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Abstract.In this note, we show that the asymptotic critical value set of a

polynomial map contains the critical values of a polynomial associated to so

called "bad face" of the Newton polyhedron. For this purpose, we present an

e�ective method to construct rational curves that make the polynomial to

approach asymptotic critical values. In the case when the polynomial map is

Newton non-degenerate at in�nity, we give also a superset of the asymptotic

critical value set including the bifurcation locus. Our main technical tool is

the toric geometry that has been introduced into the study of this question

by A.Némethi and A.Zaharia.

1 Introduction

The bifurcation locus of a polynomial map f : Cn → C is the smallest subset
B(f) ⊂ C such that f is a locally trivial �bration over C \ B(f), [17, A1], [21, Cor
5.1]. It is known that B(f) is the union of the set of critical values f(Singf) and the
set of bifurcation values at in�nity B∞(f) which may be non-empty and disjoint
from f(Singf) even in very simple examples [1]. Finding the bifurcation locus in
the cases n > 2 is a di�cult task and it still remains to be an unreachable ideal.
Nevertheless, one can obtain approximations by supersets of B(f) by exploiting
asymptotical regularity conditions at in�nity.

Jelonek and Kurdyka [11, 12] introduced the set of asymptotic critical values
K∞(f) and established an algorithm for �nding them. Parusi«ski [16] has shown
that K∞(f) is �nite and includes B∞(f). Under the condition that the projective
closure of the generic �bre of f in Pn has only isolated singularities, it is shown in
[15] that the equality B(f) = K∞(f) ∪ f(Singf) holds.

A precedent work [5] established a method to detect the bifurcation set in an
e�cient way. It gave an answer to a question raised in [12] and [6] about the
detection of the bifurcation locus by rational curve with parametric representa-
tion. More concretely, for a real polynomial f : Rn → R of degree ≤ d, authors
of [5] consider a real rational curve X(t), limt→0∥X(t)∥ → ∞, with parametric
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representation of length (d + 1)dn−1 + 1 to attain the asymptotic critical value
limt→0f(X(t)) ∈ K∞(f).

In our present note, we propose a method to construct a rational curve that
corresponds to an asymptotic critical value of a polynomial (Theorem 3.1). This
allows us to �nd out e�ciently a subset of K∞(f) for a polynomial f whose Newton
polyhedron has full dimension n. The rational curve in question has drastically
reduced number of terms present in its parametric representation. Further in this
article, we shall use the terminology "parametric length of a curve" to denote this
number. Thus in our Example 5.1, the parametric length of a real rational curve
has been reduced to 4 in comparison with 3601 proposed in [5].

Starting from Lemma 3.1, we take into account the condition (µ) on the vector q
(2.17) that is always satis�ed for a proper choice of the toric data W (2.4) (Lemma
3.2). We follow [13, 22] as for the use of toric geometry in the investigation of the
asymptotically non-regular values of f. Our main Theorem 3.1 states the inclusion
intoK∞(f) of critical values of a certain polynomial fW

γ , with possibly non-isolated
singularities, constructed on a "bad face" γ of the Newton polyhedron of f. Thus
Corollary 3.2 establishes an inclusion relation⋃

γ:bad face

fγ(Sing fγ ∩ (C×)dim γ) ⊂ K∞(f) (1.1)

that is valid even in the case of fW
γ with non-isolated singularities. The inclusion

(1.1) holds for every f that e�ectively depends on n variables.
For the case where f is Newton non-degenerate at in�nity this gives an ap-

proximation of K∞(f) formulated in Corollary 3.3 that determines a superset of
K∞(f)

K∞(f) ⊂
⋃

γ:bad face

fγ(Sing fγ ∩ (C×)dim γ) ∪ {0}. (1.2)

In this case our Corollary 3.5 gives a re�ned upper bound estimate of the car-
dinality #K∞(f) in terms of volumes of polyhedra explicitly obtained from bad
faces. We remark that this estimation gives an approximation sharper than [11,
Theorem 2.2, 2.3] under conditions imposed in Corollary 3.5.

In [19] it is shown that the left hand side set of the relation (1.1) is contained in
the bifurcation set B(f) for γ relatively simple bad face (see De�nition 4.1) and fW

γ

with isolated singularities on (C×)dim γ . As the inclusion B(f) ⊂ K∞(f) is known
from [11],[16], our Corollary 3.3 represents a new result only for γ non-relatively
simple bad face, if the condition of the isolated singularities at in�nity is assumed.

In Section 4 we examine an example of a polynomial in 5 variables with non-
relatively simple bad face. Even in this situation, we can construct a curve ap-
proaching an asymptotic critical value of f. This gives an example to Corollary
3.3 that is not covered by [19]. As [19] imposes the condition of isolated singu-
larity at in�nity, it does not concern our Example 5.1 treating the non-isolated
singularities.

It is worthy noticing that M.Ishikawa [10] established a precise description of
B(f) analogous to [13, Proposition 6] for any polynomial map in two variables, i.e.
possibly for Newton degenerate polynomials.
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Our method heavily relies on various kinds of Newton polyhedra constructed
in two di�erent chart systems. The core technique is explained in Proposition
2.1 where the key data like the integer vector q ∈ Zn and the integer ρ > 0 are
introduced. The vector q ∈ Zn is used to calculate the number L0 (3.7) that
determines the parametric length together with the integer ρ (2.18).

Finally, we remark that e�ciency to detect asymptotically non-regular values
can be applied to optimisation problems e.g. see [9]. We recall that [2] had
recourse to e�ective use of Newton polyhedra in the investigation of the order of
coerciveness of a polynomial f. After [18, Theorem 5], if a polynomial mapping
f : Rn → R with rational coe�cients admits a bounded in�mum, this in�mum
must belong to the set K∞(f) ∪ f(Singf). As for the real setting of the problem,
see [20]. Thus we hope that our approach represents not only purely theoretical
interests, but also certain utility in the optimisation problem.

The �rst author expresses gratefulness to Mihai Tib r for having drawn his
attention to the question of asymptotic critical values of a polynomial map and for
useful discussions. He thanks Kiyoshi Takeuchi for comments and remarks. Careful
critical reading achieved by the anonymous referee deserves special mention.

2 Approach with unimodular subdivision of the

dual cone

To �x notations and fundamental notions, we follow [13, 22].
Let us consider a polynomial in x = (x1, · · · , xn),

f(x) =
∑
α

aαx
α (2.1)

with f(0) = 0 where the multi-index α runs within the set of integer points
supp(f) = {α ∈ (Z≥0)

n; aα ̸= 0}. We introduce a convex polyhedron of �nite
volume ∆(f) de�ned as the convex hull of supp(f) in Rn that is assumed to be
of the maximal dimension, i.e. dim ∆(f) = n. We denote the convex hull of

supp(f) ∪ {0} in Rn by Γ̃−(f).

De�nition 2.1. For a ∈ (Rn)∗ we denote by ∆a a face of Γ̃−(f) determined by

the condition ⟨a, y⟩ ≤ ⟨a, x⟩ for every pair x ∈ Γ̃−(f) and y ∈ ∆a. For a face
γ ⊂ ∆(f) of the Newton polyhedron of f (2.1), we de�ne fγ(x) =

∑
α∈γ aαx

α.

De�nition 2.2. For a set Λ ⊂ (R≥0)
n we denote by C(Λ) = {tv; t ∈ R≥0, v ∈ Λ}

the cone with the base Λ.

De�nition 2.3. Let K be a unimodular simplicial subdivision of (Γ̃−(f))
∗ where

(Γ̃−(f))
∗ is the dual to Γ̃−(f).

(Γ̃−(f))
∗ = {a ∈ (Rn)∗; ⟨a, x⟩ ≥ 0, ∀x ∈ Γ̃−(f))}

= {a ∈ (Rn)∗; ⟨a, x⟩ ≥ 0, ∀x ∈ C(Γ̃−(f)))}.
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De�nition 2.4. ([13]) We call a face γ ⊂ ∆(f) bad, if it satis�es the following
two properties.

(i) The a�ne subspace of dimension = dim γ spanned by γ contains the origin.
(ii) (± condition for the bad face) There exists a hyperplane H ⊂ Rn such that

γ = H ∩ ∆(f) de�ned by an equation
∑n

j=1 pjxj = 0 be provided with a pair of
indices i ̸= j satisfying pipj < 0.

