(x), y3(x), y4(x) be defined by (3.2), (3.3), (3.4), (3.5),
respectively, ŷ2(x) by (3.9) and (3.11), ŷ1(x) by (3.13), ŷ4(x) by (3.14) and (3.15),
and ŷ3(x) by (3.16). The following relations hold on the domain D01.
(i) (generic:generic) If

c 6∈ Z, c− a− b 6∈ Z,

we have

y1(x) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
y3(x) +

Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
y4(x),

y2(x) =
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
y3(x) +

Γ(2− c)Γ(a+ b− c)

Γ(a− c+ 1)Γ(b− c+ 1)
y4(x).

(4.1)

(ii) (logarithmic:generic)
(ii-1) If

c = m ∈ Z≥1, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1}, c− a− b 6∈ Z,

we have

y1(x) =
Γ(m)Γ(m− a− b)

Γ(m− a)Γ(m− b)
y3(x) +

Γ(m)Γ(a+ b−m)

Γ(a)Γ(b)
y4(x),

ŷ2(x) =
Γ(m)Γ(m− a− b)

Γ(m− a)Γ(m− b)
(ψ(1) + ψ(m)− ψ(1− a)− ψ(1− b))y3(x)

+
Γ(m)Γ(a+ b−m)

Γ(a)Γ(b)
(ψ(1) + ψ(m)− ψ(a)− ψ(b))y4(x).

(4.2)
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(ii-2) If

c = −m (m ∈ Z≥0), a, b 6∈ {0,−1, . . . ,−m}, c− a− b 6∈ Z,

we have

ŷ1(x) =
Γ(2 +m)Γ(−m− a− b)

Γ(1− a)Γ(1− b)
(ψ(1) + ψ(m+ 2)− ψ(−m− a)− ψ(−m− b))y3(x)

+
Γ(2 +m)Γ(a+ b+m)

Γ(a+m+ 1)Γ(b+m+ 1)

× (ψ(1) + ψ(m+ 2)− ψ(a+m+ 1)− ψ(b+m+ 1))y4(x),

y2(x) =
Γ(2 +m)Γ(−m− a− b)

Γ(1− a)Γ(1− b)
y3(x) +

Γ(2 +m)Γ(a+ b+m)

Γ(a+m+ 1)Γ(b+m+ 1)
y4(x).

(4.3)

(iii) (apparent:generic)

(iii-1) If

c = m ∈ Z≥2, a− c = −l (l ∈ {1, 2, . . . ,m− 1}), c− a− b 6∈ Z,

we have

y1(x) =
(l,m− l)

(l − b,m− l)
y3(x) +

(m− l, l)

(b− l, l)
y4(x),

y2(x) =


(b− l + 1, l − 1)

(m− l, l − 1)
y3(x) (l < m− 1),

y4(x) (l = m− 1).

(4.4)

(iii-2) If

c = −m (m ∈ Z≥0), a = −l (l ∈ {0, 1, . . . ,m}), c− a− b 6∈ Z,

we have

y1(x) =


(m+ b− l + 1, l)

(m− l + 1, l)
y3(x) (l < m),

y4(x) (l = m),

y2(x) =
(l + 1,m− l + 1)

(l −m− b,m− l + 1)
y3(x) +

(m− l + 1, l + 1)

(m− l + b, l + 1)
y4(x).

(4.5)

(iv) (generic:logarithmic)

(iv-1) If

c 6∈ Z, c− a− b = −n (n ∈ Z≥0), c− a, c− b 6∈ {0,−1, . . . ,−n+ 1},
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we have

y1(x) =
Γ(2 + n− a− b)

(−n, n)Γ(1− a)Γ(1− b)
(ψ(1) + ψ(n+ 1)− ψ(1− a)− ψ(1− b))y3(x)

− Γ(2 + n− a− b)

(−n, n)Γ(1− a)Γ(1− b)
ŷ4(x),

y2(x) =
Γ(a+ b− n)

(−n, n)Γ(a− n)Γ(b− n)
(ψ(1) + ψ(n+ 1)− ψ(a)− ψ(b))y3(x)

− Γ(a+ b− n)

(−n, n)Γ(a− n)Γ(b− n)
ŷ4(x).

(4.6)

(iv-2) If
c 6∈ Z, c− a− b = n ∈ Z≥1, a, b 6∈ {0,−1, . . . ,−n+ 1},

we have

y1(x) = − Γ(2− a− b− n)

(−n, n)Γ(1− a− n)Γ(1− b− n)
ŷ3(x)

+
Γ(2− a− b− n)

(−n, n)Γ(1− a− n)Γ(1− b− n)

× (ψ(1) + ψ(n+ 1)− ψ(1− a− n)− ψ(1− b− n))y4(x),

y2(x) = − Γ(a+ b+ n)

(−n, n)Γ(a)Γ(b)
ŷ3(x)

+
Γ(a+ b+ n)

(−n, n)Γ(a)Γ(b)
(ψ(1) + ψ(n+ 1)− ψ(a+ n)− ψ(b+ n))y4(x).

(4.7)

(v) (logarithmic:logarithmic)
(v-1) If

c = m ∈ Z≥1, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1},
c− a− b = −n (n ∈ Z≥0), c− a, c− b 6∈ {0,−1, . . . ,−n+ 1},

we have

y1(x) =
Γ(m)

(−n, n)Γ(m− a)Γ(a− n)
(ψ(1) + ψ(n+ 1)− ψ(a)− ψ(m+ n− a))y3(x)

− Γ(m)

(−n, n)Γ(m− a)Γ(a− n)
ŷ4(x),

ŷ2(x) =
Γ(m)

(−n, n)Γ(m− a)Γ(a− n)

(
(ψ(1) + ψ(m)− ψ(a)− ψ(m+ n− a))

× (ψ(1) + ψ(n+ 1)− ψ(a)− ψ(m+ n− a))− π2

sin2 πa

)
y3(x)

− Γ(m)

(−n, n)Γ(m− a)Γ(a− n)
(ψ(1) + ψ(m)− ψ(a)− ψ(m+ n− a))ŷ4(x).

(4.8)
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(v-2) If
c = m ∈ Z≥1, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1},
c− a− b = n ∈ Z≥1, a, b 6∈ {0,−1, . . . ,−n+ 1},

we have

y1(x) = − Γ(m)

(−n, n)Γ(a)Γ(m− n− a)
ŷ3(x)

+
Γ(m)

(−n, n)Γ(a)Γ(m− n− a)
(ψ(1) + ψ(n+ 1)− ψ(m− a)− ψ(a+ n))y4(x),

ŷ2(x) = − Γ(m)

(−n, n)Γ(a)Γ(m− n− a)
(ψ(1) + ψ(m)− ψ(a)− ψ(m− n− a))ŷ3(x)

+
Γ(m)

(−n, n)Γ(a)Γ(m− n− a)

(
(ψ(1) + ψ(m)− ψ(a)− ψ(m− n− a))

× (ψ(1) + ψ(n+ 1)− ψ(m− a)− ψ(a+ n))− π2

sin2 πa

)
y4(x).

(4.9)

(v-3) If

c = −m (m ∈ Z≥0), a, b 6∈ {0,−1, . . . ,−m},
c− a− b = −n (n ∈ Z≥0), c− a, c− b 6∈ {0,−1, . . . ,−n+ 1},

we have

ŷ1(x) =
Γ(m+ 2)

(−n, n)Γ(1− a)Γ(a+m− n+ 1)

×
(
(ψ(1) + ψ(m+ 2)− ψ(a+m+ 1)− ψ(1− a+ n))

× (ψ(1) + ψ(n+ 1)− ψ(1− a)− ψ(a+m− n+ 1))− π2

sin2 πa

)
y3(x)

− Γ(m+ 2)

(−n, n)Γ(1− a)Γ(a+m− n+ 1)

× (ψ(1) + ψ(m+ 2)− ψ(a+m+ 1)− ψ(1− a+ n))ŷ4(x),

y2(x) =
Γ(m+ 2)

(−n, n)Γ(1− a)Γ(a+m− n+ 1)

× (ψ(1) + ψ(n+ 1)− ψ(1− a)− ψ(a+m− n+ 1))y3(x)

− Γ(m+ 2)

(−n, n)Γ(1− a)Γ(a+m− n+ 1)
ŷ4(x).

(4.10)

(v-4) If
c = −m (m ∈ Z≥0), a, b 6∈ {0,−1, . . . ,−m},
c− a− b = n ∈ Z≥1, a, b 6∈ {0,−1, . . . ,−n+ 1},
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we have

ŷ1(x) = − Γ(m+ 2)

(−n, n)Γ(a+m+ 1)Γ(1− a− n)

× (ψ(1) + ψ(m+ 2)− ψ(a+m+ 1)− ψ(1− a− n))ŷ3(x)

+
Γ(m+ 2)

(−n, n)Γ(a+m+ 1)Γ(1− a− n)

×
(
(ψ(1) + ψ(m+ 2)− ψ(a+m+ 1)− ψ(1− a− n))

× (ψ(1) + ψ(n+ 1)− ψ(a+m+ 1)− ψ(1− a− n))− π2

sin2 πa

)
y4(x),

y2(x) = − Γ(m+ 2)

(−n, n)Γ(a+m+ 1)Γ(1− a− n)
ŷ3(x)

+
Γ(m+ 2)

(−n, n)Γ(a+m+ 1)Γ(1− a− n)

× (ψ(1) + ψ(n+ 1)− ψ(a+m+ 1)− ψ(1− a− n))y4(x).
(4.11)

(vi) (apparent:logarithmic)
(vi-1) If

c = m ∈ Z≥2, a− c = −l (l ∈ {1, 2, . . . ,m− 1}),
c− a− b = −n (n ∈ Z≥0), c− a, c− b 6∈ {0,−1, . . . ,−n+ 1},

we have

y1(x) =
(m− l − n, l + n)

(−n, n)(l − 1)!
(ψ(1) + ψ(n+ 1)− ψ(m− l)− ψ(n+ l))y3(x)

− (m− l − n, l + n)

(−n, n)(l − 1)!
ŷ4(x),

y2(x) =
(n+ 1, l − 1)

(m− l, l − 1)
y3(x).

(4.12)

(vi-2) If
c = m ∈ Z≥2, a− c = −l (l ∈ {1, 2, . . . ,m− 1}),
c− a− b = n ∈ Z≥1, a, b 6∈ {0,−1, . . . ,−n+ 1},

we have

y1(x) = − (m− l, l)

(−n, n)(l − n− 1)!
ŷ3(x)

+
(m− l, l)

(−n, n)(l − n− 1)!
(ψ(1) + ψ(n+ 1)− ψ(l)− ψ(m− l + n))y4(x),

y2(x) =
(n+ 1, l − n− 1)

(m− l + n, l − n− 1)
y4(x).

(4.13)
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(vi-3) If

c = −m (m ∈ Z≥0), a = −l (l ∈ {0, 1, . . . ,m}),
c− a− b = −n (n ∈ Z≥0), c− a, c− b 6∈ {0,−1, . . . ,−n+ 1},

we have

y1(x) =
(n+ 1, l)

(m− l + 1, l)
y3(x),

y2(x) =
(m− l − n+ 1, l + n+ 1)

(−n, n)l!
× (ψ(1) + ψ(n+ 1)− ψ(l + 1)− ψ(m− l − n+ 1))y3(x)

− (m− l − n+ 1, l + n+ 1)

(−n, n)l!
ŷ4(x).

(4.14)

(vi-4) If
c = −m (m ∈ Z≥0), a = −l (l ∈ {0, 1, . . . ,m}),
c− a− b = n ∈ Z≥1, a, b 6∈ {0,−1, . . . ,−n+ 1},

we have

y1(x) =
(n+ 1, l − n)

(m− l + n+ 1, l − n)
y4(x),

y2(x) = − (m− l + 1, l + 1)

(−n, n)(l − n)!
ŷ3(x)

+
(m− l + 1, l + 1)

(−n, n)(l − n)!

× (ψ(1) + ψ(n+ 1)− ψ(m− l + 1)− ψ(l − n+ 1))y4(x).

(4.15)

(vii) (generic:apparent)
(vii-1) If

c 6∈ Z, c− a− b = −n (n ∈ Z≥1), c− a = −l (l ∈ {0, 1, . . . , n− 1}),

we have

y1(x) =


(n− l, l)

(c, l)
y4(x) (l < n− 1),

1− c

n
y3(x) +

(1, n− 1)

(c, n− 1)
y4(x) (l = n− 1),

y2(x) =


(c− 1, l + 1)

(n− l, l + 1)
y3(x) +

(l + 1, n− l − 1)

(2− c, n− l − 1)
y4(x) (l < n− 1),

y4(x) (l = n− 1).

(4.16)
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(vii-2) If

c 6∈ Z, c− a− b = n ∈ Z≥1, a = −l (l ∈ {0, 1, . . . , n− 1}),

we have

y1(x) =


(n− l, l)

(c, l)
y3(x) (l < n− 1),

(1, n− 1)

(c, n− 1)
y3(x) +

1− c

n
y4(x) (l = n− 1),

y2(x) =


(l + 1, n− l − 1)

(2− c, n− l − 1)
y3(x) +

(c− 1, l + 1)

(n− l, l + 1)
y4(x) (l < n− 1),

y3(x) (l = n− 1).

(4.17)

(viii) (logarithmic:apparent)
(viii-1) If

c = m ∈ Z≥1, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1},
c− a− b = −n (n ∈ Z≥1), c− a = −l (l ∈ {0, 1, . . . , n− 1}),

we have

y1(x) =
(n− l, l)

(m, l)
y4(x),

ŷ2(x) = − (1−m,m− 1)(1, l)

(n− l −m+ 1, l +m)
y3(x)

+
(n− l, l)

(m, l)
(ψ(1) + ψ(m)− ψ(m+ l)− ψ(n− l))y4(x).

(4.18)

(viii-2) If
c = m ∈ Z≥1, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1},
c− a− b = n ∈ Z≥1, a = −l (l ∈ {0, 1, . . . , n− 1}),

we have

y1(x) =
(n− l, l)

(m, l)
y3(x),

ŷ2(x) =
(n− l, l)

(m, l)
(ψ(1) + ψ(m)− ψ(l + 1)− ψ(n− l −m+ 1))y3(x)

− (1−m,m− 1)(1, l)

(n− l −m+ 1, l +m)
y4(x).

(4.19)

(viii-3) If

c = −m (m ∈ Z≥0), a, b 6∈ {0,−1, . . . ,−m},
c− a− b = −n (n ∈ Z≥1), c− a = −l (l ∈ {0, 1, . . . , n− 1}),
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we have

ŷ1(x) = − (−m− 1,m+ 1)(1, l −m− 1)

(n− l, l + 1)
y3(x)

+
(l + 1, n− l − 1)

(m+ 2, n− l − 1)

× (ψ(1) + ψ(m+ 2)− ψ(l + 1)− ψ(n− l +m+ 1))y4(x),

y2(x) =
(l + 1, n− l − 1)

(m+ 2, n− l − 1)
y4(x).

