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Abstract. We discuss the derivation of the explicit form of contiguity rela-
tions and operators for the Gauss hypergeometric function and for its conflu-
ent family from the view point of Gelfand’s hypergeometric function. By this
approach, Lie algebraic nature of the contiguity relations is made apparent
and derivation of them becomes in a unified way for the Gauss hypergeo-
metric and its confluent family, which was originally discussed case by case.

1 Introduction

In this paper, we revisit the contiguity relations for the classical hypergeometric
functions (HGF, for short) from the view point of Gelfand’s HGF on the Grassman-
nian manifold and make clear the Lie algebraic structure of the set of contiguity
operators. The classical HGF we consider are the Gauss HGF and its confluent
family, namely Kummer’s confluent HGF, Bessel function, Hermite-Weber func-
tion and Airy function. Each function is characterized by the second order linear
differential equation on the complex projective space P1. Let x be the affine coor-
dinate of P1 = C ∪ {∞}. Then the equations are

Gauss: x(1− x)y′′ + {c− (a+ b+ 1)x}y′ − aby = 0,

Kummer: xy′′ + (c− x)y′ − au = 0,

Bessel: xy′′ + (c+ 1)y′ + y = 0,

Hermite-Weber: y′′ − xy′ + ay = 0,

Airy: y′′ − xy = 0.
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These equations are denoted as EG, EK , EB , EHW , EA, respectively. Among them,
Gauss, Kummer and Bessel equations have a regular singular point at x = 0 and
have the solutions expressed by the power series

2F1(a, b, c;x) =

∞∑
m=0

(a)m(b)m
(c)mm!

xm,

1F1(a, c;x) =

∞∑
m=0

(a)m
(c)mm!

xm,

0F1(c+ 1;−x) =

∞∑
m=0

(−1)m

(c+ 1)mm!
xm,

respectively, where

(a)m =
Γ(a+m)

Γ(a)
=

{
1, m = 0,

a(a+ 1) · · · (a+m− 1), m ≥ 1

is so-called the Pochhammer symbol expressed in terms of the gamma function
Γ(a). Let us explain what is the contiguity relation for the Gauss HGF. It is
well known ([8]) that there are the first order differential operators which connect

2F1(a, b, c;x) to 2F1 with one of the parameters a, b, c increased or decreased by
1. For example, we know

(x∂ + a) 2F1(a, b, c;x) = a · 2F1(a+ 1, b, c;x),

(x(1− x)∂ + c− a− bx) 2F1(a, b, c;x) = (c− a) · 2F1(a− 1, b, c;x),

where ∂ = d
dx . These identities are called contiguity relations and the differential

operators which give these relations are called contiguity operators. Note that
these contiguity relations hold not only for 2F1(a, b, c;x) but for any solution of
the Gauss hypergeometric equation EG(a, b, c). Fix any point x0 ∈ P1 \ {0, 1,∞}
and let S(a, b, c) denote the solution space of EG(a, b, c) at x0. Then the differential
operators L(a+, b, c) := x∂+ a and L(a−, b, c) := x(1−x)∂+ c− a− bx give linear
maps

L(a+, b, c) : S(a, b, c) → S(a+ 1, b, c), L(a−, b, c) : S(a, b, c) → S(a− 1, b, c)

and when a(c− a− 1) 6= 0, the operator L(a+, b, c) gives an isomorphism.
In this paper we derive the contiguity relations and contiguity operators explic-

itly for the Gauss HGF and its confluent family using the viewpoint of Gelfand’s
HGF. For the Gauss HGF, the contiguity relations are well studied ([3, 4, 8])
and, before the work of I. M. Gelfand ([5]), W. Miller ([14]) clarified the Lie al-
gebra structure of the contiguity operators not only for the Gauss but also for its
generalizations to several variables. Several authors studied the explicit form of
contiguity relations using the viewpoint of Gelfand’s HGF ([6, 12, 16]). For the
confluent family of Gauss HGF, the contiguity relations are classically known, see
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[3, 4] for example. The Lie algebraic aspect of contiguity relations for the classical
HGF of confluent type is discussed case by case in [15] by W. Miller. On the
other hand, the approach from the viewpoint of Gelfand’s HGF was discussed in
[10]. But in that paper, the way of obtaining the explicit form of contiguity rela-
tions was not sufficiently discussed for the Gauss’s confluent family. In this paper
we carry out this task for Kummer, Bessel, Hermite-Weber functions. We also
demonstrate that the famous formulae Γ(a + 1) = aΓ(a) for the gamma function
and B(a + 1, b) = a

a+bB(a, b) for the beta function are also derived by using the
same idea.