Assume that γ is a bad face and a k−dimensional cone σ ∈ K ⊂ (Γ̃−(f))
∗ ⊂

(Rn)∗ satis�es
γ ⊂ σ∗ = {x ∈ Rn; ⟨α, x⟩ ≥ 0,∀α ∈ σ} (2.2)

with a basis a1, . . . , ak ∈ Zn such that

γ = {v ∈ ∆(f); ⟨ai, v⟩ = 0, i = 1, . . . , k}. (2.3)

Such a basis exists by virtue of De�nition 2.4 (ii).
If a1, · · · , ak is a unimodular basis of a k− dimensional cone σ ∈ K, i.e.

σ = Σk
i=1tiai, ti ≥ 0, we can choose m1, · · · ,mn ∈ Zn a basis of the dual cone

σ∗ = {x ∈ Rn; ⟨x, a⟩ ≥ 0,∀a ∈ σ} such that ⟨ai,mj⟩ = δij , i ∈ [1; k], j ∈ [1;n]
where δij denotes Kronecker Delta. From here on we shall use the notation
i ∈ [r1; r2] ⇔ i ∈ {r1, · · · , r2} for two integers r1 ≤ r2. We can further extend
the basis a1, · · · , ak to an n−dimensional basis a1, · · · , an with the aid of supple-
mentary vectors ak+1, · · · , an in such a way that det(a1, · · · , an) = 1. We pose
σ∗ = {

∑n
i=1 λimi;λj ≥ 0, j ∈ [1; k]}.

De�nition 2.5. Let σ ∈ K be a unimodular simplicial cone with dim(σ) = k. An
algebraic torus of dimension n− k associated to the cone σ can be de�ned as

Φ[σ] = (C×)n/{(tb1 , . . . , tbn); t ∈ (C×)k, (b1, . . . , bn) ∈ σ}.

We also consider a disjoint union of tori given by Mσ = ∪σ′⊂σΦ[σ
′
] ∼= Ck ×

(C×)n−k ∋ (u1, . . . , uk, uk+1, . . . , un) with σ = ∪σ′⊂σσ
′
where σ

′
runs over all

subcones of σ.

De�nition 2.6. For an integer vector α = (α1, · · · , αn) ∈ Zn we denote by α′ =
(α1, · · · , αk) ∈ Zk and α′′ = (αk+1, · · · , αn) ∈ Zn−k its respective components.
In a parallel way, we introduce two sets of variables u′ ∈ Ck (called a�ne) and
u′′ ∈ (C×)n−k (called toric), u = (u′, u′′) ∈ Cn

k where

Cn
k = Ck × (C×)n−k.

We introduce the following unimodular matrices M and W with integer entries
(i.e. complementary vectors ak+1, · · · , an ∈ σ⊥) associated to the cone σ ∈ K.

W = (a1
T , . . . , an

T ) =


w1

w2

...
wn

 ,W−1 = M =


m1

m2

...
mn

 (2.4)
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where (m1, . . . ,mn) is a basis of σ∗ and σ∗ = Σk
i=1R≥0mi +Σn

j=k+1Rmj . Further
we use the following notation also (see Lemma 3.1)

MT =


µ1

µ2

...
µn

 . (2.5)

Under the change of variables

(x1, · · · , xn) = (uw1 , · · · , uwn) (2.6)

we consider
fW (u) =

∑
α∈supp(f)

aαu
α·W (2.7)

where W as in (2.4). For α ∈ Zn, we represent α.W ∈ Zn the integer vector with
the aid of its components

α.W = (λ1(α), · · · , λn(α)).

Due to De�nition 2.3, the choice of the basis (a1, · · · , ak) and (2.2), we have
the following.

Lemma 2.1. For general v ∈ ∆(f) that is not necessarily located on the bad face
γ, we have λ1(v), . . . , λk(v) ≥ 0. In particular, ∀j ∈ [1; k], ∃v ∈ ∆(f) such that
λj(v) > 0.

Lemma 2.2. The Laurent polynomial fW (0, u′′) = fW
γ (u) =

∑
α∈γ aαu

α.W is a
polynomial (with positive power terms) in u′′ variables.

Thus only λk+1(v), . . . , λn(v) may be negative for v ∈ ∆(f) in general. Be-
cause of (2.2), fW

γ (0, u′′) is a polynomial in u′′ variables. In other words, λ1(v) =
⟨a1, v⟩ = 0, . . . , λk(v) = ⟨ak, v⟩ = 0, λk+1(v) = ⟨ak+1, v⟩ ≥ 0, . . . , λn(v) = ⟨an, v⟩ ≥
0, ∀v ∈ γ.

The expression fW (u) is a Laurent polynomial with possibly negative power
exponents in toric variables u′′, but being restricted to a�ne variables u′, it gives
a polynomial in u′ = (u1, . . . , uk). We denote

ϑuf
W (u) = (ϑu1

fW (u), · · · , ϑun
fW (u)),

with ϑuj
= uj

∂
∂uj

, j ∈ [1;n]. For a critical point u∗ = (0, u′′
∗) ∈ Cn

k such that

ϑuf
W
γ (u∗) = 0, we introduce the notation

u′ = (u1, · · · , uk), U
′′ = (Uk+1, · · · , Un) = (uk+1 − u∗

k+1, · · · , un − u∗
n)

and consider a local expansion of the Laurent polynomial fW (u) at u = u∗ =
(0, u′′

∗) ∈ Cn
k as follows
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fW (u) =
∑

β∈suppu∗ (fW )

a∗β(u− u∗)β =
∑

β∈suppu∗ (fW )

a∗βu
′β′

U ′′β′′
, (2.8)

for suppu∗(fW ) := {β ∈ (Z≥0)
n; a∗β ̸= 0}. Here the expression corresponding to

the term α.W ∈ (Zk
≥0 \ {0}) × Zn−k

<0 in (2.7) shall produce a series in (2.8) with

(β′, β′′) ∈ (Zk
≥0 \ {0})× (Z≥0)

n−k according to the rule

1

uj
=

1

u∗
j

∑
ℓ≥0

(−Uj

u∗
j

)ℓ (2.9)

for j ∈ [k + 1;n].
We calculate logarithmic derivatives of fW (u) (2.8) as follows

ϑujf
W (u) =

∑
β∈suppu∗ (fW )

βja
∗
βu

′β′
U ′′β′′

, j ∈ [1, k], (2.10)

ϑuℓ
fW (u) =

∑
β∈suppu∗ (fW )

βℓa
∗
βu

′β′ U ′′β′′

Uℓ
(Uℓ + u∗

ℓ ) , ℓ ∈ [k + 1, n]. (2.11)

In (2.10), (2.11) the condition |β′′| ≥ 2 for β′ = 0 follows from Lemma 2.2 and the
fact that ϑuf

W (u∗) = 0 at u∗ = (0, u′′
∗) ∈ Cn

k .

De�nition 2.7. We denote by ∆u∗(fW ) a polyhedron obtained as convex hull of
suppu∗(fW − fW (u∗)). Similarly we de�ne ∆u∗(ϑuj

fW ) as convex hull of

suppu∗(ϑuj
fW )

for j ∈ [1;n]. With the aid of polyhedra ∆u∗(ϑuj
fW ), j ∈ [1;n], we de�ne

∆∗ = convex hull of ∪n
j=1 ∆u∗(ϑuj

fW ). (2.12)

From (2.10), (2.11) we see that ∆u∗(fW ) ⊂ ∆∗.
As the Laurent polynomial fW (u) e�ectively depends on the variable u ∈ Cn

k

and |β′′| ≥ 2 for β′ = 0 for (2.10), (2.11), the statement below holds.

Lemma 2.3. For every face δ ⊂ ∆∗ with dim δ ≤ n − 2 there exists a vector
qδ = (q′δ, q

′′
δ ) ∈ (Zk \ {0})× Zn−k orthogonal to δ.