(4.20)

(viii-4) If

c = −m (m ∈ Z≥0), a, b 6∈ {0,−1, . . . ,−m},
c− a− b = n ∈ Z≥1, a = −l (l ∈ {0, 1, . . . , n− 1}),

we have

ŷ1(x) =
(l + 1, n− l − 1)

(m+ 2, n− l − 1)
(ψ(1) + ψ(m+ 2)− ψ(l −m)− ψ(n− l))y3(x)

− (−m− 1,m+ 1)(1, l −m− 1)

(n− l, l + 1)
y4(x),

y2(x) =
(l + 1, n− l − 1)

(m+ 2, n− l − 1)
y3(x).

(4.21)

(ix) (apparent:apparent)

(ix-1) If

c = m ∈ Z≥2, a− c = −l (l ∈ {1, 2, . . . ,m− 1}),
c− a− b = −n (n ∈ Z≥1), c− b ∈ {0,−1, . . . ,−n+ 1},

we have

y1(x) =


(m− l, n+ l −m)

(m,n+ l −m)
y4(x) (l < m− 1),

−m− 1

n
y3(x) +

(1, n− 1)

(m,n− 1)
y4(x) (l = m− 1),

y2(x) =


(n+ 1, l − 1)

(m− l, l − 1)
y3(x) (l < m− 1),

y4(x) (l = m− 1).

(4.22)

(ix-2) If

c = m ∈ Z≥2, a− c = −l (l ∈ {1, 2, . . . ,m− 1}),
c− a− b = n ∈ Z≥1, b ∈ {0,−1, . . . ,−n+ 1},
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we have

y1(x) =


(1, n− 1)

(m,n− 1)
y3(x)−

m− 1

n
y4(x) (l = 1),

(l, n− l)

(m,n− l)
y3(x) (l > 1),

y2(x) =


y3(x) (l = 1),
(n− l + 1, l − 1)

(2−m, l − 1)
y3(x) +

(n+ 1,m− l − 1)

(l,m− l − 1)
y4(x) (1 < l < m− 1),

y4(x) (1 < l = m− 1).

(4.23)

(ix-3) If
c = −m (m ∈ Z≥0), a = −l (l ∈ {0, 1, . . . ,m}),
c− a− b = −n (n ∈ Z≥1), c− a ∈ {0,−1, . . . ,−n+ 1},

we have

y1(x) =


(m+ 1)y3(x) + y4(x) (m− l = n− 1 = 0),

y4(x) (0 = m− l < n− 1),
(n+ 1, l)

(m− l + 1, l)
y3(x) (0 < m− l ≤ n− 1),

y2(x) =


(l + 1,m− l + 1)

(−n,m− l + 1)
y3(x) +

(m− l + 1, n−m+ l − 1)

(m+ 2, n−m+ l − 1)
y4(x) (m− l < n− 1),

y4(x) (m− l = n− 1).

(4.24)

(ix-4) If
c = −m (m ∈ Z≥0), a = −l (l ∈ {0, 1, . . . ,m}),
c− a− b = n ∈ Z≥1, a ∈ {0,−1, . . . ,−n+ 1},

we have

y1(x) =


(n− l, l)

(−m, l)
y3(x) (l < m, l < n− 1),

(1, n− 1)

(−m,n− 1)
y3(x) +

m+ 1

n
y4(x) (l < m, l = n− 1),

y4(x) (l = m),

y2(x) =


(l + 1, n− l − 1)

(m+ 2, n− l − 1)
y3(x) +

(m− l + 1, l + 1)

(−n, l + 1)
y4(x) (l < n− 1),

y3(x) (l = n− 1).

(4.25)

Remark 4.1. (i) The hypergeometric differential equation (1.1) is symmetric in a
and b. Then we omitted the assertions obtained by the action a↔ b. For example,
in the case (iii-1), the case b− c = −l is omitted.
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(ii) On the other hand, the hypergeometric differential equation (1.1) has a deeper
symmetry in the positions of the singular points. This symmetry is S4 symmetry,
and will be explained in the next section. By using this symmetry, the assertions
(iv), (vii) and (viii) are derived from the assertions (ii), (iii) and (vi), respectively.
However, we have not omitted these assertions for reader’s convenience.
(iii) Some of the connection coefficients given in the theorem have isolated singular
points. For example, in the right hand side of (4.2), one finds ψ(a) which has a
pole of order 1 at a ∈ Z≤0. We can show that, in every case, the isolated singular
point is removable. For the above example, a ∈ Z≤0 is a removable singular point
for ψ(a)/Γ(a).

Our proof of Theorem 4.1 is based on the famous Gauss-Kummer identity.

Lemma 4.2. (Gauss-Kummer identity) If c 6∈ Z≤0 and Re(c−a−b) > 0, we have

F (a, b, c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
. (4.26)

A proof of Lemma 4.2 is found in [2, Theorem 3.7.1].

Corollary 4.3. (i) For p ∈ Z≥0, c 6∈ {0,−1, . . . ,−p+ 1} and any b, the identity

p∑
k=0

(−p, k)(b, k)
(c, k)k!

=
(c− b, p)

(c, p)

holds.
(ii) For a ∈ C and p ∈ Z≥0, the identity

p∑
k=0

(a, k)

k!
=

(a+ 1, p)

p!

holds.

Proof. (i) Take an integer p ≥ 0, and take b, c so that c 6∈ Z≤0 and Re(c+p−b) >
0 hold. Then, from (4.26) we obtain

F (−p, b, c; 1) = Γ(c)Γ(c+ p− b)

Γ(c+ p)Γ(c− b)
=

(c− b, p)

(c, p)
.

The left hand side is the finite sum in the left hand side of the formula in the asser-
tion (i), and then we get the formula. Since the formula is an identity of rational
functions in (b, c), we may put any value (b, c) in the domains of definition of the
rational functions. Therefore the formula holds as long as c 6∈ {0,−1, . . . ,−p+1}.

(ii) We put c = −p into the identity in (i) to obtain

p∑
k=0

(b, k)

k!
=

(−p− b, p)

(−p, p)
=

(−p− b)(−p− b+ 1) · · · (−b− 1)

(−1)pp!
=

(b+ 1, p)

p!
.
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□

Proof of Theorem 4.1.
(i) In this case, we can take (y1(x), y2(x)) as a fundamental system of solutions at
x = 0, and (y3(x), y4(x)) as a fundamental system of solutions at x = 1. Then a
linear relation

y1(x) = Ay3(x) +By4(x) (4.27)

holds on D01 with constants A,B. We assume 0 < Re(c−a− b) < 1, and take the
limit x→ 1 along the real axis in |x| < 1. Then, thanks to Lemma 4.2, we get

A =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

Put this into (4.27) and take the limit x → 0 along the real axis in |x − 1| < 1.
Then, again by the help of Lemma 4.2, we have

1 =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
· Γ(a+ b− c+ 1)Γ(1− c)

Γ(b− c+ 1)Γ(a− c+ 1)
+B

Γ(1− a− b+ c)Γ(1− c)

Γ(1− b)Γ(1− a)
.

Solving this, we get

B =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
.

Thus we get the first relation in (4.1). Once the relation is obtained, we can relax
the assumption 0 < Re(c − a − b) < 1 by the analytic continuation. The second
relation can be obtained similarly.
(ii-1) In this case, (y1(x), ŷ2(x)) and (y3(x), y4(x)) are fundamental systems of
solutions at x = 0 and x = 1, respectively. We shall obtain the relation (4.2) from
(4.1) by taking the limit c→ m.

We assume that c is in a neighborhood of m ∈ Z≥1 with c 6= m. Since the both
sides of the first relation in (4.1) are defined at c = m ∈ Z≥1, we can put c = m
to get the first relation in (4.2).

We shall obtain the second relation. We first assume m = 1. In this case, ŷ2(x)
is defined by (3.9). By using the relations in (4.1), we have

1

1− c
(y2(x)− y1(x))

=
Γ(c− a− b)

1− c

(
Γ(2− c)

Γ(1− a)Γ(1− b)
− Γ(c)

Γ(c− a)Γ(c− b)

)
y3(x)

+
Γ(a+ b− c)

1− c

(
Γ(2− c)

Γ(a− c+ 1)Γ(b− c+ 1)
− Γ(c)

Γ(a)Γ(b)

)
y4(x)

= Γ(c− a− b)
f3(c)− g3(c)

1− c
y3(x) + Γ(a+ b− c)

f4(c)− g4(c)

1− c
y4(x),

where we set

f3(c) =
Γ(2− c)

Γ(1− a)Γ(1− b)
, g3(c) =

Γ(c)

Γ(c− a)Γ(c− b)
,

f4(c) =
Γ(2− c)

Γ(a− c+ 1)Γ(b− c+ 1)
, g4(c) =

Γ(c)

Γ(a)Γ(b)
.
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Since f3(1) = g3(1) and f4(1) = g4(1) hold, we get

ŷ2(x) = lim
c→1

1

1− c
(y2(x)− y1(x))

= Γ(1− a− b)(−f ′3(1) + g′3(1))y3(x) + Γ(a+ b− 1)(−f ′4(1) + g′4(1))y4(x).

The derivatives of the right hand side are given by

f ′3(1) = f3(1)(−ψ(1)), g′3(1) = g3(1)(ψ(1)− ψ(1− a)− ψ(1− b)),

f ′4(1) = f4(1)(ψ(1) + ψ(a) + ψ(b)), g′4(1) = g4(1)ψ(1),

and then we obtain the second relation in (4.2) with m = 1.
Next we assume m ≥ 2. By the definition (3.10) of ŷ2(x), we compute

(2− c,m− 2)(m− 1)!

(a− c+ 1,m− 1)(b− c+ 1,m− 1)
y2(x)−

1

m− c
y1(x).

Replace y1(x), y2(x) by the right hand sides of (4.1). Then the coefficients of y3(x)
becomes

(2− c,m− 2)(m− 1)!Γ(2− c)Γ(c− a− b)

(a− c+ 1,m− 1)(b− c+ 1,m− 1)Γ(1− a)Γ(1− b)
− 1

m− c
· Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

=
Γ(m− c)Γ(m)Γ(c− a− b)Γ(a− c+ 1)Γ(b− c+ 1)

Γ(a− c+m)Γ(b− c+m)Γ(1− a)Γ(1− b)
− 1

m− c
· Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

where we used the identity (2.7). Since Γ(m − c) = Γ(m − c + 1)/(m − c), the
coefficients of y3(x) can be written as

Γ(c− a− b)

m− c
(f(c)− g(c)),

where

f(c) =
Γ(m− c+ 1)Γ(m)Γ(a− c+ 1)Γ(b− c+ 1)

Γ(a− c+m)Γ(b− c+m)Γ(1− a)Γ(1− b)
,

g(c) =
Γ(c)

Γ(c− a)Γ(c− b)
.

We note that

f(m) =
Γ(m)Γ(a−m+ 1)Γ(b−m+ 1)

Γ(a)Γ(b)Γ(1− a)Γ(1− b)

=
Γ(m)Γ(a−m+ 1)Γ(b−m+ 1) sinπa sinπb

π2

=
Γ(m)

Γ(m− a)Γ(m− b)

= g(m).

Therefore we have

lim
c→m

1

m− c
(f(c)− g(c)) = −f ′(m) + g′(m).
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Thus the limit of the coefficient of y3(x) becomes

Γ(m− a− b)Γ(m)

Γ(m− a)Γ(m− b)

×
(
ψ(1) + ψ(a−m+ 1) + ψ(b−m+ 1)− ψ(a)− ψ(b)

+ ψ(m)− ψ(m− a)− ψ(m− b)
)
.

By applying the formula (2.4), we have

ψ(a−m+ 1)− ψ(m− a)− ψ(a) = ψ(1− a).

This gives the coefficient of y3(x) in the second relation in (4.2). The coefficient
of y4(x) can be computed similarly.
(ii-2) In this case, (ŷ1(x), y2(x)) is a fundamental system of solutions at x = 0.
The second relation in (4.1) is defined at c = −m ∈ Z≤0, and then we get the
second relation in (4.3) by putting c = −m. To get the relation for ŷ1(x), we
compute

(c,m)(m+ 1)!

(a,m+ 1)(b,m+ 1)
y1(x)−

1

c+m
y2(x)

according to the definition (3.12). Put the right hand sides of (4.1) into y1(x) and
y2(x). Then the coefficient of y3(x) becomes

(c,m)(m+ 1)!Γ(c)Γ(c− a− b)

(a,m+ 1)(b,m+ 1)Γ(c− a)Γ(c− b)
− 1

c+m

Γ(2− c)Γ(c− a− b)

Γ(a− c+ 1)Γ(b− c+ 1)
.

We use (2.8) to get

(c,m)Γ(c) =
Γ(c+m+ 1)

c+m
.

Therefore the coefficient of y3(x) can be written as

Γ(c− a− b)

c+m

(
Γ(c+m+ 1)(m+ 1)!

(a,m+ 1)(b,m+ 1)Γ(c− a)Γ(c− b)
− Γ(2− c)

Γ(a− c+ 1)Γ(b− c+ 1)

)
.

Then, in a similar way as the proof of (ii-1), we get the coefficient of y3(x) in the
first relation in (4.3) by taking the limit c→ −m. The coefficient of y4(x) can be
obtained similarly.
(iii-1) In this case, (y1(x), y2(x)) remains a fundamental system of solutions at
x = 0. For the previous logarithmic case, we obtained the connection relations by
taking limits. For the present apparent case, however, this method does not work.
If we want to obtain the apparent case from the generic case, we should take the
double limit

c→ m ∈ Z≥2, a− c→ −l ∈ {−1,−2, . . . ,−m+ 1},

and in this case this double limit does not exist. This is similar to that we have no
canonical boundary value of the rational function z1/z2 at (z1, z2) = (0, 0) ∈ C2.
Therefore we look at the solutions directly.
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We look at y2(x) given by (3.3). By putting c = m and a− c = −l, we have

y2(x) = x1−mF (1− l, b−m+ 1, 2−m;x).

Note that 1− l, 2−m ∈ Z≤0 and |1− l| ≤ |2−m|. If l = m− 1, we have

y2(x) = x1−m
∞∑
k=0

(b−m+ 1, k)

k!
xk = x1−m(1− x)m−1−b,

which coincides with y4(x). If 1 ≤ l < m− 1, we have

y2(x) = x1−m
l−1∑
k=0

(1− l, k)(b−m+ 1)

(2−m, k)k!
xk,

and then it is holomorphic at x = 1. Hence it is a constant multiple of y3(x), and
the constant is given by

y2(1) =

l−1∑
k=0

(1− l, k)(b−m+ 1)

(2−m, k)k!
=

(1− b, l − 1)

(2−m, l − 1)

thanks to Corollary 4.3 (i). Thus we get the second relation in (4.4). Since the
first relation in (4.1) is defined at c = m and c − a = l, we get the relation for
y1(x) by putting these values. Using (2.7), we get the first relation in (4.4).