This paper is organized as follows. In Section 2, we explain how the classical
HGFs are connected with Gelfand’s HGF (Subsection 2.3) and how the contiguity
relations for Gelfand’s HGF (of confluent type) are derived from the generalized
root space decomposition of the Lie algebra gl(N) (Subsection 2.2). In Section 3,
using the facts explained in Section 2, we derive the explicit form of contiguity
relations (operators) for Kummer, Bessel, Hermite-Weber functions. The results
are given in Propositions 3.1, 3.3, 3.4 and 3.5. In Section 4, we show that the
famous recurrence relations for the beta and the gamma functions are also derived
in the same spirit.

2 Gelfand’s HGF and Gauss’ confluent family

In this section we review the connection of the classical HGF family with Gelfand’s
HGF. The key point is the integral representation of solutions of the differential
equations EG, EK , EB , EHW , EA. They are

IG(x) =

∫
C

ua−1(1− u)c−a−1(1− xu)−bdu,

IK(x) =

∫
C

exuua−1(1− u)c−a−1du,

IB(x) =

∫
C

eu−
x
uu−c−1dt =

∫
C′

exu−
1
uuc−1du,

IHW (x) =

∫
C

exu−
1
2u

2

u−a−1du,

IA(x) =

∫
C

exu−u3/3du. (2.1)

If we take various paths of integration C in the integral representation IJ(x), we
have solutions for the differential equations EJ . For example, if we consider IG(x)

and IK(x) and take the path
−→
0, 1 in the complex u-plain which starts from 0 and

end at 1 in the integrals, then we have the power series solutions

2F1(a, b, c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ua−1(1− u)c−a−1(1− xu)−bdu, (2.2)

1F1(a, b, c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

exuua−1(1− u)c−a−1du. (2.3)
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It is known ([9, 11]) that these functions are identified with Gelfand’s HGF on the
Grassmannian Gr(2, 4), which we shall explain below.

2.1 Gelfand’s HGF

Let N ≥ 3 be a positive integer and let Gr(2, N) be the Grassmannian manifold
of 2 dimensional linear subspaces in CN . Let λ be a partition of N , namely
λ = (n1, n2, . . . , nℓ) is a tuple of non-increasing integers n1 ≥ n2 ≥ · · · ≥ nℓ > 0
with |λ| := n1 + n2 + · · ·+ nℓ = N . For example, the partitions of 4 are given by

(1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), (4). (2.4)

To a partition λ of N we associate a maximal abelian subgroup Hλ = J(n1) ×
· · · × J(nℓ) of the complex general linear group GL(N), where

J(n) =

h =


h0 h1 . . . hn−1

. . .
. . .

...
. . . h1

h0

 | h0, . . . , hn−1 ∈ C

 ⊂ GL(n)

and (h(1), . . . , h(ℓ)) ∈ J(n1)×· · ·×J(nℓ) is identified with the block diagonal matrix
diag(h(1), . . . , h(ℓ)) ∈ GL(N). If we denote by Λ the shift matrix (δi+1,j)1≤i,j≤n of

size n, then h ∈ J(n) is expressed as h =
∑n−1

k=0 hkΛ
k. Gelfand’s HGF of type λ

is defined as a Radon transform of a character χ of the universal covering group
H̃λ. It is, roughly speaking in the case we are concerned, to substitute linear
polynomials of t = (t0, t1) into the character and integrate it on an appropriate
path in P1 with the homogeneous coordinates t. A character χ of H̃λ means a
Lie group homomorphism χ : H̃λ → C× in this paper. To describe a character,
we need the following. Let x = (x0, x1, x2, · · · ) be the variables and let T be the
indeterminate. Define the functions θk(x) (k ≥ 0) by

log(x0 + x1T + x2T
2 + · · · ) = log x0 + log

(
1 +

∞∑
k=1

xk

x0
T k

)
=

∞∑
k=0

θk(x)T
k.