For the cone σ mentioned in De�nition 2.5 we consider the decomposition

fW (u) = f̃W (u) +R(u) (2.13)

with

f̃W (u) =
∑

α∈supp(f)∩(Z≥0)nM

aαu
α.W .
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The condition α ∈ (Z≥0)
nM is equivalent to α.W ∈ (Z≥0)

n. Here R(u) corre-
sponds to terms with exponent vectors α.W /∈ (Z≥0)

n such that negative powers
appear, i.e. some of λk+1(α), . . . , λn(α) are strictly negative and λ1(α), . . . , λk(α) ≥
0. We shall note that if some of λk+j(α) is strictly negative for α ∈ ∆(f), then
λi(α) for some i ∈ [1; k] must be strictly positive. See Lemmata 2.1, 2.2.

Lemma 2.4. We have the following relations for the intersection of ∆∗ with the
(n− k)−dimensional positive octant (R≥0)

n−k,

dim
(
∆∗ ∩ {(0, α′′);α′′ ∈ (R≥0)

n−k}
)
≥ n− k − 1, (2.14)

∆∗ ∩ {(0, α′′);α′′ ∈ (R≥0)
n−k} ⊂ {(0, α′′); |α′′| ≥ 1}. (2.15)

Consequently, there exists a face Γ of ∆∗ containing the LHS of (2.15) as its
face. Thereby vector q orthogonal to Γ is of the form

q = (q′, q′′) ∈ (Zk \ {0})× (Zn−k
≥0 \ {0}). (2.16)

Proof. Because of ϑuf
W (u′′

∗) = 0, we see that the exponent β′′ from (2.10),
(2.11) satis�es |β′′| ≥ 2.

As fW (u) e�ectively depends on (Uk+1, · · · , Un) ∈ (C×)n−k there exist subsets

(R>0)
ni ⊂ (R≥0)

n−k, i ∈ [1;L], satisfying
∑L

i=1 ni = n − k under the condition

that in (R>0)
ni we �nd a point (0, β̃′′(i)) ∈ (R>0)

ni ∩Γi for a face Γi of ∆u∗(fW ).
On each of (R>0)

ni we �nd a set of generator unit vectors {eℓ(i)}ℓ(i)∈L(i) for an
index set L(i) such that (R>0)

ni =
∑

ℓ(i)∈L(i) R>0eℓ(i),#L(i) = ni.

It follows that (0, β̃′′(i) − eℓ(i)) ∈ ∆∗ \∆u∗(fW ), ℓ(i) ∈ L(i) thanks to (2.11).
Thus on (R>0)

ni we �nd a set of points from ∆∗ with cardinality ni as follows

{(0, β̃′′(i)− eℓ(i)); ℓ(i) ∈ L(i)}.

The inequality (2.14) follows from the equality

dim
(
convex hull of ∪L

i=1 ∪ℓ(i)∈L(i)(0, β̃
′′(i)− eℓ(i))

)
= n− k − 1.

The equalities (2.11) and ϑuf
W
γ (u∗) = 0 for u∗ = (0, u′′

∗) ∈ Cn
k show (2.15).

Lemma 2.3 and (2.15) imply the existence of the vector q and the face Γ as in
(2.16).

In summary, we establish the following.

Proposition 2.1. Assume that ϑuf
W
γ (u∗) = 0 for u∗ = (0, u′′

∗) ∈ Cn
k . The face Γ

of the polyhedron ∆∗ found in Lemma 2.4 with its orthogonal vector q = (q′, q′′) ∈
(Zk \ {0})× (Zn−k

≥0 \ {0}) (2.16) can be characterised as follows

Γ = {β ∈ ∆∗; ⟨β, q⟩ ≤
〈
β̃, q

〉
for every β̃ ∈ ∆∗}. (2.17)



24 S. Tanabé & A. Gündüz

Thus for any β ∈ ∆∗ the inequality ⟨β, q⟩ ≤
〈
β̃, q

〉
holds with every

β̃ ∈ ∆u∗(
〈
µi, ϑuf

W (u)
〉
),

i ∈ [1;n]. We shall further denote by ρ the following integer

ρ = minα̃∈∆∗ ⟨α̃, q⟩ (2.18)

that is equal to ⟨α, q⟩ for α ∈ Γ.

This proposition follows from Lemma 2.4 and the inclusion∆u∗(
〈
µi, ϑuf

W (u)
〉
)

⊂ ∆∗, i ∈ [1;n]. In fact, by a proper choice of vectors ak, · · · , an that form
a part of a unimodular basis of Rn (2.4) (Lemma 3.2), we can assume that
∆u∗(

〈
µi, ϑuf

W (u)
〉
) = ∆∗, ∀i ∈ [1;n]. See Corollary 3.1 below.

See Figure 5.1 where the face Γ is illustrated for the Example 5.1.

3 Curve construction by means of Newton polyhe-

dron

In this section we construct a curve X(t) that goes to the in�nity on which the
value of f tends to an asymptotic critical value limt→0f(X(t)) ∈ K∞(f).

Let us introduce a curve with parametric representation

Q(t) = (u′(t), u′′(t)) = (c′tq
′
+ h.o.t., u

′′

∗ + c′′tq
′′
+ h.o.t.) (3.1)

where q = (q′, q′′) ∈ (Zk \{0})×(Zn−k
≥0 \{0}) found in Proposition 2.1 and u

′′

∗ ̸= 0,

as u
′′

∗ ∈ (C×)n−k. Here c′tq
′
= (c′1t

q′1 , · · · , c′ktq
′
k) etc.

De�nition 3.1. ( [11, 12]) Consider a curve X(t) = (x1(t), · · · , xn(t)) that sat-
is�es the following two conditions

limt→0||X(t)|| = ∞, (3.2)

limt→0xi(t)
∂f(X(t))

∂xj
→ 0 (3.3)

for every pair (i, j) ∈ [1;n]2. We call the value limt→0f(X(t)) an asymptotic
critical value of f . We denote by K∞(f) the set of asymptotic critical values of f .

After [4], the image value of f that is not asymptotic critical is called a
t−regular value of f. If the limit limt→0f(X(t)) = p0 exists for the curve (3.2),
the negation of the condition (3.3) is known as Malgrange condition for the �bre
f−1(p0), i.e. ∃ϵ > 0 such that

limt→0||X(t)||||grad f(X(t))|| > ϵ.

To construct a curve ∥X(t)∥ → ∞ as above, it is enough to consider only one
torus chart Φ[σ] from De�nition 2.5.
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Lemma 3.1. For q = (q′, q′′) ∈ (Zk \ {0}) × (Zn−k
≥0 \ {0}) found in Proposition

2.1, the following equivalence holds. (i) ∃wi (2.4) such that ⟨(q′, 0), wi⟩ < 0 ⇔
(ii) (q′, 0) /∈

∑n
j=1 R≥0µj . We call this condition (µ).

Proof. (i) ⇒ (ii). We show the contraposition. For the vector r =
∑n

j=1 tjµj ,
tj ≥ 0 for every j ∈ [1;n], ⟨r, wi⟩ = ti ≥ 0 for every i.

(ii) ⇒ (i). Also by contraposition. Take r =
∑n

j=1 sjµj ∈ Rn such that
⟨r, wi⟩ = si ≥ 0 for every i. As r = (q′, 0) ̸= (0, 0) not every si equals to zero, thus
sj > 0 for some j. Compare with [7, 2.3] Claim 1, Claim 2, Exercise.

Lemma 3.2. The condition (µ) of Lemma 3.1 is satis�ed for properly chosen
vectors ak, · · · , an that form a part of a unimodular basis of Rn (2.4). Especially,
we can choose vectors mj , j ∈ [1;n] from (Z>0)

n.

Proof. The condition (ii) of Lemma 3.1 is satis�ed if mi ∈ (Z>0)
n,∀i ∈ [1;n].

From De�nition 2.4 (ii) we can choose a1, · · · , ak in such a way that ∀ℓ ∈
[1; k],∃j ∈ [1;n] satisfying ajℓ < 0 for aℓ = (a1ℓ , · · · , anℓ ). In other words, {x ∈
Rn; ⟨aℓ, x⟩ = 0} ∩ (R>0)

n ̸= ∅,∀ℓ ∈ [1; k]. Let a1, · · · , an be a unimodular basis
of Zn obtained as an extension of a1, · · · , ak chosen as above. We see that it is
possible to construct a unimodular basis ai ̸∈ (R≥0)

n,∀i ∈ [1;n] as it is allowed to
replace aj , j ∈ [k+1;n] by aj+Cj,ℓaℓ with large enough Cj,ℓ ∈ Z>0, ℓ ∈ [1; k]. Thus
we can assume that aj ,∀j ∈ [1;n] has at least one strictly negative component.