(iii-2) The result of this case is obtained in a similar way as (iii-1).

(iv-1) In this case, (y1(x), y2(x)) and (y3(x), ŷ4(x)) are fundamental systems of
solutions at x = 0 and x = 1, respectively. First we consider the case n = 0. Then
ŷ4(x) is defined by (3.14). We start with the relations in (4.1), and take the limit
c→ a+ b. We use

Γ(c− a− b) =
Γ(c− a− b+ 1)

c− a− b
, Γ(a+ b− c) =

Γ(a+ b− c+ 1)

a+ b− c
.

Then the first relation in (4.1) can be written as

y1(x) =
Γ(2− c)

c− a− b

(
Γ(c− a− b+ 1)

Γ(1− a)Γ(1− b)
y3(x)−

Γ(a+ b− c+ 1)

Γ(a− c+ 1)Γ(b− c+ 1)
y4(x)

)
= −Γ(2− c)Γ(a+ b− c+ 1)

Γ(a− c+ 1)Γ(b− c+ 1)
· 1

c− a− b
(y4(x)− y3(x))

+
Γ(2− c)

c− a− b

(
Γ(c− a− b+ 1)

Γ(1− a)Γ(1− b)
− Γ(a+ b− c+ 1)

Γ(a− c+ 1)Γ(b− c+ 1)

)
y3(x).

The limit c→ a+ b can be obtained in a similar manner as (ii-1), and we get the
first relation in (4.6) with n = 0. The relation for y2(x) is obtained similarly.

Next we consider the case n ≥ 1. In this case, ŷ4(x) is defined by (3.15). Then
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we rewrite the first relation in (4.1) as

y1(x) =
(c− a, n)(c− b, n)

(c− a− b+ 1, n− 1)n!
· Γ(2− c)Γ(a+ b− c)

Γ(a− c+ 1)Γ(b− c+ 1)

×
(
(c− a− b+ 1, n− 1)n!

(c− a, n)(c− b, n)
y4(x)−

1

c− a− b+ n
y3(x)

)
+

(
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)

+
1

c− a− b+ n

(c− a, n)(c− b, n)

(c− a− b+ 1, n− 1)n!

Γ(2− c)Γ(a+ b− c)

Γ(a− c+ 1)Γ(b− c+ 1)

)
y3(x).

The first term in the right hand side converges to

(b− n, n)(a− n, n)

(1− n, n− 1)n!
· Γ(2 + n− a− b)Γ(n)

Γ(n− b+ 1)Γ(n− a+ 1)
ŷ4(x)

=
1

(−1)n−1(n− 1)!n!
· Γ(b)

Γ(b− n)
· Γ(a)

Γ(a− n)
· Γ(2 + n− a− b)(n− 1)!

Γ(1− (b− n))Γ(1− (a− n))
ŷ4(x)

=
1

(−1)n−1n!
· Γ(a)Γ(b) sinπ(a− n) sinπ(b− n)

π2
Γ(2 + n− a− b)ŷ4(x)

=− Γ(2 + n− a− b)

(−n, n)Γ(1− a)Γ(1− b)
ŷ4(x),

where we used (2.7) and (2.9). In order to compute the coefficient of y3(x) in the
second term, we use (2.8) to have

Γ(c− a− b) =
Γ(c− a− b+ n+ 1)

(c− a− b, n)
· 1

c− a− b+ n
.

Then the coefficient of y3(x) is written as

Γ(2− c)

c− a− b+ n

(
Γ(c− a− b+ n+ 1)

(c− a− b, n)Γ(1− a)Γ(1− b)

+
(c− a, n)(c− b, n)Γ(a+ b− c)

(c− a− b+ 1, n− 1)n!Γ(a− c+ 1)Γ(b− c+ 1)

)
.

Here we have

Γ(a+ b− c)

(c− a− b+ 1, n− 1)
=

(c− a− b)Γ(a+ b− c)

(c− a− b, n)
= −Γ(a+ b− c+ 1)

(c− a− b, n)
.

Then the above coefficient is written as

Γ(2− c)

(c− a− b, n)
· 1

c− a− b+ n

×
(
Γ(c− a− b+ n+ 1)

Γ(1− a)Γ(1− b)
− (c− a, n)(c− b, n)Γ(a+ b− c+ 1)

n!Γ(a− c+ 1)Γ(b− c+ 1)

)
.
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Now the limit c → a+ b− n can be computed in a similar way as before, and we
get the first relation in (4.6). The second relation in (4.6) is obtained similarly.
(iv-2) The result of this case is obtained in a similar way as (iv-1).
(v-1) In this case, (y1(x), ŷ2(x)) and (y3(x), ŷ4(x)) are fundamental systems of
solutions at x = 0 and x = 1, respectively. We shall obtain the connection
relations from the relations in (4.2) by taking the limit c→ a+ b− n.

We can derive the first relation in (4.8) almost in the same way as the proof
of (iv-1). We shall derive the second relation in (4.8) from the second relation in
(4.2). First we consider the case n = 0. Noting that ŷ4(x) is defined by (3.14), we
compute the second relation in (4.2) as

ŷ2(x) =
(m− a− b)Γ(m)Γ(a+ b−m)

Γ(a)Γ(b)
(ψ(1) + ψ(m)− ψ(a)− ψ(b))

y4(x)− y3(x)

m− a− b

+

(
Γ(m)Γ(m− a− b)

Γ(m− a)Γ(m− b)
(ψ(1) + ψ(m)− ψ(1− a)− ψ(1− b))

+
Γ(m)Γ(a+ b−m)

Γ(a)Γ(b)
(ψ(1) + ψ(m)− ψ(a)− ψ(b))

)
y3(x),

and take the limit b→ m− a. The first term in the right hand side converges to

− Γ(m)

Γ(a)Γ(m− a)
(ψ(1) + ψ(m)− ψ(a)− ψ(m− a))ŷ4(x).

The coefficient of y3(x) in the second term is written as

Γ(m)

m− a− b

(
Γ(m− a− b+ 1)

Γ(m− a)Γ(m− b)
(ψ(1) + ψ(m)− ψ(1− a)− ψ(1− b))

− Γ(a+ b−m+ 1)

Γ(a)Γ(b)
(ψ(1) + ψ(m)− ψ(a)− ψ(b))

)
=

Γ(m)

m− a− b
(f(b)− g(b)),

where we set

f(b) =
Γ(m− a− b+ 1)

Γ(m− a)Γ(m− b)
(ψ(1) + ψ(m)− ψ(1− a)− ψ(1− b)),

g(b) =
Γ(a+ b−m+ 1)

Γ(a)Γ(b)
(ψ(1) + ψ(m)− ψ(a)− ψ(b)).

By the help of (2.4), we have

f(m− a) =
1

Γ(m− a)Γ(a)
(ψ(1) + ψ(m)− ψ(1− a)− ψ(1−m+ a))

=
1

Γ(m− a)Γ(a)
(ψ(1) + ψ(m)− (ψ(a) + π cotπa)

− (ψ(m− a) + π cotπ(m− a))

=
1

Γ(m− a)Γ(a)
(ψ(1) + ψ(m)− ψ(a)− ψ(m− a))

= g(m− a),
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and hence the limit of the coefficient of y3(x) becomes

Γ(m)(−f ′(m− a) + g′(m− a))

=
Γ(m)

Γ(a)Γ(m− a)

(
(ψ(1) + ψ(m)− ψ(a)− ψ(m− a))(ψ(1)− ψ(a))− ψ′(1−m+ a)

+ (ψ(1) + ψ(m)− ψ(a)− ψ(m− a))(ψ(1)− ψ(m− a))− ψ′(m− a)

)
=

Γ(m)

Γ(a)Γ(m− a)

(
(ψ(1) + ψ(m)− ψ(a)− ψ(m− a))(2ψ(1)− ψ(a)− ψ(m− a))

− ψ′(1−m+ a)− ψ′(m− a)

)
.

By differentiating (2.4), we get

ψ′(x) + ψ′(1− x) =
π2

sin2 πx
,

and then we have

−ψ′(1−m+ a)− ψ′(m− a) = − π2

sin2 πa
.

Therefore the limit of the coefficient of y3(x) coincides with the coefficient of y3(x)
of the second relation in (4.8) with n = 0. Thus the second relation in (4.8)
with n = 0 is shown. The second relation in (4.8) with n ≥ 1 can be shown by
combining the method in the proof of (iv-1) and the above argument.

(v-2), (v-3), (v-4) can be shown similarly.

(vi-1) In this case, (y1(x), y2(x)) and (y3(x), ŷ4(x)) are fundamental systems of
solutions at x = 0 and x = 1, respectively. From the assumptions c = m, a− c =
−l, c−a−b = −n, wherem, l, n are integers satisfyingm ≥ 2, 1 ≤ l ≤ m−1, n ≥ 0,
we obtain

c− a = l ≥ 1, c− b = m− l − n.

Then the condition c − a 6∈ {0,−1, . . . ,−n + 1} is satisfied, and c − b ≥ −n + 1
holds by m− l ≥ 1. Therefore the condition c− b 6∈ {0,−1, . . . ,−n+ 1} implies

m− l ≥ n+ 1. (4.28)

We shall obtain the relations in (4.12) from the relations in (4.4) by taking the
limit b→ l + n.

First we consider the relation for y1(x). When n = 0, ŷ4(x) is defined by (3.14),
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and then we compute the first relation in (4.4) as

y1(x) =
(l − b)(m− l, l)

(b− l, l)
· 1

l − b
(y4(x)− y3(x))

+

(
(l,m− l)

(l − b,m− l)
+

(m− l, l)

(b− l, l)

)
y3(x)

= − (m− l, l)

(b− l + 1, l − 1)
· 1

l − b
(y4(x)− y3(x))

+
1

l − b

(
(l,m− l)

(l − b+ 1,m− l − 1)
− (m− l, l)

(b− l + 1, l − 1)

)
y3(x).

The first term in the right hand side converges to

− (m− l, l)

(1, l − 1)
ŷ4(x)

as b→ l. We note that

(l,m− l)

(l − b+ 1,m− l − 1)
→ (l,m− l)

(1,m− l − 1)
,

(m− l, l)

(b− l + 1, l − 1)
→ (m− l, l)

(1, l − 1)

as b→ l, and that

(l,m− l)

(1,m− l − 1)
− (m− l, l)

(1, l − 1)
=

(l,m− l)(1, l − 1)− (m− l, l)(1,m− l − 1)

(1,m− l − 1)(1, l − 1)
= 0.

Therefore the second term in the right hand side converges to

(m− l, l)

(1, l − 1)
(2ψ(1)− ψ(m− l)− ψ(l))y3(x),

where we used the formula

d

dx
(x+ p, q) = (x+ p, q)(ψ(x+ p+ q)− ψ(x+ p)).

Thus the limit b → l gives the right hand side of the first relation in (4.12) with
n = 0. For n ≥ 1, ŷ4(x) is defined by (3.15), and then we write the first relation
in (4.4) as

y1(x) =
(l, n)(m− b, n)

(l − b+ 1, n− 1)n!
· (m− l, l)

(b− l, l)

(
(l − b+ 1, n− 1)n!

(l, n)(m− b, n)
y4(x)−

1

l + n− b
y3(x)

)
+

(
(l,m− l)

(l − b,m− l)
+

1

l + n− b
· (l, n)(m− b, n)

(l − b+ 1, n− 1)n!
· (m− l, l)

(b− l, l)

)
y3(x).

We can see that the first term of the right hand side converges to

− (m− l − n, l + n)

(−n, n)(l − 1)!
ŷ4(x)
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as b→ l + n. By the inequality (4.28), we have l ≤ l + n ≤ m− 1, and hence

(l − b,m− l) = (l − b) · · · (m− 1− b)

= (l − b) · · · (l + n− b) · · · (m− 1− b).

Then the coefficient of y3(x) in the second term can be written as

1

l + n− b

(
(l,m− l)

(l − b, n)(l + n− b+ 1,m− l − n− 1)
+

(l, n)(m− b, n)(m− l, l)

(l − b+ 1, n− 1)n!(b− l, l)

)
=

1

(l − b, n)
· 1

l + n− b

(
(l,m− l)

(l + n− b+ 1,m− l − n− 1)
− (l, n)(m− b, n)(m− l, l)

n!(b− l + 1, l − 1)

)
.

Then, in a similar way as we have done, we can compute the limit as b→ l+ n to
get

(m− l − n, l + n)

(−n, n)(l − 1)!
(ψ(1)− ψ(m− l)− ψ(n+ l) + ψ(n+ 1)).

Therefore we obtain the first relation in (4.12).
Next we consider the second relation in (4.4). If l = m − 1, we have y2(x) =

y4(x) by (4.4), and also have n = 0 by (4.28). Then, in this case, we have

y2(x) = lim
b→m−1

y4(x) = y3(x),

which coincides with the second relation in (4.12) with l = m − 1 and n = 0. If
1 ≤ l < m− 1, the second relation in (4.4) is defined at b = l + n, and we get the
second relation in (4.12) by putting b = l + n.

The cases (vi-2), (vi-3), (vi-4) are obtained in a similar way. We only note the
conditions for the integers m, l, n:

(vi-2) 1 ≤ n < l ≤ m− 1,
(vi-3) 0 ≤ l ≤ m, 0 ≤ n ≤ m− l,
(vi-4) 1 ≤ n ≤ l ≤ m.

(vii-1) In this case, (y1(x), y2(x)) and (y3(x), y4(x)) are fundamental systems of
solutions at x = 0 and x = 1, respectively. We start with the relations in (4.36)
in Corollary 4.4, below. By the conditions on parameters, we have

a = c+ l, b = n− l ≥ 1, c 6∈ Z.

The first relation in (4.36) is defined in this case, and we get

y3(x) =
Γ(1− c)Γ(n+ 1)

Γ(l + 1)Γ(n− l − c+ 1)
y1(x) +

Γ(c− 1)Γ(n+ 1)

Γ(c+ l)Γ(n− l)
y2(x). (4.29)

On the other hand, the second relation in (4.36) is not defined at the above (a, b, c),
and then we look at y4(x) directly. If l = n− 1, we have

y4(x) = (1− x)−nF (−n+ 1, c− 1,−n+ 1; 1− x) = (1− x)−nx1−c,
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which should coincide with y2(x). If 0 ≤ l < n− 1, we have

y4(x) = (1− x)−nF (−l, c− n+ l,−n+ 1; 1− x)

= (1− x)−n
l∑

k=0

(−l, k)(c− n+ l, k)

(1− n, k)k!
(1− x)k,

which is holomorphic at x = 0. Then it is a constant multiple of y1(x), and the
constant is given by

y4(0) =

l∑
k=0

(−l, k)(c− n+ l, k)

(1− n, k)k!
=

(1− c− l, l)

(1− n, l)
,

where we used Corollary 4.3 (i). Thus we get

y4(x) =

y2(x) (l = n− 1),
(1− c− l, l)

(1− n, l)
y1(x) (0 ≤ l < n− 1).