The right hand side is obtained by using log(1 + X) =
∑

k≥1
(−1)k+1

k Xk. Then
θ0 = log x0 and

θk(x) =
∑ (−1)m+1

m

(
xi1

x0

)
· · ·
(
xim

x0

)
(k ≥ 1),

where the sum is taken over tuples (i1, . . . , im) with i1, . . . , im ≥ 1 and i1 + · · ·+
im = k. In particular, θ1, θ2, θ3 have the form

θ1(x) =
x1

x0
, θ2(x) =

x2

x0
− 1

2

(
x1

x0

)2

, θ3(x) =
x3

x0
−
(
x1

x0

)(
x2

x0

)
+

1

3

(
x1

x0

)3

.
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Lemma 2.1. [11] The correspondence

h =
n−1∑
k=0

hkΛ
k 7→ (h0, θ1(h), . . . , θn−1(h))

gives a group isomorphism J(n) → C× × Cn−1, where Cn−1 denotes the additive
group with the vector addition.

By this lemma, we see that the universal covering group J̃(n) of J(n) is iso-

morphic to C̃× × Cn−1. Then we can describe the characters of J̃(n) and H̃λ.

Lemma 2.2. For a character χ of J̃(n), there exist α = (α0, . . . , αn−1) ∈ Cn such
that

χ(h) = hα0
0 exp

(
n−1∑
k=1

αkθk(h)

)
, h =

n−1∑
k=0

hkΛ
k.

This character will be denoted as χn(·, α).

Lemma 2.3. Any character χ : H̃λ → C× is given by

χ(h, α) =

ℓ∏
i=1

χni(h
(i), α(i)), h = diag(h(1), . . . , h(ℓ)), h(i) ∈ J̃(ni)

for some α = (α(1), . . . , α(ℓ)) ∈ CN , α(i) = (α
(i)
0 , α

(i)
1 , . . . , α

(i)
ni−1) ∈ Cni .

For a character χ(·, α) of H̃λ, we assume the condition

α
(i)
ni−1

{
6= 0 if ni ≥ 2,

/∈ Z if ni = 1,
α
(1)
0 + · · ·+ α

(ℓ)
0 = −2. (2.5)

To consider the Radon transform of a character of H̃λ, we prepare N linear
polynomials of t = (t0, t1) by specifying the coefficients of them by a matrix
z ∈ Mat(2, N):

z = (z(1), . . . , z(ℓ)), z(i) = (z
(i)
0 , . . . , z

(i)
ni−1), z

(i)
k =

(
z
(i)
0,k

z
(i)
1,k

)
∈ C2. (2.6)

Let Zλ be a Zariski open subset of Mat(2, N) defined by

Zλ :=

{
z ∈ Mat(2, N) | det(z

(i)
0 , z

(j)
0 ) 6= 0 for i 6= j,

det(z
(i)
0 , z

(i)
1 ) 6= 0 for i with ni ≥ 2

}
. (2.7)

For z ∈ Zλ, we define N linear polynomials by

tz = (tz(1), . . . , tz(l)), tz(i) = (tz
(i)
0 , . . . , tz

(i)
ni−1), tz

(i)
k = t0z

(i)
0,k + t1z

(i)
1,k.

We use the convention that tz(i) is identified with
∑

0≤k<ni
(tz

(i)
k )Λk ∈ J̃(ni) and

tz is regarded as an element of H̃λ.
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Definition 2.4. The Gelfand’s HGF of type λ is the function on Zλ defined by

F (z, α;C) =

∫
C

χ(tz, α) · τ, τ = t0dt1 − t1dt0.

where C is an appropriate path in the t-space P1 representing an element of certain
homology group.

Using the fact τ = t20d(t1/t0) and the condition (2.5) on α, we can write
the above integral in terms of the affine coordinate u = t1/t0 in the affine chart
{[t] ∈ P1 | t0 6= 0} of P1. Put u⃗ = (1, u). Then

F (z, α;C) =

∫
C

χ(u⃗z, α)du.

The following property of Gelfand’s HGF of type λ is important for the derivation
of contiguity relations for the classical HGF family. Consider the action of GL(2)×
Hλ on Mat(2, N) defined by

GL(2)×Mat(2, N)×Hλ 3 (g, z, h) 7→ gzh ∈ Mat(2, N).

Then we see that it induces the action of GL(2)×Hλ on Zλ.

Proposition 2.5. The following identities hold.