For the n−dimensional cone τ =
∑n

i=1 R≥0ai consider its dual cone τ∨ that
admits the expression τ∨ =

∑n
i=1 R≥0m̄i with generators m̄i ∈ Zn satisfying

⟨m̄i, aj⟩ = Biδi,j for certain Bi ∈ Z>0, i ∈ [1;n]. See [7, �1.2, (8)].
In view of the unimodular property of (a1, · · · , an) we see that the basis

(m̄1, · · · , m̄n) of the dual cone τ∨ must be also unimodular. This means that
(m̄1, · · · , m̄n) can be taken as M = W−1 in (2.4).

By the above construction, for the cone τ =
∑n

i=1 R≥0ai the set τ \{0} contains
(R>0)

n as its strict subset. The dual cone τ∨ satis�es τ∨ \ {0} ⊊ (R∗
>0)

n. This
implies that the generators τ∨ of mi,∀i ∈ [1;n] are from (Z>0)

n.

From Lemma 3.2 it follows that the vectors µi, i ∈ [1;n] from (2.5) lie in (Z>0)
n.

This yields the following.

Corollary 3.1. Under the choice of the unimodular basis (a1, · · · , an) as in Lemma
3.2 we can assume that the Newton polyhedron ∆u∗(

〈
µi, ϑuf

W (u)
〉
) coincides with

∆∗, ∀i ∈ [1;n].

We remark also the following.

Lemma 3.3. The integer ρ (2.18) is strictly positive for q determined for the face
Γ constructed in Proposition 2.1.

Proof. By De�nition 2.7, for every β ∈ ∆u∗(
〈
µj , f

W
〉
) there exists α̃ ∈

{⟨q, ·⟩ = ρ} such that β = tα̃ for t ≥ 1. The number ρ was de�ned as the minimal
value of the linear function ⟨q, ·⟩ on ∆∗ and ⟨q, β⟩ = tρ ≥ ρ thus ρ must be strictly
positive.

Let us denote by X(t) the image of the curve Q(t) de�ned in (3.1) by the map
(2.6).



26 S. Tanabé & A. Gündüz

Lemma 3.4. The condition (µ) of Lemma 3.1 is su�cient so that there exists
a curve ∥X(t)∥ → ∞ with �nite limit limt→0f(X(t)) = limt→0f

W (Q(t)). The
equality limt→0 ϑuf

W (Q(t)) = 0 holds and the limit limt→0f
W (Q(t)) corresponds

to a critical value of the polynomial fW
γ (u).

Proof. By (3.1) and xi = uwi , we have

xi(t) = cit
⟨(q′,0),wi⟩(1 + h.o.t.).

The existence of the value limt→0f(X(t)) = limt→0f
W (Q(t)) is clear from the

de�nition of the curve (3.1).

By means of the vectors introduced in Lemma 3.1 (µ), we deduce the following
relation 

ϑx1f(x)
ϑx2

f(x)
...

ϑxnf(x)

 = MT


ϑu1f

W (u)
ϑu2

fW (u)
...

ϑun
fW (u)

 . (3.4)

Let ℓ⃗ = (ℓ1, · · · , ℓn) ∈ (R∗)n be a vector in general position with non-zero

components and denote
〈
ℓ⃗, uW

〉
=

∑n
j=1 ℓju

wj . Then we have

〈
ℓ⃗, x

〉
∂x1

f(x)
∂x2

f(x)
...

∂xn
f(x)

 =
〈
ℓ⃗, uW

〉
µ1

uw1
µ2

uw2

...
µn

uwn




ϑu1f
W (u)

ϑu2
fW (u)
...

ϑun
fW (u)

 . (3.5)

From this equality we see that it is enough to look for a curve Q(t) given by
(3.1) such that

min
i ̸=j

⟨(q′, 0), wi − wj⟩+ ord
(〈
µj , ϑuf

W
〉
(Q(t))

)
> 0 (3.6)

for every j ∈ [1;n] so that to ensure the condition (3.3). In fact, a linear combina-

tion of LHS of (3.5) for various vectors ℓ⃗ will produce all n× n functions present
in (3.3).

We de�ne also
L0 = maxi ̸=j ⟨(q′, 0), wi − wj⟩ . (3.7)

De�nition 3.2. We shall use the set of indices J ⊂ [1;n] de�ned by

J = {j ∈ [1;n];mini̸=j ⟨(q′, 0), wi − wj⟩ < 0}.

The cardinality of J is at most n− 1.
To formulate the main theorem of this section, we introduce a coordinate sys-

tem on the (arc) space of rationally parametrised curves of the form (3.1),

Q(t) = (u′(t), u′′(t)) = (c′(0)tq
′
+c′(1)tq

′+1+h.o.t., u
′′

∗+c′′(0)tq
′′
+c′′(1)tq

′′+1+h.o.t.)
(3.8)



Curves approaching asymptotic critical value set 27

where q = (q′, q′′) ∈ Zn with coprime elements characterised in Proposition 2.1
and Lemma 3.3.

Here we take into account �nite number of coe�cients

c′(j) = (c1(j), · · · , ck(j)) ∈ Ck, c′′(j) = (ck+1(j), · · · , cn(j)) ∈ Cn−k,

j ∈ Z≥0. We denote the space of coe�cients C in such a way that c = (c′, c′′) ∈ C,
c′ = (c′(0), c′(1), c′(2), · · · ), c′′ = (c′′(0), c′′(1), c′′(2), · · · ).

The following theorem tells us that every critical value of the polynomial

fW
γ (u) =

∑
α∈γ∩supp(f)

aαu
α.W

with γ bad face is an asymptotic critical value. It is worthy noticing that the
singular points of fγ(x) can be non-isolated and no restriction is assumed on the
dimension of the bad face γ in question.

Theorem 3.1. Let f ∈ C[x] be a polynomial whose Newton polyhedron ∆(f) has
full dimension n. Assume that γ is one of its bad faces like in De�nition 2.4.
(i) We can �nd a curve X(t) satisfying (3.2), (3.3) of De�nition 3.1 such that
limt→0f(X(t)) equals to a critical value of the polynomial fW

γ (u). (ii) This curve
is obtained as the image by the map (2.6) of a curve Q(t) whose coe�cients c ∈ C
satisfy (L0 − ρ + 1) | J | −tuple of algebraic equations for ρ (2.18), L0 (3.7).
(iii) The curve Q(t) mentioned in (ii) has a parametric representation (3.8) of
parametric length L0 − ρ + 2, i.e. we can assume its parametrisation coe�cients
(c′(j), c′′(j)) = 0 for j > L0 − ρ+ 1.

Proof. By Lemma 3.2 and Lemma 3.4 we have already shown that the curve
under question satis�es (3.2) of De�nition 3.1.

Now we need to show that there is a curve (3.8) satisfying (3.3). For this
purpose we look for a curve that makes the inequality (3.6) valid. Proposi-
tion 2.1 and Lemma 3.3 tell us that it is enough to verify (3.6) for j ∈ J as
ord

(〈
µj , ϑuf

W
〉
(Q(t))

)
≥ ρ > 0.

The expansion of
〈
µj , ϑuf

W
〉
(Q(t)), j ∈ J in t has the following form

gjρ(c)t
ρ + gjρ+1(c)t

ρ+1 + h.o.t.

For each j ∈ J, the vector with polynomial entries gjρ(c) depends on all n variables
(c′(0), c′′(0)) ∈ Cn ⊂ C in view of the choice of q ∈ Zn made in Proposition 2.1.

As | J |< n, the system of algebraic equations gjρ(c) = 0,∀j ∈ J has non-trivial

solutions in C while gjρ(c) e�ectively depends on (c′(0), c′′(0)).

The vector with polynomial entries gjρ+1(c) e�ectively depends on (c′(0), c′′(0),

c′(1), c′′(1)) ∈ C2n ⊂ C thus the system of equations gjρ+1(c) = 0,∀j ∈ J has also
non-trivial solutions in C.