(4.30)

Solving (4.29), (4.30) in y1(x), y2(x), we get the relation (4.16).
(vii-2) can be shown in a similar manner.

(viii-1) We shall obtain the relations in this case as a limit of the previous result
(4.16). We note that, by the conditions on the parameters, we have

1 ≤ m ≤ n− l. (4.31)

First we consider the case l = n− 1. Then we have m = 1 by (4.31). We shall
derive the relations by taking the limit c → 1. The relation for y1(x) in (4.16) is
defined at c = 1, and then we can put c = 1 to get

y1(x) = y4(x).

By using (4.16), the relation for ŷ2(x) is obtained as

ŷ2(x) = lim
c→1

1

1− c
(y2(x)− y1(x))

= lim
c→1

1

1− c

(
y4(x)−

(
1− c

n
y3(x) +

(1, n− 1)

(c, n− 1)
y4(x)

))
= − 1

n
y3(x) + lim

c→1

1

1− c

(
1− (1, n− 1)

(c, n− 1)

)
y4(x)

= − 1

n
y3(x) + (ψ(1)− ψ(n))y4(x).

Next we assume 0 ≤ l < n − 1. The relation for y1(x) is obtained from the first
relation of (4.16) by putting c = m. The result is

y1(x) =
(1− n, l)

(1−m− l, l)
y4(x),
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which contains the above result for l = n− 1. The relation for ŷ2(x) with m = 1
is obtained in a similar way as above, by using (4.16) with 0 ≤ l < n− 1, and we
get

ŷ2(x) = − l!

(n− l, l + 1)
y3(x) +

(1− n, l)

(−l, l)
(2ψ(1)− ψ(n− l)− ψ(l + 1))y4(x).

For m ≥ 2, the relation for ŷ2(x) is obtained as the limit

ŷ2(x) = lim
c→m

(
(2− c,m− 2)(m− 1)!

(a− c+ 1,m− 1)(b− c+ 1,m− 1)
y2(x)−

1

m− c
y1(x)

)
,

where y1(x), y2(x) in the right hand side are given by (4.16) in terms of y3(x), y4(x).
The limit can be computed as we have done so far, and we get the second relation
in (4.18). Note that this result contains the cases l = n − 1 and l < n − 1 with
m = 1 obtained above. Therefore we have (4.18) as the unified result.

(viii-2), (viii-3), (viii-4) can be shown in a similar manner. We need no new
idea.
(ix-1) We consider the apparent case at both x = 0 and x = 1 with 1 − c <
0, c− a− b < 0. Then we have

c = m ∈ Z≥2, a− c or b− c ∈ {−1,−2, . . . ,−m+ 1},
c− a− b = −n ∈ Z≤−1, c− a or c− b ∈ {0,−1, . . . ,−n+ 1}.

Without loss of generality, we may assume a − c = −l with 1 ≤ l ≤ m − 1.
Then we have c − a = l ≥ 1, which does not belong to {0,−1, . . . ,−n + 1}.
Then we should assume c− b ∈ {0,−1, . . . ,−n+ 1}. On the other hand, we have
c−b = m− l−n ≥ −n+1, and then the condition implies m− l−n ≤ 0. Therefore
the conditions on the parameters are given by

a = m− l, b = n+ l, c = m

with integers m, l, n satisfying

m ≥ 2, 1 ≤ l ≤ m− 1, n ≥ m− l.

In this case, y1(x), y2(x) make a fundamental system of solutions at x = 0 with
exponents 0, 1 −m, respectively, and then y1(x) is subdominant at x = 0. Also
y3(x), y4(x) make a fundamental system of solutions at x = 1 with exponents
0,−n, respectively, and then y3(x) is subdominant at x = 1.

First we consider the case l = m− 1. In this case, we have

(a, b, c) = (1,m+ n− 1,m).

Then we get

y2(x) = x1−mF (2−m,n, 2−m;x) = x1−m(1− x)−n,

y4(x) = (1− x)−nF (m− 1, 1− n, 1− n; 1− x) = (1− x)−nx1−m,
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and hence

y2(x) = y4(x)

holds. In order to get the relation for y1(x), we look at y1(x) and y3(x):

y1(x) = F (1, n+m− 1,m;x),

y3(x) = F (1, n+m− 1, n+ 1; 1− x).

Since m− 1− (n+m− 1) = −n < 0 (resp. (n+1)− 1− (n+m− 1) = 1−m < 0),
y1(x) (resp. y3(x)) diverges when x→ 1 (resp. x→ 0). Then, in order to evaluate
the behavior at x = 1 (resp. x = 0), we operate gauge transformations. For y1(x),
we operate the gauge transformation y(x) 7→ z(x) = (1 − x)ny(x). In Riemann’s
notation of P-function, we have

(1− x)n

x = 0 x = 1 x = ∞
0 0 1

1−m −n m+ n− 1
;x

 =

x = 0 x = 1 x = ∞
0 0 1− n

1−m n m− 1
;x

 .

Then

z1(x) = F (1− n,m− 1,m;x) =

n−1∑
k=0

(1− n, k)(m− 1, k)

(m, k), k!
xk

is a solution of the transformed equation, and hence (1 − x)−nz1(x) is a solu-
tion of the original hypergeometric differential equation. Since this solution is
holomorphic and takes value 1 at x = 0, and y1(x) is subdominant, we get

y1(x) = (1− x)−nz1(x).

Similarly we operate the gauge transformation y(x) 7→ z(x) = xm−1y(x), and
obtain

xm−1

x = 0 x = 1 x = ∞
0 0 1

1−m −n m+ n− 1
;x

 =

x = 0 x = 1 x = ∞
0 0 2−m

m− 1 −n n
;x

 .

Then

z3(x) = F (2−m,n, n+ 1; 1− x) =

m−2∑
k=0

(2−m, k)(n, k)

(n+ 1, k)k!
(1− x)k

is a solution of the transformed equation, and hence x1−mz3(x) is a solution of the
original hypergeometric differential equation. Since this solution is holomorphic
and takes value 1 at x = 1, and y3(x) is subdominant, we get

y3(x) = x1−mz3(x).

Let

y1(x) = Ay3(x) +By4(x)
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be the connection relation, where A,B are constants. By using the above explicit
expressions, we write this relation as

(1− x)−nz1(x) = Ax1−mz3(x) +Bx1−m(1− x)−n. (4.32)

Multiplying the both sides of (4.32) by (1 − x)n and taking the limit x → 1, we
get

z1(1) = B.

Also multiplying the both sides of (4.32) by xm−1 and taking the limit x→ 0, we
get

0 = Az3(0) +B.

The values z1(1) and z3(0) are given by Corollary 4.3 (i), and we obtain

B =
(1, n− 1)

(m,n− 1)
,

A = − (1, n− 1)

(m,n− 1)

(n+ 1,m− 2)

1,m− 2)

= −1 · · · (n− 1) · (n+ 1) · · · (m+ n− 1)

1 · · · (m− 2) ·m · · · (m+ n− 1)

= −m− 1

n
.

This gives the first relation of (4.22) with l = m− 1.
Next we consider the case 1 ≤ l < m− 1. For y2(x) we have

y2(x) = x1−mF (1−l, n+l−m+1, 2−m;x) = x1−m
l−1∑
k=0

(1− l, k)(n+ l −m+ 1, k)

(2−m, k)k!
xk,

which is holomorphic at x = 1. Since y3(x) is holomorphic and subdominant at
x = 1, y2(x) is a constant multiple of y3(x). The constant y2(1) is evaluated by
Corollary 4.3 (i), and then we get

y2(x) =
(1− n− l, l − 1)

(2−m, l − 1)
y3(x).

For y4(x), we have

y4(x) = (1− x)−nF (l,m− l − n, 1− n : 1− x)

= (1− x)−n
n+l−m∑
k=0

(m− l − n, k)(l, k)

(1− n, k)k!
(1− x)k,

which is holomorphic at x = 0. Since y1(x) is holomorphic and subdominant at
x = 0, y4(x) is a constant multiple of y1(x). The constant 1/y4(0) is evaluated by
Corollary 4.3 (i), and we get

y1(x) =
(1− n, n+ l −m)

(1− n− l, n+ l −m)
y4(x).
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(ix-2) In this case, the parameters are given by

a = k − l, b = l − n, c = m

with integers m, l, n satisfying

m ≥ 2, 1 ≤ l ≤ m− 1, n ≥ l.

Note that y1(x) is subdominant at x = 0, and y4(x) is subdominant at x = 1. The
explicit forms of y1(x), y2(x), y3(x) are given by

y1(x) = F (m− l, l − n,m;x) =

n−l∑
k=0

(m− l, k)(l − n, k)

(m, k)k!
xk,

y2(x) = x1−mF (1− l, l −m− n+ 1, 2−m;x)

=

x
1−m

l−1∑
k=0

(1− l, k)(l −m− n+ 1, k)

(2−m, k)k!
xk =: x1−mz2(x) (l < m− 1),

x1−m(1− x)n (l = m− 1),

y3(x) = F (m− l, l − n, 1− n; 1− x)

=


x1−m (l = 1),
n−l∑
k=0

(m− l, k)(l − n, k)

(1− n, k)k!
(1− x)k (l > 1).

Since y4(x) = (1− x)nF (l,m− l + n, n+ 1; 1− x) diverges as x → 0, we operate
the gauge transformation

xm−1

x = 0 x = 1 x = ∞
0 0 m− l

1−m n l − n
;x

 =

x = 0 x = 1 x = ∞
0 0 1− l

m− 1 n l −m− n+ 1
;x

 .

The transformed equation has a solution

(1− x)nF (1−m+ l, n− l + 1, n+ 1; 1− x)

= (1− x)n
m−l−1∑
k=0

(1−m+ l, k)(n− l + 1, k)

(n+ 1, k)k!
(1− x)k

=: (1− x)nz4(x)

and hence the original equation has a solution x1−m(1 − x)nz4(x), which is of
exponent n at x = 1. Since y4(x) is subdominant, the solution coincides with
y4(x), and hence we have the expression

y4(x) = x1−m(1− x)nz4(x).

We note that

y1(1) =
(l, n− l)

(m,n− l)
, z2(1) =

(n− l + 1, l − 1)

(2−m, l − 1)
, z4(0) =

(l,m− l − 1)

(n+ 1,m− l − 1)
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and, when l > 1,

y3(0) =
(m,n− l)

(l, n− l)

hold thanks to Corollary 4.3 (i).
First we shall obtain the connection relation for y1(x):

y1(x) = Ay3(x) +By4(x). (4.33)

When l = 1, the relation (4.33) becomes

y1(x) = Ax1−m +Bx1−m(1− x)nz4(x). (4.34)

By putting x = 1 in (4.34), we get

A = y1(1) =
(l, n− l)

(m,n− l)
.

Multiplying both sides of (4.34) by xm−1 and putting x = 0, we have

A+Bz4(0) = 0,

from which we obtain

B = − (l, n− l)

(m,n− l)
· (n+ 1,m− l − 1)

(l,m− l − 1)
= −m− 1

n
.

When l > 1, y3(x) becomes a polynomial. Then, in the relation (4.33), y1(x) and
y3(x) are subdominant at x = 0, from which we derive B = 0. By putting x = 0,
we get 1 = Ay3(0), from which

A =
(l, n− l)

(m,n− l)

is derived. Thus we get the relation for y1(x) in (4.23).
Next we shall study the connection relation for y2(x). We notice that we should

study the four cases

1 = l < m− 1, 1 < l < m− 1, 1 < l = m− 1, 1 = l = m− 1

separately. When 1 = l < m − 1, we have y2(x) = x1−m, from which we obtain
y2(x) = y3(x). We assume 1 < l < m− 1. Set

y2(x) = Cy3(x) +Dy4(x).

Then we have

x1−mz2(x) = Cy3(x) +Dx1−m(1− x)nz4(x). (4.35)

Multiplying both sides by xm−1 and putting x = 0, we get 1 = Dz4(0), from which

D =
(n+ 1,m− l − 1)

(l,m− l − 1)
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is derived. Putting x = 1 into (4.35), we obtain

C = z2(1) =
(n− l + 1, l − 1)

(2−m, l − 1)
.

If we assume 1 < l = m− 1, we have y2(x) = x1−m(1−x)n and y4(x) = x1−m(1−
x)n. Thus we get y2(x) = y4(x). Since this relation does not contain y3(x), it
holds also for the case 1 = l = m− 1. Thus we obtain the connection relation for
y2(x) in (4.23).

(ix-3) In this case, the parameters are given by

a = −l, b = n+ l −m, c = −m

with integers m, l, n satisfying

0 ≤ l ≤ m, n ≥ m− l + 1.

In a similar way as we have done above, we get the following expressions of yj(x):

y1(x) =


l∑

k=0

(−l, k)(n+ l −m, k)

(−m, k)k!
xk (l < m),

(1− x)−n (l = m),

y2(x) = xm+1(1− x)−n
n−m+l−1∑

k=0

(m− l − n+ 1, k)(l + 1, k)

(m+ 2, k)k!
xk,

y3(x) =

l∑
k=0

(−l, k)(n+ l −m, k)

(n+ 1, k)k!
(1− x)k,

y4(x) =

(1− x)−n
m−l∑
k=0

(l −m, k)(−n− l, k)

(1− n, k)k!
(1− x)k (m− l < n− 1),

(1− x)−nxm+1 (m− l = n− 1).

Then, applying the arguments we have done so far, we get the result.

(ix-4) In this case, the parameters are given by

a = −l, b = l −m− n, c = −m

with integers m, l, n satisfying

0 ≤ l ≤ m, n ≥ l + 1.
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We have the following expressions of yj(x):

y1(x) =


l∑

k=0

(−l, k)(l −m− n, k)

(−m, k)k!
xk (l < m),

(1− x)n (l = m),

y2(x) = xm+1
n−l−1∑
k=0

(l − n+ 1, k)(m− l + 1, k)

(m+ 2, k)k!
xk,

y3(x) =


l∑

k=0

(−l, k)(l −m− n, k)

(1− n, k)k!
(1− x)k (l < n− 1),

xm+1 (l = n− 1),

y4(x) = (1− x)n
m−l∑
k=0

(l −m, k)(n− l, k)

(n+ 1, k)k!
(1− x)k.

All yj(x) are polynomials. The result is obtained in a similar way as above. □

Corollary 4.4. If c 6∈ Z, c− a− b 6∈ Z, we have

y3(x) =
Γ(1− c)Γ(a+ b− c+ 1)

Γ(a− c+ 1)Γ(b− c+ 1)
y1(x) +

Γ(c− 1)Γ(a+ b− c+ 1)

Γ(a)Γ(b)
y2(x),

y4(x) =
Γ(1− c)Γ(c− a− b+ 1)

Γ(1− a)Γ(1− b)
y1(x) +

Γ(c− 1)Γ(c− a− b+ 1)

Γ(c− a)Γ(c− b)
y2(x).