(1) F (zh, α;C) = χ(h, α)F (z, α;C), h ∈ Hλ,

(2) F (gz, α;C) = (det g)−1F (z, α; C̃), g ∈ GL(2),

where C̃ = {C̃(z)} is obtained from C(z) by the projective transformation P1 3
[t] 7→ [s] := [tg] ∈ P1.

2.2 Contiguity relation for Gelfand’s HGF

We recall how the contiguity relations for Gelfand’s HGF are described. See also
[10]. Let g = gl(N) be the Lie algebra of G = GL(N) and hλ be the Lie algebra
of Hλ which is an abelian Lie subalgebra of g. Since Hλ = J(n1)× · · ·×J(nℓ), we
see that hλ = j(n1)⊕ · · · ⊕ j(nℓ), where j(n) denotes the Lie algebra of J(n). Let
X ∈ hλ be expressed as

X = diag(X(1), . . . , X(ℓ)) ∈ Mat(N), X(i) =
∑

0≤k<ni

X
(i)
k Λk ∈ j(ni) (2.8)

with X
(i)
k ∈ C and the shift matrix Λ. Since hλ is abelian, we have a commuting

family of Lie algebra homomorphisms {adX ∈ End(g) | X ∈ hλ}, where adX(Y ) :=
[X,Y ] := XY −Y X. Then we can decompose g into the simultaneous generalized
eigenspaces with respect to this commuting family of endomorphisms:

g = hλ ⊕
⊕
α∈∆

gα, ∆ = {e(i) − e(j) | 1 ≤ i 6= j ≤ ℓ}. (2.9)
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Here, e(i) is the element of the dual space h∗λ of hλ which maps an element X of

the form (2.8) to X
(i)
0 ∈ C, ∆ denotes the set of roots and

ge(i)−e(j) =
{
Y ∈ g |

(
adX − (e(i) − e(j))(X)

)m
Y = 0 for ∀X ∈ hλ, ∃m ∈ N

}
.

We can see that each generalized eigenspace ge(i)−e(j) contains 1-dimensional eigen-
space with a basis vector Eϵ(i)−ϵ(j) which is the matrix unit given as follows. Ac-
cording as the partition λ = (n1, . . . , nℓ) we express Y ∈ g in block-wise as

Y =

 Y (1,1) · · · Y (1,ℓ)

...
...

Y (ℓ,1) · · · Y (ℓ,ℓ)


with the (i, j) block Y (i,j) ∈ Mat(ni, nj). Then Eϵ(i)−ϵ(j) is the matrix unit whose
only nonzero element 1 locates at the upper right corner of (i, j) block. The
contiguity relations for Gelfand’s HGF of type λ are provided by the infinitesimal
action of the 1-paramter subgroup s 7→ exp(sEϵ(i)−ϵ(j)). Let Y be a root vector in
the generalized root space decomposition (2.9). Then we see that the 1-parameter
subgroup {exp(sY )}s∈C preserves the space Zλ and acts on functions on it. Then
we have its infinitesimal action in the form of the first order differential operators
on Zλ. Namely, for a holomorphic function f on Zλ, define the differential operator
LY by

(LY f)(z) :=
d

ds
f(z exp(sY ))|s=0. (2.10)

When Y = Eϵ(i)−ϵ(j) , the operator LY will be denoted by Lϵ(i)−ϵ(j) .

Proposition 2.6. Let F be Gelfand’s HGF of type λ. Then we have

Lϵ(i)−ϵ(j)F (z, α) = α
(j)
nj−1F (z, α+ ϵ(i) − ϵ(j)), (2.11)

where α 7→ α+ϵ(i)−ϵ(j) implies, for α = (α(1), . . . , α(ℓ)), α(k) = (α
(k)
0 , . . . , α

(k)
nk−1),

the change α
(i)
0 7→ α

(i)
0 + 1, α

(j)
0 7→ α

(j)
0 − 1 leaving the other entries unchanged.

2.3 Classical HGFs as Gelfand’s HGF

Classical HGFs are realized as Gelfand’s HGF considering the case N = 4 and
partitions of 4 given in (2.4). For each partition λ in (2.4), there corresponds
Gauss, Kummer, Bessel, Hermite-Weber and Airy function, respectively, which
we shall explain in the following. For a λ of 4, the character of H̃λ and the space
Zλ, on which Gelfand’s HGF of type λ is defined, are as follows. Here we use a
slightly different manner of the indices from that of the above subsections in order
to avoid the cumbersome notation.