In this way, we can �nd non-trivial solutions to (L0 + 1 − ρ) | J | −tuple of
algebraic equations

gjρ(c) = gjρ+1(c) = · · · = gjL0
(c) = 0,∀j ∈ J
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for L0 (3.7).
To prove this, it is enough to show that gjρ+ℓ(c) e�ectively depends on (c′(ℓ),

c′′(ℓ)) that are absent in gj
ρ+ℓ̃

(c) for ℓ̃ ∈ [0; ℓ− 1].

First we remark that gjρ+ℓ(c) is a sum of monomials of the form

const.

n∏
ν=1

∏
iν∈Iν

cν(iν)
miν ,ν (3.9)

satisfying the following homogeneity condition

ρ+ ℓ =

n∑
ν=1

∑
iν∈Iν

(qν + iν)miν ,ν (3.10)

with Iν ⊂ [0; ℓ], miν ,ν ≥ 0, ∀iν ∈ Iν ,∀ν ∈ [1;n].
By a simple calculation, we see that non vanishing terms of the following form

appear in gjρ+ℓ(c), ℓ ≥ 1,

const.

 k∏
ν=1,ν ̸=κ

∏
iν∈Iν

cν(iν)
miν ,ν

 ∏
iκ∈Iκ\{ℓ}

cκ(iκ)
miκ,κ

 cκ(ℓ) (3.11)

for κ ∈ [1; k] and

const.

 n∏
ν=k+1,ν ̸=κ

∏
iν∈Iν

cν(iν)
miν ,ν

 ∏
iκ∈Iκ\{ℓ}

cκ(iκ)
miκ,κ

 cκ(ℓ) (3.12)

for κ ∈ [k+1;n]. Non vanishing of (3.11) with κ ∈ [1; k] is due to the presence of a
term proportional to u′α′

(t)U ′′β′′
(t) such that ⟨q, (α′, β′′)⟩ = ρ in

〈
µj , ϑuf

W (u)
〉
.

That of (3.12) with κ ∈ [k + 1;n] is due to the presence of a term proportional
to U ′′α′′

(t) such that ⟨q, (0, α′′)⟩ = ρ in
〈
µj , ϑuf

W (u)
〉
and u′′

∗ ̸= 0. This can
be seen from Proposition 2.1 and Corollary 3.1. These originating monomials
u′α′

(t)U ′′β′′
(t), U ′′α′′

(t) are uniquely determined from power exponents {miν ,ν}iν∈Iν

that can be seen from (3.9), (3.10):

ακ = 1 +
∑
iκ∈Iκ

miκ,κ for κ ∈ [1; k]; (resp. κ ∈ [k + 1;n]),

αν =
∑
iν∈Iν

miν ,ν for ν ∈ [1; k] \ {κ} (resp. ν ∈ [k + 1;n] \ {κ}).

Thus no cancellation of terms (3.11), (3.12) happens. As
〈
µj , ϑuf

W (u)
〉
, j ∈ J

contains monomials u′α′
(t)U ′′β′′

(t), U ′′α′′
(t) of the above type, the factor cκ(ℓ),

κ ∈ [1;n] appears in gjρ+ℓ(c) but it does not appear in gj
ρ+ℓ̃

(c), ℓ̃ ∈ [0; ℓ−1] because

of (3.10).
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Corollary 3.2. For f ∈ C[x] with dim ∆(f) = n, the following inclusion holds⋃
γ

fγ(Sing fγ ∩ (C×)dim γ) ⊂ K∞(f) (3.13)

where γ runs among bad faces of ∆(f).

Proof. Theorem 3.1 tells us

fW
γ (Sing fW

γ ∩ (C×)dim γ) ⊂ K∞(f).

It is enough to show that

fW
γ (Sing fW

γ ∩ (C×)dim γ) = fγ(Sing fγ ∩ (C×)dim γ)

for fγ(x) =
∑

α∈γ∩supp(f) aαx
α.

From Lemma 2.2, fW
γ (u) is a polynomial depending e�ectively on toric vari-

ables u′′ and independent of a�ne variables u′ (the condition (i) of the De�-
nition 2.4 ). This means that ϑu1

fW
γ (u) = · · · = ϑuk

fW
γ (u) = 0. Thus for

u′′
∗ ∈ Sing fW

γ ∩ (C×)dim γ , the vanishing of the logarithmic gradient vector holds:

ϑuf
W
γ (0, u′′

∗) = 0. By using the map u′′(x) = (xmk+1 , · · · , xmn) induced by the in-

verse to (2.6), we see fγ(x) = fW
γ (0, u′′(x)). Taking the relation (3.4) into account,

we see that this entails ϑxfγ(x∗) = 0 for x∗ ∈ (C×)n that satis�es u′′(x∗) = u′′
∗ .

Conversely, if ϑxfγ(x∗) = 0 for x∗ ∈ (C×)n, by (3.4), we see ϑuf
W
γ (0, u′′

∗) = 0
for u′′

∗ = u′′(x∗) the image of the map (2.6).

Remark 3.1. After [18, Theorem 5], if a polynomial mapping f : Rn → R
with rational coe�cients admits a bounded in�mum, it must belong to the set
K∞(f) ∪ f(Singf). Our Corollary 3.2 exhibits the candidate for in�mum of a
real polynomial map, if it is possible to construct a real curve satisfying (3.2),
(3.3) after the method in Lemma 3.4. See [20]. Thus our approach represents a
potential utility in the optimisation problem.

In [3] Theorem 1.1, for f Newton non-degenerate at in�nity it is stated that

K∞(f) ⊂ {0} ∪
⋃
∆

f∆(Sing f∆ ∩ (C×)dim ∆), (3.14)

where the union runs over all �atypical faces� of f (faces that satisfy our De�nition
2.4 (ii) ).

Here we remark the following:

Corollary 3.3. For f Newton non-degenerate at in�nity in the sense of [3], the
following inclusion holds

K∞(f) ⊂
⋃
γ

fγ(Sing fγ ∩ (C×)dim γ) ∪ {0}, (3.15)

where γ runs among bad faces of ∆(f).
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Proof. For ∆ an atypical face satisfying (ii) of De�nition 2.4, but not (i), we
see that

f∆(Sing f∆ ∩ (C×)dim ∆) ⊂ {0}. (3.16)

In this case, the face ∆ is contained in a (dim ∆) dimensional a�ne space that
does not pass through the origin. As f∆ is a weighted homogeneous polynomial
such that f∆ =

∑n
i=1 wiϑif∆ for a non-zero rational vector (wi)

n
i=1, we have (3.16).

The relations (3.14) and (3.16) yield (3.15).

In combining Corollaries 3.2, 3.3, we determine K∞(f) up to {0} under the
assumption of Theorem 3.1 for f Newton non-degenerate at in�nity.

For f depending e�ectively on two variables, M.Ishikawa [10, Theorem 6.5]
established a precise description of B(f) where a set essentially larger than the
LHS of (3.13) appears. This situation suggests that the superset of K∞(f) can
be essentially larger than the RHS of (3.15), if f is not Newton non-degenerate at
in�nity.

Parusi«ski [15] established the equality

K∞(f) ∪ f(Sing f) = B(f)

for the case where the projective closure in Pn of the generic �bre of f has only
isolated singularities on the hyperplane at in�nity H∞ ⊂ Pn. In this setting, we
see

Corollary 3.4. Let f be a polynomial decomposed into homogeneous terms f(x) =∑d
j=0 fj(x), deg fj = j, in such a way that the Newton polyhedron ∆(fd) is of full

dimension (= n−1). Furthermore, the projective closure in Pn of the generic �bre
of f has only isolated singularities on the hyperplane at in�nity H∞ ⊂ Pn. Then
we have

Σf ⊂ B(f) ⊂ Σf ∪ {0}. (3.17)

for

Σf = f(Sing f) ∪
⋃
γ

fγ(Sing fγ ∩ (C×)dim γ).

Thus to decide exactly B(f) in this case, it is enough to verify {0} ∈ B(f) or
not.