(4.36)

Proof. The result is obtained by solving the linear relation (4.1) in Theorem 4.1
in (y3(x), y4(x)). Note that, by the help of the formulas (2.10), the determinant
of the coefficient matrix of the linear relation (4.1) is reduced to

1− c

a+ b− c
.

Then we get the result by a simple calculation. □

5 S4 symmetry and connection relations between
x = 0 and x = ∞

The hypergeometric differential equation (1.1) can be regarded as a normal form
of a differential equation on the space of mutually distinct four points in P1. If
we normalize three points among the four points to 0, 1,∞ by a Möbius transfor-
mation (an automorphism of P1), the image of the remaining point becomes the
independent variable x of (1.1). The symmetric group S4 acts on the set of the
four points as permutations. It turns out that the action of S4 yields a symmetry
of (1.1), which is known as Kummer’s 24 solutions. We shall give Kummer’s 24
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solutions soon later. Choose three points among the four points, and fix the set of
the three points. The permutations on the set of the three points make a subgroup
S3 of S4. If we normalize the three points in the set to 0, 1,∞, the S3 action yields
Möbius transformations of x. In this way, we obtain a faithful representation of
S3 given by the transformations

x 7→ x, 1− x,
1

x
,

1

1− x
,
x− 1

x
,

x

x− 1
. (5.1)

The action of an element in S4 sends every local solution of (1.1) to a local solution.
Thus we obtain 24 expressions of the local solutions, which are called Kummer’s
24 solutions. Kummer’s 24 solutions are given by

y1(x) = F (a, b, c;x)

= (1− x)c−a−bF (c− a, c− b, c;x)

= (1− x)−aF
(
c− b, a, c;

x

x− 1

)
= (1− x)−bF

(
c− a, b, c;

x

x− 1

)
,

y2(x) = x1−cF (a− c+ 1, b− c+ 1, 2− c;x)

= x1−c(1− x)c−a−bF (1− a, 1− b, 2− c;x)

= x1−c(1− x)c−a−1F
(
1− b, a− c+ 1, 2− c;

x

x− 1

)
= x1−c(1− x)c−b−1F

(
1− a; b− c+ 1, 2− c;

x

x− 1

)
,

y3(x) = F (a, b, a+ b− c+ 1; 1− x)

= x1−cF (b− c+ 1, a− c+ 1, a+ b− c+ 1; 1− x)

= x−aF
(
a− c+ 1, a, a+ b− c+ 1;

x− 1

x

)
= x−bF

(
b− c+ 1, b, a+ b− c+ 1;

x− 1

x

)
,

y4(x) = (1− x)c−a−bF (c− a, c− b, c− a− b+ 1; 1− x)

= x1−c(1− x)c−a−bF (1− a, 1− b, c− a− b+ 1; 1− x) (5.2)

= xb−c(1− x)c−a−bF
(
1− b, c− b, c− a− b+ 1;

x− 1

x

)
= xa−c(1− x)c−a−bF

(
1− a, c− a, c− a− b+ 1;

x− 1

x

)
,

y5(x) = x−aF
(
a, a− c+ 1, a− b+ 1;

1

x

)
= (−x)b−c(1− x)c−a−bF

(
1− b, c− b, a− b+ 1;

1

x

)
= (1− x)−aF

(
a, c− b, a− b+ 1;

1

1− x

)
= (−x)1−c(1− x)c−a−1F

(
a− c+ 1, 1− b, a− b+ 1;

1

1− x

)
,
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y6(x) = x−bF
(
b, b− c+ 1, b− a+ 1;

1

x

)
= (−x)a−c(1− x)c−a−bF

(
1− a, c− a, b− a+ 1;

1

x

)
= (1− x)−bF

(
b, c− a, b− a+ 1;

1

1− x

)
= (−x)1−c(1− x)c−b−1F

(
b− c+ 1, 1− a, b− a+ 1;

1

1− x

)
.

An explicit derivation is found in [2, §1.3]. We can use the S3 action (5.1) and
Kummer’s 24 solutions (5.2) to derive connection relations between x = 1 and
x = ∞ and between x = 0 and x = ∞ from the connection relations between
x = 0 and x = 1. The main purpose of this section is to derive the connection
relations between x = 0 and x = ∞.

First we consider the transformation x 7→ 1− x. Set

x1 = 1− x.

By the transformation x→ x1, the Riemann’s P-function is changed asx = 0 x = 1 x = ∞
0 0 a

1− c c− a− b b
;x

 =

 x1 = 0 x1 = 1 x1 = ∞
0 0 a

c− a− b 1− c b
;x1


=

x1 = 0 x1 = 1 x1 = ∞
0 0 a1

1− c1 c1 − a1 − b1 b1

;x1

 ,

where we set
a1 = a, b1 = b, c1 = a+ b− c+ 1.

Then we have

y1(x) = F (a, b, c;x) = F (a1, b1, a1 + b1 − c1 + 1; 1− x1).

Let y
[1]
j (x1) (1 ≤ j ≤ 4) be obtained from yj(x) by formally replacing (a, b, c, x)

by (a1, b1, c1, x1). Then the above equality implies

y1(x) = y
[1]
3 (x1).

In a similar way, we get

y2(x) = y
[1]
4 (x1), y3(x) = y

[1]
1 (x1), y4(x) = y

[1]
2 (x1).

The functions y
[1]
j (x1) are defined on D01 in x1-space, and the branches of x1−c1

1 ,

log x1, (1− x1)
c1−a1−b1 and log(1− x1) are defined by

arg x1 = arg(1− x1) = 0 on (0, 1),

which are the consequences of arg x = arg(1−x) = 0 via x1 = 1−x. For 1 ≤ j ≤ 4,

we define ŷ
[1]
j (x1) by replacing (x, a, b, c) by (x1, a1, b1, c1) of ŷj(x), and it turns
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out that ŷ
[1]
j (x1) are obtained by the same formulas (3.12), (3.8), (3.10), (3.16),

(3.14), (3.15) from y
[1]
j (x1). Therefore the results in Theorem 4.1 directly imply

the connection relations for y
[1]
j (x1), ŷ

[1]
j (x1), only by reading

y1(x) = y
[1]
3 (x1), y2(x) = y

[1]
4 (x1), y3(x) = y

[1]
1 (x1), y4(x) = y

[1]
2 (x1),

ŷ1(x) = ŷ
[1]
3 (x1), ŷ2(x) = ŷ

[1]
4 (x1), ŷ3(x) = ŷ

[1]
1 (x1), ŷ4(x) = ŷ

[1]
2 (x1)

and replacing (x, a, b, c) by (x1, a1, b1, c1). The results thus obtained give expres-
sions of the local solutions at x1 = 1 as linear combinations of the local solutions
at x1 = 0.

In order to obtain the connection relations between x = 0 and x = ∞, next
we consider the transformation x 7→ (x− 1)/x. This transformation sends 0, 1 to
∞, 0, respectively. Set

x2 =
x− 1

x
.

By this transformation, the domain D01 in x-space is sent to

D∞0 = C \ [0,+∞)

in x2-space. In D01 in x-space, we defined arg x = arg(1 − x) = 0 on (0, 1). We
have

x =
1

1− x2
, 1− x =

−x2
1− x2

,

and then we may define

arg(1− x2) = 0, arg(−x2) = 0 on (−∞, 0).

Now we look at the change of Riemann’s P-function:x = 0 x = 1 x = ∞
0 0 a

1− c c− a− b b
;x

 =

 x2 = 0 x2 = 1 x2 = ∞
0 a 0

c− a− b b 1− c
;x2


= (1− x2)

a

 x2 = 0 x2 = 1 x2 = ∞
0 0 a

c− a− b b− a a− c+ 1
;x2


= (1− x2)

a

x2 = 0 x2 = 1 x2 = ∞
0 0 a2

1− c2 c2 − a2 − b2 b2

;x2

 ,

where the relations of (a, b, c) and (a2, b2, c2) are given by
a2 = a,

b2 = a− c+ 1,

c2 = a+ b− c+ 1,


a = a2,

b = c2 − b2,

c = a2 − b2 + 1.

(5.3)
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According to these relations, we can rewrite yj(x) (1 ≤ j ≤ 4) in (a2, b2, c2, x2).
Noting

x

x− 1
=

1

x2
,

we use the third expression of y1(x) in (5.2) to get

y1(x) = (1− x)−aF
(
c− b, a, c;

x

x− 1

)
=

(
−x2
1− x2

)−a

F
(
c− b, a, c;

1

x2

)
= (1− x2)

a(−x2)−a2F
(
a2, a2 − c2 + 1, a2 − b2 + 1;

1

x2

)
.

For y2(x), we use the third expression in (5.2) to get

y2(x) = x1−c(1− x)c−a−1F
(
1− b, a− c+ 1, 2− c;

x

x− 1

)
=

(
1

1− x2

)1−c( −x2
1− x2

)c−a−1

F
(
1− b, a− c+ 1, 2− c;

1

x2

)
= (1− x2)

a(−x2)−b2F
(
b2 − c2 + 1, b2, b2 − a2 + 1;

1

x2

)
.

Also by the help of the third expression of y1(x) in (5.2), we can rewrite y3(x) as

y3(x) = F
(
a, b, a+ b− c+ 1;

−x2
1− x2

)
= F

(
a2, c2 − b2, c2;

x2
x2 − 1

)
= (1− x2)

aF (a2, b2, c2;x2).

In a similar way, we can rewrite y4(x) as

y4(x) =

(
−x2
1− x2

)c−a−b

F
(
c− a, c− b, c− a− b+ 1;

−x2
1− x2

)
= (1− x2)

a(−x2)1−c2(1− x2)
c2−a2−1F

(
1− b2, a2 − c2 + 1, 2− c2;

x2
x2 − 1

)
= (1− x2)

a(−x2)1−c2F (a2 − c2 + 1, b2 − c2 + 1, 2− c2;x2).

Therefore, if we define

z5(x2) = (−x2)−a2F
(
a2, a2 − c2 + 1, a2 − b2 + 1;

1

x2

)
,

z6(x2) = (−x2)−b2F
(
b2 − c2 + 1, b2, b2 − a2 + 1;

1

x2

)
,

z1(x2) = F (a2, b2, c2;x2),

z2(x2) = (−x2)1−c2F (a2 − c2 + 1, b2 − c2 + 1, 2− c2;x2),
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we have

y1(x) = (1− x2)
az5(x2), y2(x) = (1− x2)

az6(x2),

y3(x) = (1− x2)
az1(x2), y4(x) = (1− x2)

az2(x2),
(5.4)

and (z5(x2), z6(x2)) (resp. (z1(x2), z2(x2))) makes a fundamental system of solu-
tions at x2 = ∞ (resp. x2 = 0). Then we can derive from the connection relation
(4.1) the connection relation between these two sets of fundamental systems of
solutions in generic case. We rewrite (4.1) in terms of (a2, b2, c2) by using the
dictionary (5.3), and replace yj(x) by zk(x2) by using (5.4). Then we obtain

z5(x2) =
Γ(a2 − b2 + 1)Γ(1− c2)

Γ(1− b2)Γ(a2 − c2 + 1)
z1(x2) +

Γ(a2 − b2 + 1)Γ(c2 − 1)

Γ(a2)Γ(c2 − b2)
z2(x2),

z6(x2) =
Γ(b2 − a2 + 1)Γ(1− c2)

Γ(1− a2)Γ(b2 − c2 + 1)
z1(x2) +

Γ(b2 − a2 + 1)Γ(c2 − 1)

Γ(b2)Γ(c2 − a2)
z2(x2).

In order to describe the connection relations for logarithmic case, we define loga-
rithmic solutions by using zj . From now on, we use (a, b, c, x) instead of (a2, b2, c2, x2).
We repeat the definition of zj(x) (j = 1, 2, 5, 6):

z1(x) = F (a, b, c;x),

z2(x) = (−x)1−cF (a− c+ 1, b− c+ 1, 2− c;x),

z5(x) = (−x)−aF
(
a, a− c+ 1, a− b+ 1;

1

x

)
,

z6(x) = (−x)−bF
(
b− c+ 1, b, b− a+ 1;

1

x

)
.

(5.5)

When c = 1, we define

ẑ2(x) = lim
c→1

1

1− c
(z2(x)− z1(x))

= log(−x)
∞∑
k=0

(a, k)(b, k)

(k!)2
xk

+

∞∑
k=1

(a, k)(b, k)

(k!)2

k∑
j=1

(
1

a+ j − 1
+

1

b+ j − 1
− 2

j

)
xk.

(5.6)

When

c = m ∈ Z≥2, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1},
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we define

ẑ2(x) = lim
c→m

(
(2− c,m− 2)(m− 1)!

(a− c+ 1,m− 1)(b− c+ 1,m− 1)
z2(x)−

(−1)m−1

m− c
z1(x)

)
= (−1)m−1 log(−x)

∞∑
k=0

(a, k)(b, k)

(m, k)k!
xk

+ (−x)1−m (2−m,m− 2)(m− 1)!

(a−m+ 1,m− 1)(b−m+ 1,m− 1)

×
m−2∑
k=0

(a−m+ 1, k)(b−m+ 1, k)

(2−m, k)k!
xk

+ (−1)m−1
∞∑
k=1

(a, k)(b, k)

(m, k)k!

k∑
j=1

(
1

a+ j − 1
+

1

b+ j − 1
− 1

j
− 1

m+ j − 1

)
xk.

(5.7)
When

c = −m ∈ Z≤0, a, b 6∈ {0,−1, . . . ,−m},

we define

ẑ1(x) = lim
c→−m

(
(c,m)(m+ 1)!

(a,m+ 1)(b,m+ 1)
z1(x)−

(−1)m+1

c+m
z2(x)

)
= xm+1 log(−x)

∞∑
k=0

(a+m+ 1, k)(b+m+ 1, k)

(m+ 2, k)k!
xk

+
(−m,m)(m+ 1)!

(a,m+ 1)(b,m+ 1)

m∑
k=0

(a, k)(b, k)

(−m, k)k!
xk

+ xm+1
∞∑
k=1

(a+m+ 1, k)(b+m+ 1, k)

(m+ 2, k)k!

×
k∑

j=1

(
1

a+m+ j
+

1

b+m+ j
− 1

j
− 1

m+ 1 + j

)
xk.

(5.8)

When a = b, we define

ẑ6(x) = lim
b→a

1

b− a
(z6(x)− z5(x))

= −(−x)−a log(−x)
∞∑
k=0

(a, k)(a− c+ 1, k)

(k!)2
x−k

+ (−x)−a
∞∑
k=0

(a, k)(a− c+ 1, k)

(k!)2

k∑
j=1

(
1

a+ j − 1
+

1

a− c+ j
− 2

j

)
x−k.

(5.9)
When

a− b = n ∈ Z≥1, b, b− c+ 1 6∈ {0,−1, . . . ,−n+ 1},
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we define

ẑ6(x) = lim
b→a−n

(
(b− a+ 1, n− 1)n!