Group Hλ:
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H(1,1,1,1) =



h1

h2

h3

h4


 , H(3,1) =



h1 h2 h3

h1 h2

h1

h4


 ,

H(2,1,1) =



h1 h2

h1

h3

h4


 , H(4) =



h1 h2 h3 h4

h1 h2 h3

h1 h2

h1


 ,

H(2,2) =



h1 h2

h1

h3 h4

h3


 .

Character χλ:

χ(1,1,1,1)(h, α) = hα1
1 hα2

2 hα3
3 hα4

4 ,

χ(2,1,1)(h, α) = hα1
1 exp

(
α2

h2

h1

)
hα3
3 hα4

4 ,

χ(2,2)(h, α) = hα1
1 exp

(
α2

h2

h1

)
hα3
3 exp

(
α4

h4

h3

)
,

χ(3,1)(h, α) = hα1
1 exp

(
α2

h2

h1
+ α3

(
h3

h1
− 1

2

(
h2

h1

)2
))

hα4
4 ,

χ(4)(h, α) = hα1
1 exp

{
α2

h2

h1
+ α3

(
h3

h1
− 1

2

(
h2

h1

)2
)

+α4

(
h4

h1
− h2

h1

h3

h1
+

1

3

(
h2

h1

)3
)}

.

Matrix space Zλ:

Z(1,1,1,1) = {(z1, z2, z3, z4) ∈ Mat(2, 4) | det(zi, zj) 6= 0 (i 6= j)},

Z(2,1,1) =

{
(z1, z2, z3, z4) ∈ Mat(2, 4) |

det(z1, zj) 6= 0 (2 ≤ j ≤ 4)

det(z3, z4) 6= 0

}
,

Z(2,2) =

{
(z1, z2, z3, z4) ∈ Mat(2, 4) |

det(z1, zj) 6= 0 (2 ≤ j ≤ 3)

det(z3, z4) 6= 0

}
,

Z(3,1) =

{
(z1, z2, z3, z4) ∈ Mat(2, 4) |

det(z1, z2) 6= 0

det(z1, z4) 6= 0

}
,

Z(4) = {(z1, z2, z3, z4) ∈ Mat(2, 4) | det(z1, z2) 6= 0} .

Taking into account Proposition 2.5, consider the orbit space GL(2)\Zλ/Hλ of the
action GL(2) ↷ Zλ ↶ Hλ. Then we can have the realization Xλ of the orbit space
in Zλ as follows.
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X(1,1,1,1) =

{(
1 0 1 1
0 1 −1 −x

)
| x 6= 0, 1

}
, X(3,1) =

{(
1 0 0 0
0 1 x 1

)}
,

X(2,1,1) =

{(
1 0 0 1
0 x 1 −1

)
| x 6= 0

}
, X(4) =

{(
1 0 0 0
0 1 0 −x

)}
,

X(2,2) =

{(
1 0 0 −x
0 1 1 0

)
| x 6= 0

}
.

Then the classical HGF family can be identified as Gelfand’s HGF on Xλ with the
parameters chosen appropriately.

(1) λ = (1, 1, 1, 1) ↔ Gauss:

α = (α1, α2, α3, α4) := (b− c, a− 1, c− a− 1,−b),

x = (x1,x2,x3,x4) =

(
1 0 1 1
0 1 −1 −x

)
,

F (x, α;C) =

∫
C

(u⃗x1)
α1(u⃗x2)

α2(u⃗x3)
α3(u⃗x4)

α4du

=

∫
C

1α1uα2(1− u)α3(1− ux)4du. (2.12)

(2) λ = (2, 1, 1) ↔ Kummer:

α = (α1, α2, α3, α4) := (−c, 1, a− 1, c− a− 1),

x = (x1,x2,x3,x4) =

(
1 0 0 1
0 x 1 −1

)
,

F (x, α) =

∫
C

(u⃗x1)
α1 exp

(
α2

u⃗x2

u⃗x1

)
(u⃗x3)

α3(u⃗x4)
α4du

=

∫
C

1α1 exp(xu)uα3(1− u)α4du. (2.13)

(3) λ = (2, 2) ↔ Bessel:

α = (α1, α2, α3, α4) := (c− 1, 1,−c− 1, 1),

x = (x1,x2,x3,x4) =

(
1 0 0 −x
0 1 1 0

)
,

F (x, α) =

∫
C

(u⃗x1)
α1 exp

(
u⃗x2

u⃗x1

)
(u⃗x3)

α3 exp

(
u⃗x4

u⃗x3

)
du

=

∫
C

1α1 exp(u)uα3 exp(−x/u)du. (2.14)
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(4) λ = (3, 1) ↔ Hermite-Weber:

α = (α1, α2, α3, α4) := (a− 1, 0, 1,−a− 1),

x = (x1,x2,x3,x4) =

(
1 0 0 0
0 1 x 1

)
,

F (x, α) =

∫
C

(u⃗x1)
α1 exp

{
u⃗x3

u⃗x1
− 1

2

(
u⃗x2

u⃗x1

)2
}
(u⃗x4)

α4du (2.15)

=

∫
C

1α1 exp

(
xu− 1

2
u2

)
uα4du.

(5) λ = (4) ↔ Airy:

α = (α1, α2, α3, α4) := (−2, 0, 0,−1),

x = (x1,x2,x3,x4) =

(
1 0 0 0
0 1 0 −x

)
,

F (x, α) =

∫
C

(u⃗x1)
α1 expα4

{
u⃗x4

u⃗x1
− u⃗x2

u⃗x1

u⃗x3

u⃗x1
+

1

3

(
u⃗x2

u⃗x1

)3
}
du

=

∫
C

1α1 exp

(
xu− 1

3
u3

)
du.

3 Contiguity relations of the classical HGF

In this section, we derive the explicit form of contiguity relations for the classical
HGF from Proposition 2.6.

3.1 Gauss case

As we have seen in Subsection 2.3, the Gauss HGF 2F1(a, b, c;x) is identified with
Gelfand’s HGF of type λ = (1, 1, 1, 1) on the realization X = Xλ ⊂ Zλ of the
quotient space GL(2)\Zλ/Hλ. We adopt the notation used in Subsection 2.3 for
numbering the indices for matrices, etc. In accordance with this convention of
notations, the rows and columns for Y ∈ gl(4) are indexed by {1, 2, 3, 4}. Then
Proposition 2.6 gives the following result.

Proposition 3.1. The contiguity relations for Gauss HGF 2F1(a, b, c;x) are given
as follows according to the roots ∆ = {e(i) − e(j) | 1 ≤ i 6= j ≤ 4}.

(1) ±(e(1) − e(2)) :

Le(1)−e(2) 2F1(a, b, c;x) = (c− 1) · 2F1(a− 1, b, c− 1;x),

Le(2)−e(1) 2F1(a, b, c;x) =
a(b− c)

c
· 2F1(a+ 1, b, c+ 1;x),
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where

Le(1)−e(2) = x(1− x)
d

dx
+ c− 1− bx,

Le(2)−e(1) = (1− x)
d

dx
− a.

(2) ±(e(1) − e(3)) :

Le(1)−e(3) 2F1(a, b, c;x) = (c− 1) · 2F1(a, b, c− 1;x),

Le(3)−e(1) 2F1(a, b, c;x) =
(c− a)(c− b)

c
· 2F1(a, b, c+ 1;x),

where

Le(1)−e(3) = x
d

dx
+ c− 1,

Le(3)−e(1) = −(1− x)
d

dx
+ a+ b− c.

(3) ±(e(1) − e(4)) :

Le(1)−e(4) 2F1(a, b, c;x) = (−b) · 2F1(a, b+ 1, c;x),

Le(4)−e(1) 2F1(a, b, c;x) = −(c− b) · 2F1(a, b− 1, c;x),

where

Le(1)−e(4) = −x
d

dx
− b,

Le(4)−e(1) = −x(1− x)
d

dx
+ b− c+ ax.

(4) ±(e(2) − e(3)) :

Le(2)−e(3) 2F1(a, b, c;x) = a · 2F1(a+ 1, b, c;x),

Le(3)−e(2) 2F1(a, b, c;x) = (c− a) · 2F1(a− 1, b, c;x),

where

Le(2)−e(3) = x
d

dx
+ a,

Le(3)−e(2) = x(1− x)
d

dx
+ c− a− bx.