Now we consider an a�ne lattice Lγ (i.e. a principal homogeneous space of a
free Abelian group) with rank dim γ generated by

γZ ·W = {α.W ;α ∈ γ ∩ Zn} (3.18)

for γ a bad face and W (2.4). We denote by Lγ ⊗R the real a�ne space spanned
by Lγ . In Lγ ⊗ R, we introduce the volume form V olγ by setting the volume
of an elementary simplex with vertices in Lγ equal to 1 ([8, �2 C]). After [8,
Theorem 3A.2] the principal A−determinant DA(f

W
γ + a0) of the polynomial∑

α∈supp(fγ)
aαu

α.W + a0 is a homogeneous polynomial of degree V olγ(γZ ·W )
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in (aα)α∈suppfγ and a0 for γZ ·W the convex hull of γZ ·W and {0} in Lγ ⊗R. Let
us de�ne the volume V olγ(γZ) in an analogous way to V olγ(γZ ·W ) in replacing
W by the identity matrix Iddim γ .

We remark that V olγ(γZ ·W ) equals to V olγ(γZ) due to the unimodularity of
W.

Thus we establish the following evaluation on the cardinality of K∞(f) and
B(f).

Corollary 3.5. For f like in Corollary 3.3 (resp. like in 3.4), the following
inequalities hold

#K∞(f) ≤ 1 +
∑

γ:bad face

V olγ(γZ), (3.19)

[resp.

#B(f) ≤ 1 +
∑

γ:bad face

V olγ(γZ) + #f(Sing f).] (3.20)

We remark that the estimation above (3.19) gives a sharper approximation
than [11, Theorem 2.2, 2.3] under conditions imposed in Corollary 3.5.

4 Non relatively simple face

In [19], the notion of relatively simple face has been introduced.

De�nition 4.1. ([19, De�nition 1.4]) A face γ ⊂ Γ̃−(f)∩∆(f) is called relatively
simple, if C(γ)∗ ⊂ (Γ̃−(f))

∗ is simplicial or dim C(γ)∗ ≤ 3 .

The main result Theorem 1.6 of [19] relies heavily on the notion of relatively
simple faces. It shows that the set

⋃
γ fγ(Sing fγ ∩ (C×)dim γ) where γ runs

relatively simple bad faces is contained in the bifurcation value set of a poly-
nomial mapping f under the condition of Newton non-degeneracy and isolated
singularities at in�nity. We say that f has isolated singularities at in�nity over
b ∈

⋃
γ fγ(Sing fγ ∩ (C×)dim γ) if f−1

γ (b) ∩ (C×)dim γ has only isolated singular
points for every bad face γ.

In this section, we examine an example of a polynomial in 5 variables with
non-relatively simple bad face (see (4.2) ). Even in this situation, we can con-
struct a curve X(t) satisfying (3.2), (3.3) of De�nition 3.1 approaching the value
fγ(Sing fγ∩(C×)dim γ) for non-relatively simple bad face γ. This gives an example
to Corollary 3.2 that is not covered by [19].

1) Let us begin with a simplicial cone in R4 generated by four 1 dimensional
cones C(v̄1), C(v̄2), C(v̄3), C(v̄4) where v̄1 = (3, 3, 4, 2), v̄2 = (1, 3, 5, 2), v̄3 =
(3, 1, 4, 2), v̄4 = (1, 1, 1, 1). Here we recall the De�nition 2.2.

Each face of the simplicial cone

Fi,j,k := C

 ∑
si+sj+sk=1

siv̄i + sj v̄j + skv̄k

 (4.1)
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where {i, j, k} = {1, 2, 3, 4} \ {ℓ} for ℓ ̸= i, j, k, is de�ned as a subset of a plane
{v ∈ R4; ⟨Ai,j,k, v⟩ = 0}. The orthogonal vector to each of the faces is given
by: A1,2,3 = (−2, 0,−4, 11), A1,3,4 = (−2, 0, 1, 1), A1,2,4 = (1,−5, 2, 2), A2,3,4 =
(1, 1, 0,−2). We choose the direction of the orthogonal vector in such a way that
⟨Ai,j,k, v̄ℓ⟩ > 0 for every quadruple indices {i, j, k, ℓ} = {1, 2, 3, 4}.

We shall construct a non-simplicial cone by means of an additional cone C(v̄5)
that will be built with the aid of the vector A2,3,4. Namely we choose v̄5 = v̄2 +
v̄3 + v̄4 −A2,3,4 = (4, 4, 10, 7).

We shall convince ourselves that the new non-simplicial cone geneated by
�ve 1 dimensional cones C(v̄1), C(v̄2), C(v̄3), C(v̄4), C(v̄5) is a convex cone with
six faces. In fact, we calculate the orthogonal vector to each of faces Fi,j,k

de�ned in a manner similar to (4.1) for {i, j, k} = {1, 2, 3, 4, 5} \ {ℓ, p} such
that {i, j, k, ℓ, p} = {1, 2, 3, 4, 5}. A2,3,5 = (17, 29,−24, 8), A2,4,5 = (2,−1, 1,−2),
A3,4,5 = (−1, 3, 2,−4) in addition to A1,2,3, A1,3,4, A1,2,4 already known (F2,3,4 is
not a face of the newly constructed cone any more). We have again ⟨Ai,j,k, v̄ℓ⟩ > 0,
⟨Ai,j,k, v̄p⟩ > 0 for every quintuple indices {i, j, k, ℓ, p} as above and see thus the
newly constructed cone is convex.

2) Now we consider a shift of the apex of the cone towards a vector v̄0 ∈
(R>0)

4, say v̄0 = (1, 2, 3, 1). We denote the face of the shifted cone Bi,j,k = v̄0 +
Fi,j,k, (i, j, k) ∈ IF := {(1, 2, 3), (1, 3, 4), (1, 2, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5)}. The
face Bi,j,k is a subset of a plane {v ∈ R4; ⟨Ai,j,k, v⟩ = ⟨Ai,j,k, v̄0⟩} for (i, j, k) ∈ IF .
In "homogenising" the de�ning equation of a plane containing Bi,j,k we get a plane
in R5 : Hi,j,k = {(x, y, z, w, r) ∈ R5; ⟨Ai,j,k, (x, y, z, w)⟩ = ⟨Ai,j,k, v̄0⟩ r} for (i, j, k)
∈ IF . In this way we get six (= ♯IF ) planes in R5 passing through the origin and
the intersection

C̄ = ∩(i,j,k)∈IF {(x, y, z, w, r) ∈ R5; ⟨Ai,j,k, (x, y, z, w)⟩ − ⟨Ai,j,k, v̄0⟩ r ≥ 0}

produces a convex cone. By construction, every plane Hi,j,k contains a 1 dimen-
sional cone C(v0). Consequently, the cone C̄ contains C(v0) = ∩(i,j,k)∈IFHi,j,k for
v0 = (v̄0, 1).

If we use the choice done in 1) and v0 = (1, 2, 3, 1, 1), the vectors Li,j,k or-
thogonal to the planes Hi,j,k are given by L1,2,3 = (−2, 0,−4, 11, 3), L1,3,4 =
(−2, 0, 1, 1,−2), L1,2,4 = (1,−5, 2, 2, 1), L2,3,5 = (17, 29,−24, 8,−11), L2,4,5 =
(2,−1, 1,−2,−1), L3,4,5 = (−1, 3, 2,−4,−7). We de�ne vectors vi = (v̄i, 0), i ∈
[1; 5] in R5. The vector Li,j,k ∈ (R5)∗ is orthogonal to vi, vj , vk in addition to v0.
We shall check that ⟨Li,j,k, vℓ⟩ ≥ 0 for every vℓ, ℓ ∈ [0; 5]. Except 6 triples (i, j, k)
∈ IF , this positivity property is not satis�ed for other triples from {1, 2, 3, 4, 5}.
In particular, for L2,3,4 = (1, 1, 0,−2,−1) we have ⟨L2,3,4, v5⟩ = −6.