(b, n)(b− c+ 1, n)
z6(x)−

(−1)n

b− a+ n
z5(x)

)
= −(−1)n(−x)−a log(−x)

∞∑
k=0

(a, k)(a− c+ 1, k)

(n+ 1, k)k!
x−k

+ (−x)−a+n (1− n, n− 1)n!

(a− n, n)(a− c− n+ 1, n)

n−1∑
k=0

(a− n, k)(a− c− n+ 1, k)

(1− n, k)k!
x−k

+ (−1)n(−x)−a
∞∑
k=1

(a, k)(a− c+ 1, k)

(n+ 1, k)k!

×
k∑

j=1

(
1

a+ j − 1
+

1

a− c+ j
− 1

j
− 1

n+ j

)
x−k.

(5.10)
When

b− a = n ∈ Z≥1, a, a− c+ 1 6∈ {0,−1, . . . ,−n+ 1},
we define

ẑ5(x) = lim
a→b−n

(
(a− b+ 1, n− 1)n!

(a, n)(a− c+ 1, n)
z5(x)−

(−1)n

a− b+ n
z6(x)

)
= −(−1)n(−x)−b log(−x)

∞∑
k=0

(b, k)(b− c+ 1, k)

(n+ 1, k)k!
x−k

+ (−x)−b+n (1− n, n− 1)n!

(b− n, n)(b− c− n+ 1, n)

n−1∑
k=0

(b− n, k)(b− c− n+ 1, k)

(1− n, k)k!
x−k

+ (−1)n(−x)−b
∞∑
k=1

(b, k)(b− c+ 1, k)

(n+ 1, k)k!

×
k∑

j=1

(
1

b+ j − 1
+

1

b− c+ j
− 1

j
− 1

n+ j

)
x−k.

(5.11)
Here we note that z1(x), ẑ1(x), z2(x) and ẑ2(x) are symmetric in (a, b). Also, when
a 6= b, z6(x) (resp. ẑ6(x)) is obtained from z5(x) (resp. ẑ5(x)) by exchanging a
and b.

By using zj(x), ẑj(x) (j = 1, 2, 5, 6), we can describe the connection relations
between x = ∞ and x = 0. The connection relations for non-logarithmic cases
can be directly obtained from Theorem 4.1 by applying the dictionary (5.3), (5.4).
For the logarithmic cases, we derive the connection relations by taking the limits
as in the proof of Theorem 4.1. In these ways, we obtain the following results.

Theorem 5.1. Let z1(x), z2(x), z5(x), z6(x) be defined by (5.5), ẑ2(x) by (5.6)
and (5.7), ẑ1(x) by (5.8), ẑ6(x) by (5.9) and (5.10), and ẑ5(x) by (5.11). The
following relations hold on the domain D∞0 = C \ [0,+∞).
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(i) (generic:generic) If

a− b 6∈ Z, c 6∈ Z,

we have

z5(x) =
Γ(a− b+ 1)Γ(1− c)

Γ(1− b)Γ(a− c+ 1)
z1(x) +

Γ(a− b+ 1)Γ(c− 1)

Γ(a)Γ(c− b)
z2(x),

z6(x) =
Γ(b− a+ 1)Γ(1− c)

Γ(1− a)Γ(b− c+ 1)
z1(x) +

Γ(b− a+ 1)Γ(c− 1)

Γ(b)Γ(c− a)
z2(x).

(5.12)

(ii) (logarithmic:generic)
(ii-1) If

a− b = n ∈ Z≥0, b, b− c+ 1 6∈ {0,−1, . . . ,−n+ 1}, c 6∈ Z,

we have

z5(x) =
n!Γ(1− c)

Γ(1− a+ n)Γ(a− c+ 1)
z1(x) +

n!Γ(c− 1)

Γ(a)Γ(c− a+ n)
z2(x),

ẑ6(x) =
(−n, n)Γ(1− c)

Γ(1− a+ n)Γ(a− c+ 1)
(ψ(1) + ψ(n+ 1)− ψ(a− c+ 1)− ψ(1− a))z1(x)

+
(−n, n)Γ(c− 1)

Γ(a)Γ(c− a+ n)
(ψ(1) + ψ(n+ 1)− ψ(a)− ψ(c− a))z2(x).

(5.13)
(ii-2) If

b− a = n ∈ Z≥1, a, a− c+ 1 6∈ {0,−1, . . . ,−n+ 1}, c 6∈ Z,

we have

ẑ5(x) =
(−n, n)Γ(1− c)

Γ(1− b+ n)Γ(b− c+ 1)
(ψ(1) + ψ(n+ 1)− ψ(b− c+ 1)− ψ(1− b))z1(x)

+
(−n, n)Γ(c− 1)

Γ(b)Γ(c− b+ n)
(ψ(1) + ψ(n+ 1)− ψ(b)− ψ(c− b))z2(x),

z6(x) =
n!Γ(1− c)

Γ(1− b+ n)Γ(b− c+ 1)
z1(x) +

n!Γ(c− 1)

Γ(b)Γ(c− b+ n)
z2(x).

(5.14)
(iii) (apparent:generic)
(iii-1) If

a− b = n ∈ Z≥1, b = −l (l ∈ {0, 1, . . . , n− 1}), c 6∈ Z,

we have

z5(x) =
(l + 1, n− l)

(1− c, n− l)
z1(x) +

(n− l, l + 1)

(c− 1, l + 1)
z2(x),

z6(x) =


(c, l)

(n− l, l)
z1(x) (l < n− 1),

z2(x) (l = n− 1).

(5.15)
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(iii-2) If
b− a = n ∈ Z≥1, a = −l (l ∈ {0, 1, . . . , n− 1}), c 6∈ Z,

we have

z5(x) =


(c, l)

(n− l, l)
z1(x) (l < n− 1),

z2(x) (l = n− 1),

z6(x) =
(l + 1, n− l)

(1− c, n− l)
z1(x) +

(n− l, l + 1)

(c− 1, l + 1)
z2(x).

(5.16)

(iv) (generic:logarithmic)
(iv-1) If

a− b 6∈ Z, c = m ∈ Z≥1, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1},

we have

z5(x) =
Γ(a− b+ 1)

(1−m,m− 1)Γ(a−m+ 1)Γ(1− b)
(ψ(1) + ψ(m)− ψ(a)− ψ(1− b))z1(x)

− Γ(a− b+ 1)

(m− 1)!Γ(a−m+ 1)Γ(1− b)
ẑ2(x),

z6(x) =
Γ(b− a+ 1)

(1−m,m− 1)Γ(b−m+ 1)Γ(1− a)
(ψ(1) + ψ(m)− ψ(b)− ψ(1− a))z1(x)

− Γ(b− a+ 1)

(m− 1)!Γ(b−m+ 1)Γ(1− a)
ẑ2(x).

(5.17)
(iv-2) If

a− b 6∈ Z, c = −m ∈ Z≤0, a, b 6∈ {0,−1, . . . ,−m},

we have

z5(x) = − Γ(a− b+ 1)

(m+ 1)!Γ(a)Γ(−b−m)
ẑ1(x)

+
Γ(a− b+ 1)

(m+ 1)!Γ(a)Γ(−b−m)

× (ψ(1) + ψ(m+ 2)− ψ(a+m+ 1)− ψ(−b−m))z2(x),

z6(x) = − Γ(b− a+ 1)

(m+ 1)!Γ(b)Γ(−a−m)
ẑ1(x)

+
Γ(b− a+ 1)

(m+ 1)!Γ(b)Γ(−a−m)

× (ψ(1) + ψ(m+ 2)− ψ(b+m+ 1)− ψ(−a−m))z2(x).

(5.18)

(v) (logarithmic:logarithmic)
(v-1) If

a− b = n ∈ Z≥0, b, b− c+ 1 6∈ {0,−1, . . . ,−n+ 1},
c = m ∈ Z≥1, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1},
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we have

z5(x) =
n!

(1−m,m− 1)Γ(a−m+ 1)Γ(1− a+ n)

× (ψ(1) + ψ(m)− ψ(a)− ψ(1− a+ n))z1(x)

− n!

(m− 1)!Γ(a−m+ 1)Γ(1− a+ n)
ẑ2(x),

ẑ6(x) =
(−n, n)

(1−m,m− 1)Γ(a−m+ 1)Γ(1− a+ n)

(
(ψ(1) + ψ(m)− ψ(a)− ψ(1− a+ n))

× (ψ(1) + ψ(n+ 1)− ψ(a−m+ 1)− ψ(1− a))− π2

sin2 πa

)
z1(x)

− (−n, n)
(m− 1)!Γ(a−m+ 1)Γ(1− a+ n)

× (ψ(1) + ψ(n+ 1)− ψ(a−m+ 1)− ψ(1− a))ẑ2(x).
(5.19)

(v-2) If

a− b = n ∈ Z≥0, b, b− c+ 1 6∈ {0,−1, . . . ,−n+ 1},
c = −m ∈ Z≤0, a, b 6∈ {0,−1, . . . ,−m},

we have

z5(x) = − n!

(m+ 1)!Γ(a)Γ(n− a−m)
ẑ1(x)

+
n!

(−m− 1,m+ 1)Γ(a)Γ(n− a−m)

× (ψ(1) + ψ(m+ 2)− ψ(a+m+ 1)− ψ(n− a−m))z2(x),

ẑ6(x) = − (−n, n)
(m+ 1)!Γ(a)Γ(n− a−m)

× (ψ(1) + ψ(n+ 1)− ψ(a)− ψ(−a−m))ẑ1(x)

+
(−n, n)

(−m− 1,m+ 1)Γ(a)Γ(n− a−m)

(
(ψ(1) + ψ(n+ 1)− ψ(a)− ψ(−a−m))

× (ψ(1) + ψ(m+ 2)− ψ(a+m+ 1)− ψ(n− a−m))− π2

sin2 πa

)
z2(x).

(5.20)

(v-3) If

b− a = n ∈ Z≥1, a, a− c+ 1 6∈ {0,−1, . . . ,−n+ 1},
c = m ∈ Z≥1, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1},
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we have

ẑ5(x) =
(−n, n)

(1−m,m− 1)Γ(b−m+ 1)Γ(1− b+ n)

(
(ψ(1) + ψ(m)− ψ(b)− ψ(1− b+ n))

× (ψ(1) + ψ(n+ 1)− ψ(b−m+ 1)− ψ(1− b))− π2

sin2 πb

)
z1(x)

− (−n, n)
(m− 1)!Γ(b−m+ 1)Γ(1− b+ n)

× (ψ(1) + ψ(n+ 1)− ψ(b−m+ 1)− ψ(1− b))ẑ2(x),

z6(x) =
n!

(1−m,m− 1)Γ(b−m+ 1)Γ(1− b+ n)

× (ψ(1) + ψ(m)− ψ(b)− ψ(1− b+ n))z1(x)

− n!

(m− 1)!Γ(b−m+ 1)Γ(1− b+ n)
ẑ2(x).

(5.21)

(v-4) If

b− a = n ∈ Z≥0, a, a− c+ 1 6∈ {0,−1, . . . ,−n+ 1},
c = −m ∈ Z≤0, a, b 6∈ {0,−1, . . . ,−m},

we have

ẑ5(x) = − (−n, n)
(m+ 1)!Γ(b)Γ(n− b−m)

× (ψ(1) + ψ(n+ 1)− ψ(b)− ψ(−b−m))ẑ1(x)

+
(−n, n)

(−m− 1,m+ 1)Γ(b)Γ(n− b−m)

(
(ψ(1) + ψ(n+ 1)− ψ(b)− ψ(−b−m))

× (ψ(1) + ψ(m+ 2)− ψ(b+m+ 1)− ψ(n− b−m))− π2

sin2 πb

)
z2(x),

z6(x) = − n!

(m+ 1)!Γ(b)Γ(n− b−m)
ẑ1(x)

+
n!

(−m− 1,m+ 1)Γ(b)Γ(n− b−m)

× (ψ(1) + ψ(m+ 2)− ψ(b+m+ 1)− ψ(n− b−m))z2(x).
(5.22)

(vi) (apparent:logarithmic)

(vi-1) If

a− b = n ∈ Z≥1, b = −l (0 ≤ l ≤ n− 1),

c = m ∈ Z≥1, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1},
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we have

z5(x) =
(n− l −m+ 1,m+ l)

(1−m,m− 1)l!
(ψ(1) + ψ(m)− ψ(n− l)− ψ(l + 1))z1(x)

− (n− l −m+ 1,m+ l)

(m− 1)!l!
ẑ2(x),

z6(x) =
(m, l)

(n− l, l)
z1(x).

(5.23)

(vi-2) If
a− b = n ∈ Z≥1, b = −l (0 ≤ l ≤ n− 1),

c = −m ∈ Z≤0, a, b 6∈ {0,−1, . . . ,−m},
we have

z5(x) = − (l −m,n− l +m+ 1)

(m+ 1)!(n− l − 1)!
ẑ1(x)

+
(l −m,n− l +m+ 1)

(−m− 1,m+ 1)(n− l − 1)!

× (ψ(1) + ψ(m+ 2)− ψ(l −m)− ψ(n− l +m+ 1))z2(x),

z6(x) =
l!

(m+ 1)!(n− l +m+ 1, l −m− 1)
z2(x).

(5.24)

(vi-3) If
b− a = n ∈ Z≥1, a = −l (0 ≤ l ≤ n− 1),

c = m ∈ Z≥1, a− c, b− c 6∈ {−1,−2, . . . ,−m+ 1},
we have

z5(x) =
(m, l)

(n− l, l)
z1(x),

z6(x) =
(n− l −m+ 1,m+ l)

(1−m,m− 1)l!
(ψ(1) + ψ(m)− ψ(n− l)− ψ(l + 1))z1(x)

− (n− l −m+ 1,m+ l)

(m− 1)!l!
ẑ2(x).

(5.25)

(vi-4) If
b− a = n ∈ Z≥1, a = −l (0 ≤ l ≤ n− 1),

c = −m ∈ Z≤0, a, b 6∈ {0,−1, . . . ,−m},
we have

z5(x) =
l!

(m+ 1)!(n− l +m+ 1, l −m− 1)
z2(x),

z6(x) = − (l −m,n− l +m+ 1)

(m+ 1)!(n− l − 1)!
ẑ1(x)

+
(l −m,n− l +m+ 1)

(−m− 1,m+ 1)(n− l − 1)!

× (ψ(1) + ψ(m+ 2)− ψ(l −m)− ψ(n− l +m+ 1))z2(x).

(5.26)
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(vii) (generic:apparent)

(vii-1) If

a− b 6∈ Z, c = m ∈ Z≥2, b = l ∈ {1, 2, . . . ,m− 1},

we have

z5(x) =


(2−m, l − 1)

(1− a, l − 1)
z2(x) (l < m− 1),

m− a− 1

m− 1
z1(x) +

(1,m− 2)

(a−m+ 2,m− 2)
z2(x) (l = m− 1),

z6(x) =


(a− l, l)

(m− l, l)
z1(x) +

(l,m− l − 1)

(l − a+ 1,m− l − 1)
z2(x) (l < m− 1),

z2(x) (l = m− 1).

(5.27)

(vii-2) If

a− b 6∈ Z, c = −m ∈ Z≤0, a = −l (l ∈ {0, 1, . . . ,m}),

we have

z5(x) =


(−m, l)
(b, l)

z1(x) (l < m),

(1,m)

(1− b−m,m)
z1(x) +

b+m

m+ 1
z2(x) (l = m),

z6(x) =


(l + 1,m− l)

(b+ l + 1,m− l)
z1(x) +

(b, l + 1)

(−m− 1, l + 1)
z2(x) (l < m),

z1(x) (l = m).

(5.28)

(viii) (logarithmic:apparent)

(viii-1) If

a− b = n ∈ Z≥0, b, b− c+ 1 6∈ {0,−1, . . . ,−n+ 1},
c = m ∈ Z≥2, b = l ∈ {1, 2, . . . ,m− 1},

we have

z5(x) =
(m− l, l − 1)

(n+ 1, l − 1)
z2(x),

ẑ6(x) = − (l − 1)!n!

(m− n− l, n+ l)
z1(x)

+
(−1)n(m− l, l − 1)

(n+ 1, l − 1)
(ψ(1) + ψ(n+ 1)− ψ(m− l − n)− ψ(n+ l))z2(x).

(5.29)

(viii-2) If

a− b = n ∈ Z≥0, b, b− c+ 1 6∈ {0,−1, . . . ,−n+ 1},
c = −m ∈ Z≤0, a = −l (l ∈ {0, 1, . . . ,m}),
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we have

z5(x) =
(m− l + 1, l)

(n+ 1, l)
z1(x),

ẑ6(x) =
(−1)n(m− l + 1, l)

(n+ 1, l)
(ψ(1) + ψ(n+ 1)− ψ(m− l + 1)− ψ(l + 1))z1(x)

− n!l!

(m− n− l + 1, n+ l + 1)
z2(x).

(5.30)
(viii-3) If

b− a = n ∈ Z≥0, a, a− c+ 1 6∈ {0,−1, . . . ,−n+ 1},
c = m ∈ Z≥2, a = l ∈ {1, 2, . . . ,m− 1},

we have

ẑ5(x) = − (l − 1)!n!

(m− n− l, n+ l)
z1(x)

+
(−1)n(m− l, l − 1)

(n+ 1, l − 1)
(ψ(1) + ψ(n+ 1)− ψ(m− l − n)− ψ(n+ l))z2(x),

z6(x) =
(m− l, l − 1)

(n+ 1, l − 1)
z2(x).

(5.31)
(viii-4) If

b− a = n ∈ Z≥0, a, a− c+ 1 6∈ {0,−1, . . . ,−n+ 1},
c = −m ∈ Z≤0, b = −l (l ∈ {0, 1, . . . ,m}),

we have

ẑ5(x) =
(−1)n(m− l + 1, l)

(n+ 1, l)
(ψ(1) + ψ(n+ 1)− ψ(m− l + 1)− ψ(l + 1))z1(x)

− n!l!

(m− n− l + 1, n+ l + 1)
z2(x),

z6(x) =
(m− l + 1, l)

(n+ 1, l)
z1(x).

(5.32)
(ix) (apparent:apparent)
(ix-1) If

a− b = n ∈ Z≥1, b = −l (l ∈ {0, 1, . . . , n− 1}),
c = m ∈ Z≥2, a− c ∈ {−1,−2, . . . ,−m+ 1},

we have

z5(x) =


(n− l + 1,m− n+ l − 1)

(n+ 1,m− n+ l − 1)
z2(x) (l < n− 1),

− n

m− 1
z1(x) +

(1,m− 2)

(n+ 1,m− 2)
z2(x) (l = n− 1),

z6(x) =


(m, l)

(n− l, l)
z1(x) (l < n− 1),

z2(x) (l = n− 1).

(5.33)
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(ix-2) If

a− b = n ∈ Z≥1, b = −l (l ∈ {0, 1, . . . , n− 1}),
c = −m ∈ Z≤0, c− b ∈ {0,−1, . . . ,−m},

we have

z5(x) =


(1,m)

(n+ 1,m)
z1(x)−

n

m+ 1
z2(x) (l = 0),

(l + 1,m− l)

(n+ 1,m− l)
z1(x) (l > 0),

z6(x) =


z1(x) (l = 0),
(m− l + 1, l)

(1− n, l)
z1(x) +

(m+ 2, n− l − 1)

(l + 1, n− l − 1)
z2(x) (0 < l < n− 1),

z2(x) (0 < l = n− 1).

(5.34)

(ix-3) If

b− a = n ∈ Z≥1, a = −l (l ∈ {0, 1, . . . , n− 1}),
c = m ∈ Z≥2, b ∈ {1, 2, . . . ,m+ 1},

we have

z5(x) =


nz1(x) + z2(x) (1 = n− l = m− 1),

z2(x) (1 = n− l < m− 1),
(m, l)

(n− l, l)
z1(x) (1 < n− l ≤ m− 1),

z6(x) =


(l + 1, n− l)

(1−m,n− l)
z1(x) +

(n− l,m− n+ l − 1)

(n+ 1,m− n+ l − 1)
z2(x) (n− l < m− 1),

z2(x) (n− l = m− 1).

(5.35)

(ix-4) If

b− a = n ∈ Z≥1, a = −l (l ∈ {0, 1, . . . , n− 1}),
c = −m ∈ Z≤0, a ∈ {0,−1, . . . ,−m},

we have

z5(x) =


(m− l + 1, l)

(1− n, l)
z1(x) (l < n− 1, l < m),

(1,m)

(1− n,m)
z1(x) +

n

m+ 1
z2(x) (l < n− 1, l = m),

z2(x) (l = n− 1),

z6(x) =


(l + 1,m− l)

(n+ 1,m− l)
z1(x) +

(n− l, l + 1)

(−m− 1, l + 1)
z2(x) (l < m),

z1(x) (l = m).

(5.36)
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Remark 5.1. Thanks to the symmetric nature with respect to (a, b), we can
directly derive the relation (5.14) from (5.13) by replacing

(z5(x), ẑ6(x)) → (z6(x), ẑ5(x)), (a, b) → (b, a).

This way of derivation works also for obtaining

(5.19) → (5.21), (5.20) → (5.22),

(5.23) → (5.25), (5.24) → (5.26),

(5.29) → (5.31), (5.30) → (5.32).

6 Direct applications

6.1 Monodromy representation

Let Y(x) be a fundamental system of solutions of the hypergeometric differential
equation (1.1) at x = 1/2. We denote the fundamental group π1(P1\{0, 1,∞}, 1/2)
by G. The monodromy representation

ρ : G→ GL(2,C)

for (1.1) with respect to Y(x) is defined by

γ∗Y(x) = Y(x)ρ(γ)

for γ ∈ G, where γ∗ denotes the analytic continuation along γ. Let γ0 (resp. γ1)
be a loop with base point 1/2 encircling x = 0 (resp. x = 1) once in the positive
direction. For example, we may take

γ0(t) =
1

2
eit, γ1(t) = 1− 1

2
eit (t ∈ [0, 2π]).

We regard γ0, γ1 as elements in the fundamental group G. Then G is generated
by γ0 and γ1. Therefore the monodromy representation ρ is determined by two
matrices M0,M1 which are defined by

(γ0)∗Y(x) = Y(x)M0, (γ1)∗Y(x) = Y(x)M1.

We shall explain that the connection relation given in Theorem 4.1 determines the
monodromy representation.

According to the conditions for the parameters a, b, c, we take one of

(y1(x), y2(x)), (y1(x), ŷ2(x)), (ŷ1(x), y2(x))

as the fundamental system of solutions Y(x) that determines the monodromy rep-
resentation ρ. If c, c− a− b 6∈ Z, (y1(x), y2(x)) and (y3(x), y4(x)) are fundamental
systems of solutions at 1/2. By the definition, we readily see that

(γ0)∗(y1(x), y2(x)) = (y1(x), y2(x))

(
1

e2πi(−c)

)
,

(γ1)∗(y3(x), y4(x)) = (y3(x), y4(x))

(
1

e2πi(c−a−b)

)
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hold. Then, if we take
Y(x) = (y1(x), y2(x)),

we have

M0 =

(
1

e2πi(−c)

)
.

On the other hand, Theorem 4.1 (i) explicitly gives the matrix C ∈ GL(2,C)
satisfying

(y1(x), y2(x)) = (y3(x), y4(x))C.

Then the matrix M1 is also explicitly given by

M1 = C−1

(
1

e2πi(c−a−b)

)
C.

Thus we obtain the monodromy representation for the case c, c− a− b 6∈ Z. Note
that the entries of the inverse C−1 are explicitly given in Corollary 4.4. However,
we find that the entries of M1 are not so simple.

In this way, we can obtain the monodromy representation from the connection
relation. In order to get the monodromy representations for the other cases, we
need to see the analytic continuations of fundamental systems of solutions at x = 0
(resp. x = 1) of logarithmic cases along γ0 (resp. γ1). By their definitions, we get

(γ0)∗(y1(x), ŷ2(x)) = (y1(x), ŷ2(x))

(
1 2πi

1

)
,

(γ0)∗(ŷ1(x), y2(x)) = (ŷ1(x), y2(x))

(
1
2πi 1

)
,

(γ1)∗(y3(x), ŷ4(x)) = (y3(x), ŷ4(x))

(
1 2πi

1

)
,

(γ1)∗(ŷ3(x), y4(x)) = (ŷ3(x), y4(x))

(
1
2πi 1

)
.

We have only to notice ŷ2(x) = y1(x) log x+ (single-valued function) etc.. Thence
the connection relations in Theorem 4.1 give the monodromy representations with
respect to Y(x) = (y1(x), y2(x)) or (y1(x), ŷ2(x)) or (ŷ1(x), y2(x)).

6.2 Connection relations for Legendre differential equation

The Legendre differential equation

(1− t2)
d2u

dt2
− 2t

du

dt
+ ν(ν + 1)u = 0 (6.1)

is also a fundamental differential equation in physics and mathematics. The Rie-
mann scheme is given by t = 1 t = −1 t = ∞

0 0 −ν
0 0 ν + 1

 .
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This implies that the logarithmic cases occurs at t = 1 and t = −1. Since the
Legendre equation (6.1) can be transformed to the Gauss equation (1.1), we can
derive the connection relation for (6.1) from Theorem 4.1. Actually, if we change
the independent variable t of (6.1) to

x =
1− t

2
,

the transformed differential equation in x coincides with the hypergeometric dif-
ferential equation (1.1) with parameter (a, b, c) = (−ν, ν + 1, 1). In particular, we
have

c = 1, c− a− b = 0,

which falls into the case studied in Theorem 4.1 (v-1).
We can get the local solutions of (6.1) at t = 1 and t = −1 by transforming

the local solutions of (1.1) given in Section 3. For x ∈ D01, we defined

arg x = arg(1− x) = 0 (x ∈ [0, 1]).

Then we consider the solutions of (6.1) on

D−1,1 = C \ ((−∞,−1] ∪ [1,+∞)),

and determine the branches of the solutions by

arg

(
1− t

2

)
= arg

(
t+ 1

2

)
= 0 (t ∈ [−1, 1]).

Now, from (3.2) and (3.9), we obtain the local solutions

u1(t) = F
(
−ν, ν + 1, 1;

1− t

2

)
,

û2(t) = u1(t) log

(
1− t

2

)
+

∞∑
k=1

(−ν, k)(ν + 1, k)

(k!)2

k∑
j=1

(
1

−ν + j − 1
+

1

ν + j
− 2

j

)(
1− t

2

)k

of (6.1) at t = 1. If ν ∈ Z, the infinite series in u1(t) and û2(t) become finite sums.
Similarly, from (3.4) and (3.14) we obtain the local solutions

u3(t) = F
(
−ν, ν + 1, 1;

t+ 1

2

)
,

û4(t) = u3(t) log

(
t+ 1

2

)
+

∞∑
k=1

(−ν, k)(ν + 1, k)

(k!)2

k∑
j=1

(
1

−ν + j − 1
+

1

ν + j
− 2

j

)(
t+ 1

2

)k
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of (6.1) at t = −1. When ν ∈ Z, the infinite series in u3(t) and û4(t) become finite
sums. Since

u1(t) = y1(x), û2(t) = ŷ2(x), u3(t) = y3(x), û4(t) = ŷ4(x),

we obtain the connection relation between (u1(t), û2(t)) and (u3(t), û4(t)) from the
connection relation (4.8) in Theorem 4.1 (v-1).

Proposition 6.1. On the domain D−1,1, the following relations hold:

u1(t) = − sinπν

π
(2ψ(1)− ψ(−ν)− ψ(ν + 1))u3(x) +

sinπν

π
û4(t),

û2(t) = − sinπν

π

(
(2ψ(1)− ψ(−ν)− ψ(ν + 1))2 − π2

sin2 πν

)
u3(x)

+
sinπν

π
(2ψ(1)− ψ(−ν)− ψ(ν + 1))û4(t).

(6.2)

Remark that the connection coefficients have removable singular points at ν ∈
Z. Therefore the connection relation (6.2) holds for all ν ∈ C. We note that the
connection relation is also derived by using an integral representation [1, Theorem
9.5].

Appendix

For each connection relation given in Theorem 4.1 and Theorem 5.1, let A be the
matrix of coefficients. Then the inverse relation is given by the inverse matrix
A−1. Here we give a table of A−1 or |A| for all relations, which will be useful to
derive their inverse relations.

Table 1: For relations in Theorem 4.1.