The following polynomial

f = −3xv0 + x3v0 + xv1+v0 + xv2+v0 + xv3+v0 + xv4+v0 + xv5+v0 (4.2)

has a 1− dimensional bad face contained in C(v0) that is not relatively simple in the

sense of De�nition 4.1. In fact, the cone C(v0)
∗ ∈ (R5)∗ in the dual fan (Γ̃−(f))

∗ is
a non-simplicial 4 dimensional cone with 6 generators Li,j,k, (i, j, k) ∈ IF calculated
above. In the sequel, we shall show the inclusion

{±2} ⊂ K∞(f) ⊂ {0,±2}. (4.3)
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3) Now we shall construct a unimodular cone σ ∈ K of the unimodular simpli-

cial subdivision (Γ̃−(f))
∗. For example, if we choose

a1 =
1

5
(L1,3,4 + L1,2,4 + 2L1,2,3), a2 =

1

15
(L1,2,4 + 3L1,2,3 + 10L2,4,5),

a3 = L1,2,3, a4 = L2,4,5, a5 = (1, 1,−1, 1, 0),

as column vectors of

W = (a1
T , a2

T , a3
T , aT4 , a

T
5 ) =


w1

w2

w3

w4

w5

 =


−1 1 −2 2 1
−1 −1 0 −1 1
−1 0 −4 1 −1
5 1 11 −2 1
1 0 3 −1 0

 ,

they generate a unimodular cone σ. One shall also verify that ⟨a5, α⟩ > 0 for all
α ∈ supp(f). As for the method to obtain unimodular simplicial subdivision of a
cone see [14].

In this situation, the polynomial (4.2) will have the following form

fW (u) = u1
17u2

7u3
29u5

6 + u1
2u2

4u4
5u5

3 + u1
2u2u3

5u5
3+

u1u5
2 + u2

2u4
3u5

5 + u5
3 − 3u5.

Consider the expansion (2.8) around the singular point u∗ = (0, 0, 0, 0, 1)
where ϑuf

W (u∗) = 0. Then we see that suppu∗(
〈
µj , f

W
〉
) ⊂ {v; ⟨q, v⟩ ≥ 5} for

j ∈ [1; 4] and vector q = (5,−20, 3, 15, 5). The face Γ ⊂ suppu∗(
〈
µj , f

W
〉
) treated

in Proposition 2.1, i.e. Γ ⊂ {v; ⟨q, v⟩ = 5} can be found as a convex hull of points
(0, 0, 0, 0, 1), (0, 2, 0, 3, 0), (1, 0, 0, 0, 0), (2, 1, 5, 0, 0), (2, 4, 0, 5, 0).

The relation (q′, 0).W = (−1, 0,−2, 8,−1) for (q′, 0) = (5,−20, 3, 15, 0) shows
that the condition (µ) of Lemma 3.1 is satis�ed. From this relation, we see that
J = {1, 2, 4, 5} and mini ̸=j ⟨(q′, 0), wi − wj⟩ = ⟨(q′, 0), w3 − w4⟩ = −10 = −L0,
ρ = minα∈∆u∗ (⟨µj ,fW ⟩) ⟨q, α⟩ = 5.

We consider a curve Q(t) with real coe�cients of length 11 = L0 + 1 namely

u1 =

10∑
j=0

c1(j)t
j+5, u2 =

10∑
j=0

c2(j)t
j−20,

u3 =

10∑
j=0

c3(j)t
j+3, u4 =

10∑
j=0

c4(j)t
j+15, u5 = 1 +

10∑
j=0

c5(j)t
j+5.

The system of equations (that corresponds to the coe�cients of t5 terms)

g11(c) = g21(c) = g41(c) = g51(c) = 0

where
g11(c) = 4c1(0)

2c2(0)
4c4(0)

5 + 2c1(0)
2c2(0)c3(0)

5 + 2c1(0) + 4c2(0)
2c4(0)

3 +
6c5(0),
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g21(c) = 3c1(0)
2c2(0)

4c4(0)
5 + 3c1(0)

2c2(0)c3(0)
5 + 5c1(0) + 5c2(0)

2c4(0)
3 +

12c5(0),
g41(c) = 3c1(0)

2c2(0)
4c4(0)

5+2c1(0)
2c2(0)c3(0)

5+3c1(0)+3c2(0)
2c4(0)

3+6c5(0)
g51(c) = c1(0)

2c2(0)
4c4(0)

5 + c1(0)
2c2(0)c3(0)

5 + c1(0) + c2(0)
2c4(0)

3 + 6c5(0)
admits non-trivial solutions because each equation e�ectively depends on cj(0)j∈[1;5].

In a similar manner, the system of equations (that corresponds to the coe�cients
of tk+1 terms)

g1k(c) = g2k(c) = g4k(c) = g5k(c) = 0

for k ∈ [2, 6] also admits non-trivial solutions by virtue of Theorem 3.1.
In this way, we can �nd non-trivial solutions for a system of 24 algebraic

equations gjk(c) = 0, c ∈ C, j = 1, 2, 4, 5, k ∈ [1, 6]. This means that we can
construct a curve Q(t) of parametric length 7 sastisfying the condition (3.6)
−10 + ord

〈
µj , ϑuf

W (Q(t))
〉
> 0 for j ∈ J = {1, 2, 4, 5}. The image X(t) of

the curve Q(t) by the map

x1 = u(−1,1,−2,2,1), x2 = u(−1,−1,0,−1,1), x3 = u(−1,0,−4,1,−1),

x4 = u(5,1,11,−2,1), x5 = u(1,0,3,−1,0)

satis�es (3.2), (3.3) of De�nition 3.1 and limt→0f(X(t)) = −2 ∈ K∞(f). A similar
arguments shows 2 ∈ K∞(f). We see that the polynomial (4.2) is Newton non-
degenerate at in�nity in the sense of [3, Theorem 1.1]. There is no contribution in
the right hand side superset in (3.14) from "atypical faces" except that from the
"strongly atypical face" [3, De�nition 3.2] corresponding to the bad face of ∆(f)
for (4.2). Thus we conclude the inclusion relation (4.3).

For the polynomial (4.2) the method of [5, Theorem 3.5.] proposes construction
of a curve of parametric length d4(d + 1) + 1 = 3360001 with d = 20 = |v0 + v1|
satisfying the required properties.

5 Examples

We shall give an example that illustrates our Theorem 3.1.

Example 5.1. (Non-isolated singularity on a two dimensional bad face)
Consider a polynomial f(x) = xv1 +(xv2 −xv3 +1)2+(xv2 −xv3 +1)3+xv4 −2

with v1 = (2, 1, 1), v2 = (2, 2, 1), v3 = (1, 2, 1), v4 = (3, 1, 1). This case with non-
isolated singularities at in�nity has not been treated in [19].

We remark that

M =

 v1
v2
v3

 = (µ1
T , µ2

T , µ3
T ) =

 2 1 1
2 2 1
1 2 1


is unimodular. Thus we can set

M−1 = W = (a1
T , a2

T , a3
T ) =

 w1

w2

w3

 =

 0 1 −1
−1 1 0
2 −3 2

 .
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The only bad face γ of ∆(f) is located on the plane spanned by v2, v3. For the
above W, we have

fW (u) = −2 + u1 + (u2 − u3 + 1)2 + (u2 − u3 + 1)3 +
u1u2

u3
.

After (3.19), #K∞(f) ≤ 10 while V olγ(γZ ·W ) = 9 for γZ ·W : the convex hull of
{(0, 0), (3, 0), (0, 3)}.

The polynomial fW
γ (0, u2, u3) = (u2 − u3 + 1)2 + (u2 − u3 + 1)3 has non-

isolated singularities along a line u2 − u3 + 1 = 0. We can choose, for example
u∗ = (0,−1/3, 2/3). In the neighbourhood of this point the rational function fW (u)
has the expansion

fW (u) = −2+u1+(U2−U3)
2+(U2−U3)

3+
3u1

2
(U2−1/3)(1− 3U3

2
+(

3U3

2
)2+· · · ),

for U2 = u2 + 1/3, U3 = u3 − 2/3. The polyhedron ∆∗ = ∆(
〈
µi, ϑuf

W (u)
〉
), i =

1, 2, 3, gives rise to the face Γ (2.17). A direct calculation shows〈
µ3, ϑuf

W (u)
〉
=

u1

16
− 2U2 + 2U3 + h.o.t.

Figure 5.1: The facet Γ

Thus we �nd the face Γ located on the plane containing (1, 0, 0), (0, 0, 1), (0, 1, 0)
and q = (1, 1, 1), (q′, 0) = (1, 0, 0). Thereby the condition (µ) of Lemma 3.1 is
satis�ed as ⟨(q′, 0), w2⟩ = −1.

We calculate L0 = 3 and ρ = 1. A curve Q(t) (3.8) with real coe�cients of
parametric length 4, namely

u1 =

3∑
j=0

c1(j)t
j+1, u2 = −1/3 +

3∑
j=0

c2(j)t
j+1, u3 = 2/3 +

3∑
j=0

c3(j)t
j+1

that satis�es
−3 + ord

〈
µj , ϑuf

W (Q(t))
〉
> 0
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for j ∈ J = {1, 3} can be constructed.
We remark that after the method of [5, Theorem 3.5.], the real curve with

required property has parametric length 16× 152 + 1 = 3601.
In fact, if we plug these expressions into

〈
µ3, ϑuf

W (u)
〉
, we get an expansion

with initial term proportional to t1, (⟨q, α⟩ = 1 for α ∈ Γ);〈
µ3, ϑuf

W (u)
〉
(Q(t)) = {c1(0)/2− 2c2(0) + 2c3(0))}t+

1/4{2c1(1)+6c1(0)c2(0)− 4c2(0)
2 − 8c2(1)+3c1(0)c3(0)+8c2(0)c3(0)− 4c3(0)

2 +
8c3(1)}t2+
1/8{4c1(2) + 12c1(1)c2(0) + 24c2(0)

3 + 12c1(0)c2(1) − 16c2(0)c2(1) − 16c2(2) +
6c1(1)c3(0) − 18c1(0)c2(0)c3(0) − 72c2(0)

2c3(0) + 16c2(1)c3(0) − 9c1(0)c3(0)
2 +

72c2(0)c3(0)
2−24c3(0)

3+6c1(0)c3(1)+16c2(0)c3(1)−16c3(0)c3(1)+16c3(2)}t3+· · ·
The case

〈
µ1, ϑuf

W (Q(t))
〉
also admits a similar expression. In both cases

j ∈ J = {1, 3}, coe�cient of t depends on (c1(0), c2(0), c3(0)), that of t
2 depends on

(c1(0), c2(0), c3(0), c1(1), c2(1), c3(1)), that of t
3 depends on (ci(j))i=1,2,3,j=0,1,2.

Thus the system of algebraic equations imposed on (ci(j))i=1,2,3,j=0,1,2 ∈ C9 to
make the coe�cients of t, t2, t3 vanish has non-trivial solutions. In fact, this system
can be solved in R9. As for the construction of a real curve Q(t), i.e. a real curve
X(t), see [20].

We can choose as (c1(3), c2(3), c3(3)) ∈ C3 arbitrary non-zero vector.
The image of the curve Q(t) by the map

x1 = u2u
−1
3 , x2 = u−1

1 u2, x3 = u2
1u

−3
2 u2

3

satis�es (3.2) , (3.3) of De�nition 3.1 and limt→0f(X(t)) = −2 ∈ K∞(f).
As it can be seen in this example, the curve X(t) approaches the surface

{x; f(x) = −2} as t → 0.
We obtain a curve X(t) = (x1(t), x2(t), x3(t)) asymptotically approaching the

surface {x; f(x) = −2} as follows:

x1(t) =
t4 + t3 + t2 + t− 1

3

t4 + 131t3

256 − t2

4 + 3t
4 + 2

3

,

x2(t) =
t4 + t3 + t2 + t− 1

3

t4 + t3 + t2 + t
,

x3(t) =

(
t4 + 131t3

256 − t2

4 + 3t
4 + 2

3

)2 (
t4 + t3 + t2 + t

)2(
t4 + t3 + t2 + t− 1

3

)3 .

On the Figure 5.2, we see two branches of the curve that correspond to the
asymptotes t → 0 from t > 0 and t < 0 respectively. In Example 5.1, the �gure
illustrating algebraic surface and rational parametric curves are prepared with the
aid of the computer programme MATLAB.

Example 5.2. (Isolated singularities at in�nity)
Consider a polynomial f(x) = −3xv0 +xv1 +xv2 +x3v0 with v0 = (2, 2, 1), v1 =

(1, 0, 1), v2 = (0, 1, 1).

W = (a1
T , a2

T , a3
T ) =

 w1

w2

w3

 =

 1 0 1
−2 −1 −1
2 2 1

 .
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Figure 5.2: Branches of the curve X(t)

M =

 m1

m2

m3

 = (µ1
T , µ2

T , µ3
T ) =

 −1 −2 −1
0 1 1
2 2 1

 .

The only bad face γ of ∆(f) is located on the cone {t.v0; t > 0}. We have

fW = u1
3u2

2u3
2 + u2 + u3

3 − 3u3,

and fW
γ (u) = u3

3 − 3u3 has singular points u∗
3 = ±1 and critical values ∓2

respectively. After [19] we see that in this case the bifurcation set B(f) ⊂ K∞(f)
contains {±2}.

We shall construct a curve X(t) that satis�es (3.2) , (3.3) of De�nition 3.1 and
also the limit condition limt→0f(X(t)) = −2. A curve satisfying limt→0f(X(t)) =
2 can be also constructed in a parallel way.

First of all we �nd the face Γ as in Proposition 2.1. The face Γ is on the plane
containing (3, 2, 0), (0, 1, 0), (0, 0, 1) and q = (−1, 3, 3), i.e. (q′, 0) = (−1, 3, 0). The
condition (µ) of Lemma 3.1 is thus satis�ed.

As we see

⟨(q′, 0), w1⟩ = −1, ⟨(q′, 0), w2⟩ = −1, ⟨(q′, 0), w3⟩ = 4,

J = {3} and L0 = maxi ̸=j ⟨(q′, 0), wi − wj⟩ = 5.
We remark also that the equality ∆u∗(

〈
µ3, f

W
〉
) = ∆∗ holds without the

assumption M ∈ (Z>0)
3×3 imposed in Corollary 3.1.

The curve (3.8) has the expansion

u1 = c1(0)t
−1 + c1(1) + h.o.t., u2 = c2(0)t

3 + c2(1)t
4 + h.o.t,

u3 = 1 + c3(0)t
3 + c3(1)t

4 + h.o.t.

If we plug these expressions into
〈
µ3, ϑuf

W (u)
〉
, we get an expansion with initial

term t3 (⟨q, α⟩ = 3 for α ∈ Γ);

{c2(0) + c1(0)
3c2(0)

2 +6c3(0)}t3 + {3c1(0)2c1(1)c2(0)2 + c2(1) + 2c1(0)
3c2(0)c2(1)

+6c3(1)}t4 + {3c1(0)c1(1)2c2(0)2 + 3c1(0)
2c1(2)c2(0)

2 + 6c1(0)
2c1(1)c2(0)c2(1)+
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+c1(0)
3c2(1)

2 + c2(2) + 2c1(0)
3c2(0)c2(2) + 6c3(2)}t5 + h.o.t.

The coe�cient of t3 depends on (c1(0), c2(0), c3(0)) that of t
4 depends on

(c1(0), c2(0), c3(0), c1(1), c2(1), c3(1))

that of t5 depends on (c1(0), c2(0), c1(1), c2(1), c1(2), c2(2), c2(3)). Thus we can
construct a curve such that −5 + ord

〈
µ3, ϑuf

W
〉
(Q(t)) > 0. The minimum para-

metric length of such a curve Q(t) (3.8) is 4. Here coe�cients can be chosen to
be real. As for the construction of a real curve Q(t), i.e. a real curve X(t), see
[20]. We remark that after the method of [5, Theorem 3.5.], the rational curve
with required properties has length 3601.

We get the desired curve X(t) as the image of the curve Q(t) by the map

x1 = u1u3, x2 = (u2
1u2u3)

−1, x3 = u2
1u

2
2u3.

We obtain a curve X(t) = (x1(t), x2(t), x3(t)) asymptotically approaching the
surface {x; f(x) = −2} as follows:

x1(t) =

(
t2 + t+

1

t
+ 1

)(
t6 − 8t5

3
− t4 − t3

3
+ 1

)
,

x2(t) =
1(

t2 + t+ 1
t + 1

)2 (
t6 − 8t5

3 − t4 − t3

3 + 1
)
(t6 + t5 + t4 + t3)

,

x3(t) =

(
t2 + t+

1

t
+ 1

)2 (
t6 − 8t5

3
− t4 − t3

3
+ 1

)(
t6 + t5 + t4 + t3

)2
.

Figure 5.3: Branches of the curve X(t)

On the Figure 5.3, we see two branches of the curve that correspond to the
asymptotes t → 0 from t > 0 and t < 0 respectively.
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