(i) |A| = 1− c

a+ b− c

(ii-1) |A| = (−1)mΓ(m)2Γ(1− a)Γ(1− b)

(m− a− b)Γ(m− a)Γ(m− b)

(ii-2) |A| = (−1)mΓ(m+ 2)2Γ(−a−m)Γ(−b−m)

(a+ b+m)Γ(1− a)Γ(1− b)

(iii-1) For the case l < m− 1,

A =

(
(l,m−l)

(l−b,m−l)
(m−l,l)
(b−l,l)

(b−l+1,l−1)
(m−l,l−1) 0

)
, A−1 =

(
0 (m−l,l−1)

(b−l+1,l−1)
(b−l,l)
(m−l,l)

(l,m−l−1)
(l−b+1,m−l−1)

)
,

and for the case l = m− 1,

A =

(
m−1

m−b−1
(1,m−1)

(b−m+1,m−1)

0 1

)
, A−1 =

(
m−b−1
m−1

(1,m−2)
(b−m+2,m−2)

0 1

)
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(iii-2) For the case l < m,

A =

(
(m+b−l+1,l)
(m−l+1,l) 0

(l+1,m−l+1)
(l−m−b,m−l+1)

(m−l+1,l+1)
(m−l+b,l+1)

)
, A−1 =

(
(m−l+1,l)

(m+b−l+1,l) 0
(l+1,m−l)

(l−m−b+1,m−l)
(m−l+b,l+1)
(m−l+1,l+1)

)
,

and for the case l = m,

A =

(
0 1

−m+1
b

(1,m+1)
(b,m+1)

)
, A−1 =

(
(1,m)

(b+1,m) − b
m+1

1 0

)

(iv-1) |A| = (−1)n(1− a− b+ n)Γ(a)Γ(b)

n!2Γ(a− n)Γ(b− n)

(iv-2) |A| = − (−1)n(1− a− b− n)Γ(a+ n)Γ(b+ n)

n!2Γ(a)Γ(b)

(v-1) |A| = (−1)m+n+1Γ(m)2Γ(a−m+ 1)Γ(1− a+ n)

n!2Γ(m− a)Γ(a− n)

(v-2) |A| = (−1)m+n+1Γ(m)2Γ(1− a)Γ(a−m+ n+ 1)

n!2Γ(a)Γ(m− n− a)

(v-3) |A| = (−1)m+n+1Γ(m+ 2)2Γ(a)Γ(n− a−m)

n!2Γ(1− a)Γ(a+m− n+ 1)

(v-4) |A| = (−1)m+n+1Γ(m+ 2)2Γ(−a−m)Γ(a+ n)

n!2Γ(a+m+ 1)Γ(1− a− n)

(vi-1) |A| = Γ(m)(n+ 1, l − 1)

(−n, n)Γ(l)Γ(m− l − n)(m− l, l − 1)

(vi-2) |A| = − Γ(m)(n+ 1, l − n− 1)

(−n, n)Γ(m− l)Γ(l − n)(m− l + n, l − n− 1)

(vi-3) |A| = − Γ(m+ 2)(n+ 1, l)

(−n, n)Γ(l + 1)Γ(m− l − n+ 1)(m− l + 1, l)

(vi-4) |A| = Γ(m+ 2)(n+ 1, l − n)

(−n, n)Γ(m− l + 1)Γ(l − n+ 1)(m− l + n+ 1, l − n)

(vii-1) For the case l < n− 1,

A =

(
0 (n−l,l)

(c,l)
(c−1,l+1)
(n−l,l+1)

(l+1,n−l−1)
(2−c,n−l−1)

)
, A−1 =

(
(l+1,n−l)
(1−c,n−l)

(n−l,l+1)
(c−1,l+1)

(c,l)
(n−l,l) 0

)
,

and for the case l = n− 1,

A =

(
1−c
n

(1,n−1)
(c,n−1)

0 1

)
, A−1 =

(
n

1−c
(1,n)

(c−1,n)

0 1

)
(vii-2) For the case l < n− 1,

A =

(
(n−l,l)
(c,l) 0

(l+1,n−l−1)
(2−c,n−l−1)

(c−1,l+1)
(n−l,l+1)

)
, A−1 =

(
(c,l)

(n−l,l) 0
(l+1,n−l)
(1−c,n−l)

(n−l,l+1)
(c−1,l+1)

)
,
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and for the case l = n− 1,

A =

(
(1,n−1)
(c,n−1)

1−c
n

1 0

)
, A−1 =

(
0 1
n

1−c
(1,n)

(c−1,n)

)

(viii-1) |A| = (n− l, l)(1, l)(1−m,m− 1)

(m, l)(n−m− l + 1,m+ l)

(viii-2) |A| = − (n− l, l)(1, l)(1−m,m− 1)

(m, l)(n−m− l + 1,m+ l)

(viii-3) |A| = − (l + 1, n− l − 1)(1, l −m− 1)(−m− 1,m+ 1)

(m+ 2, n− l − 1)(n− l, l + 1)

(viii-4) |A| = (l + 1, n− l − 1)(1, l −m− 1)(−m− 1,m+ 1)

(m+ 2, n− l − 1)(n− l, l + 1)

(ix-1) For the case l < m− 1,

A =

(
0 (m−l,n+l−m)

(m,n+l−m)
(n+1,l−1)
(m−l,l−1) 0

)
, A−1 =

(
0 (m−l,l−1)

(n+1,l−1)
(m,n+l−m)

(m−l,n+l−m) 0

)
,

and for the case l = m− 1,

A =

(
−m−1

n
(1,n−1)
(m,n−1)

0 1

)
, A−1 =

(
− n

m−1
(1,n)

(m−1,n)

0 1

)
(ix-2) For the case l = 1,

A =

(
(1,n−1)
(m,n−1) −m−1

n

1 0

)
, A−1 =

(
0 1

− n
m−1

(1,n)
(m−1,n)

)
,

for the case 1 < l < m− 1,

A =

(
(l,n−l)
(m,n−l) 0

(n−l+1,l−1)
(2−m,l−1)

(n+1,m−l−1)
(l,m−l−1)

)
, A−1 =

(
(n,m−l)
(l,m−l) 0

(n−l+1,l)
(1−m,l)

(l,n−l+1)
(m−1,n−l+1)

)
,

and for the case l = m− 1,

A =

(
m−1
n 0
0 1

)
, A−1 =

(
n

m−1 0

0 1

)
(ix-3) For the case m− l = n− 1 = 0,

A =

(
m+ 1 1

0 1

)
, A−1 =

(
1

m+1 − 1
m+1

0 1

)
,

for the case 0 = m− l < n− 1,

A =

(
0 1

−m+1
n

(1,n−1)
(m+2,n−1)

)
, A−1 =

(
(1,n)

(m+1,n) − n
m+1

1 0

)
,
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for the case 0 < m− l = n− 1,

A =

(
n+l
n 0
0 1

)
, A−1 =

(
n

n+l 0

0 1

)
,

and for the case 0 < m− l < n− 1,

A =

(
(n+1,l)

(m−l+1,l) 0
(l+1,m−l+1)
(−n,m−l+1)

(m−l+1,n−m+l−1)
(m+2,n−m+l−1)

)
, A−1 =

(
(m−l+1,l)
(n+1,l) 0

(l+1,m−l)
(1−n,m−l)

(n,l+1)
(m−l+1,l+1)

)

(ix-4) For the case l < m, l < n− 1,

A =

(
(n−l,l)
(−m,l) 0

(l+1,n−l−1)
(m+2,n−l−1)

(m−l+1,l+1)
(−n,l+1)

)
, A−1 =

(
(−m,l)
(n−l,l) 0

(l+1,n−l)
(m+1,n−l)

(n−l,l+1)
(−m−1,l+1)

)
,

for the case l < m, l = n− 1,

A =

(
(1,n−1)

(−m,n−1)
m+1
n

1 0

)
, A−1 =

(
0 1
n

m+1
(1,n)

(−m−1,n)

)
,

for the case l = m < n− 1,

A =

(
0 1

m+1
n

(1,m+1)
(−n,m+1)

)
, A−1 =

(
(1,m)

(1−n,m)
n

m+1

1 0

)
,

and for the case l = m = n− 1,

A =

(
0 1
1 0

)
, A−1 =

(
0 1
1 0

)

Table 2: For relations in Theorem 5.1.

(i) |A| = b− a

c− 1

(ii-1) |A| = n!(−n, n)Γ(1− a)Γ(c− a)

(c− 1)Γ(1− a+ n)Γ(c− a+ n)

(ii-2) |A| = − n!(−n, n)Γ(1− b)Γ(c− b)

(c− 1)Γ(1− b+ n)Γ(c− b+ n)

(iii-1) For the case l < n− 1,

A =

(
(l+1,n−l)
(1−c,n−l)

(n−l,l+1)
(c−1,l+1)

(c,l)
(n−l,l) 0

)
, A−1 =

(
0 (n−l,l)

(c,l)
(c−1,l+1)
(n−l,l+1)

(l+1,n−l−1)
(2−c,n−l−1)

)
,

and for the case l = n− 1,

A =

(
n

1−c
(1,n)

(c−1,n)

0 1

)
, A−1 =

(
1−c
n

(1,n−1)
(c,n−1)

0 1

)
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(iii-2) For the case l < n− 1,

A =

(
(c,l)

(n−l,l) 0
(l+1,n−l)
(1−c,n−l)

(n−l,l+1)
(c−1,l+1)

)
, A−1 =

(
(n−l,l)
(c,l) 0

(l+1,n−l−1)
(2−c,n−l−1)

(c−1,l+1)
(n−l,l+1)

)
,

and for the case l = n− 1,

A =

(
0 1
n

1−c
(1,n)

(c−1,n)

)
, A−1 =

(
(1,n−1)
(c,n−1)

1−c
n

1 0

)

(iv-1) |A| = (a− b)Γ(a)Γ(b)

(1−m,m− 1)(m− 1)!Γ(a−m+ 1)Γ(b−m+ 1)

(iv-2) |A| = (b− a)Γ(a+m+ 1)Γ(b+m+ 1)

(m+ 1)!2Γ(a)Γ(b)

(v-1) |A| = − n!2Γ(a− n)Γ(m− a)

(m− 1)!2Γ(a−m+ 1)Γ(1− a+ n)

(v-2) |A| = n!2Γ(1− a)Γ(a+m− n+ 1)

(m+ 1)!2Γ(a)Γ(n− a−m)

(v-3) |A| = n!2Γ(b− n)Γ(m− b)

(m− 1)!2Γ(b−m+ 1)Γ(1− b+ n)

(v-4) |A| = −n!
2Γ(1− b)Γ(b+m− n+ 1)

(m+ 1)!2Γ(b)Γ(n− b−m)

(vi-1) |A| = (n− l −m+ 1,m+ l)(m, l)

(m− 1)!l!(n− l, l)

(vi-2) |A| = − l!(l −m,n− l +m+ 1)

(m+ 1)!2(n− l − 1)!(n− l +m+ 1, l −m− 1)

(vi-3) |A| = − (n− l −m+ 1,m+ l)(m, l)

(m− 1)!l!(n− l, l)

(vi-4) |A| = l!(l −m,n− l +m+ 1)

(m+ 1)!2(n− l − 1)!(n− l +m+ 1, l −m− 1)

(vii-1) For the case l < m− 1,

A =

(
0 (m−l,l−1)

(a−l+1,l−1)
(a−l,l)
(m−l,l)

(l,m−l−1)
(l−a+1,m−l−1)

)
, A−1 =

(
(l,m−l)

(l−a,m−l)
(m−l,l)
(a−l,l)

(a−l+1,l−1)
(m−l,l−1) 0

)
,

and for the case l = m− 1,

A =

(
m−a−1
m−1

(1,m−2)
(a−m+2,m−2)

0 1

)
, A−1 =

(
m−1

m−a−1
(1,m−1)

(a−m+1,m−1)

0 1

)
(vii-2) For the case l < m,

A =

(
(−m,l)
(b,l) 0

(l+1,m−l)
(b+l+1,m−l)

(b,l+1)
(−m−1,l+1)

)
, A−1 =

(
(b,l)

(−m,l) 0
(l+1,m−l+1)
(b+l,m−l+1)

(−m−1,l+1)
(b,l+1)

)
,
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and for the case l = m,

A =

(
(1,m)

(1−b−m,m)
b+m
m+1

1 0

)
, A−1 =

(
0 1

m+1
b+m

(1,m+1)
(−b−m,m+1)

)

(viii-1) |A| = (l − 1)!n!(m− l, l − 1)

(m− n− l, n+ l)(n+ 1, l − 1)

(viii-2) |A| = − n!l!(m− l + 1, l)

(m− n− l + 1, n+ l + 1)(n+ 1, l)

(viii-3) |A| = − (l − 1)!n!(m− l, l − 1)

(m− n− l, n+ l)(n+ 1, l − 1)

(viii-4) |A| = n!l!(m− l + 1, l)

(m− n− l + 1, n+ l + 1)(n+ 1, l)

(ix-1) For the case l < n− 1,

A =

(
0 (n−l+1,m−n+l−1)

(n+1,m−n+l−1)
(m,l)
(n−l,l) 0

)
, A−1 =

(
0 (n−l,l)

(m,l)
(n+1,m−n+l−1)

(n−l+1,m−n+l−1) 0

)
,

and for the case l = n− 1,

A =

(
− n

m−1
(1,m−2)

(n+1,m−2)

0 1

)
, A−1 =

(
−m−1

n
(1,m−1)
(n,m−1)

0 1

)
(ix-2) For the case l = 0,

A =

(
(1,m)

(n+1,m) − n
m+1

1 0

)
, A−1 =

(
0 1

−m+1
n

(1,m+1)
(n,m+1)

)
,

for the case 0 < l < n− 1,

A =

(
(l+1,m−l)
(n+1,m−l) 0
(m−l+1,l)
(1−n,l)

(m+2,n−l−1)
(l+1,n−l−1)

)
, A−1 =

(
(m+1,n−l)
(l+1,n−l) 0

(m−l+1,l+1)
(−n,l+1)

(l+1,m−l+1)
(n,m−l+1)

)
,

and for the case 0 < l = n− 1,

A =

(
n

m+1 0

0 1

)
, A−1 =

(
m+1
n 0
0 1

)
(ix-3) For the case 1 = n− l = m− 1,

A =

(
n 1
0 1

)
, A−1 =

(
1
n − 1

n
0 1

)
,

for the case 1 = n− l < m− 1,

A =

(
0 1
n

1−m
(1,m−2)

(n+1,m−2)

)
, A−1 =

(
(1,m−1)
(n,m−1)

1−m
n

1 0

)
,
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for the case 1 < n− l < m− 1,

A =

(
(m,l)
(n−l,l) 0

(l+1,n−l)
(1−m,n−l)

(n−l,m−n+l−1)
(n+1,m−n+l−1)

)
, A−1 =

(
(n−l,l)
(m,l) 0

(l+1,n−l−1)
(2−m,n−l−1)

(m−1,l+1)
(n−l,l+1)

)
,

and for the case 1 < n− l = m− 1,

A =

(
n

m−1 0

0 1

)
, A−1 =

(
m−1
n 0
0 1

)
(ix-4) For the case l < n− 1, l < m,

A =

(
(m−l+1,l)
(1−n,l) 0

(l+1,m−l)
(n+1,m−l)

(n−l,l+1)
(−m−1,l+1)

)
, A−1 =

(
(n−l,l)
(−m,l) 0

(l+1,m−l+1)
(n,m−l+1)

(m−l+1,l+1)
(−n,l+1)

)
,

for the case l < n− 1, l = m,

A =

(
(1,m)

(1−n,m)
n

m+1

1 0

)
, A−1 =

(
0 1

m+1
n

(1,m+1)
(−n,m+1)

)
,

for the case l = n− 1 < m,

A =

(
0 1
n

m+1
(1,n)

(−m−1,n)

)
, A−1 =

(
(1,n−1)

(−m,n−1)
m+1
n

1 0

)
,

and for the case l = n− 1 = m,

A =

(
0 1
1 0

)
, A−1 =

(
0 1
1 0

)
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