(5) ±(e(2) − e(4)) :

Le(2)−e(4) 2F1(a, b, c;x) = −ab

c
· 2F1(a+ 1, b+ 1, c+ 1;x),

Le(4)−e(2) 2F1(a, b, c;x) = (c− 1) · 2F1(a− 1, b− 1, c− 1;x),
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where

Le(2)−e(4) = − d

dx
,

Le(4)−e(2) = x(1− x)
d

dx
+ c− 1 + (1− a− b)x.

(6) ±(e(3) − e(4)) :

Le(3)−e(4) 2F1(a, b, c;x) = −b(c− a)

c
· 2F1(a, b+ 1, c+ 1;x),

Le(4)−e(3) 2F1(a, b, c;x) = (c− 1) · 2F1(a, b− 1, c− 1;x),

where

Le(3)−e(4) = (1− x)
d

dx
− b,

Le(4)−e(3) = x(1− x)
d

dx
+ c− 1− ax.

Proof. We show only the case (1) since the other cases are shown in a similar
way. Take

x = (x1,x2,x3,x4) =

(
1 0 1 1
0 1 −1 −x

)
∈ X.

Then, comparing (2.2) and (2.12), the Gauss HGF and Gelfand’s HGF restricted
on X are related as

F (x, α) = C(α) 2F1(α2 + 1,−α4, α2 + α3 + 2;x), (3.1)

where the path of integration in the left hand side is
−→
0, 1 connecting 0 to 1 in

u-plane, the parameters α and those of Gauss HGF are related as

(α1, α2, α3, α4) = (b− c, a− 1, c− a− 1,−b) (3.2)

or

(a, b, c) = (α2 + 1,−α4, α2 + α3 + 2)

and the constant C(α) is

C(α) =
Γ(α2 + 1)Γ(α3 + 1)

Γ(α2 + α3 + 2)
=

Γ(a)Γ(c− a)

Γ(c)
. (3.3)

To obtain the contiguity relations, consider the action of the 1-parameter subgroup
generated by the matrix unit E1,2(resp. E2,1), which is a root vector corresponding
to the root e(1) − e(2) (resp. e(2) − e(1)) in the root space decomposition of the Lie
algebra g = gl(4). Then Proposition 2.6 says for the root e(1) − e(2) that

Le(1)−e(2)F (x, α) = α2F (x, α+ e(1) − e(2)) (3.4)
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with the operator defined by

(Le(1)−e(2) · f)(x) =
d

ds
f(x exp(sE1,2))|s=0. (3.5)

Let us compute the operator Le(1)−e(2) . Consider the 1-parameter subgroup gen-
erated by E1,2 and its action on x:

z(s) = x exp(sE1,2) = (x1,x2,x3,x4)


1 s

1
1

1


= (x1,x2 + sx1,x3,x4) =

(
1 s 1 1
0 1 −1 −x

)
.

We normalize z(s) to the normal form x(s) ∈ X. Put g1 =

(
1 s
0 1

)
and h =

diag(1, h2, h3, h4) ∈ H and consider

g−1
1 z(s)h =

(
1 0 (1 + s)h3 (1 + sx)h4

0 h2 −h3 −xh4

)
.

Next take g2 =

(
1

h2

)
and consider

g−1
2 g−1

1 z(s)h =

(
1 0 (1 + s)h3 (1 + sx)h4

0 1 −h−1
2 h3 −xh−1

2 h4

)
.

Determine h as h2 = h3 = (1 + s)−1, h4 = (1 + sx)−1 so that we have

g−1
2 g−1

1 z(s)h = x(s) =

(
1 0 1 1
0 1 −1 −x(s)

)
, x(s) =

(1 + s)x

1 + sx
.

It follows from Proposition 2.5 that

F (z(s), α) = det(g1g2)
−1χ(h, α)−1F (x(s), α)

= (1 + s)α2+α3+1(1 + sx)α4F (x(s), α). (3.6)

Then the left hand side of (3.4) is computed as

Le(1)−e(2)F (x, α) =
d

ds
F (z(s), α)|s=0

=
d

ds
(1 + s)α2+α3+1(1 + sx)α4F (x(s), α)|s=0

= (α2 + α3 + 1 + α4x)F (x, α) +
∂F (x, α)

∂x

dx(s)

ds
|s=0

=

{
x(1− x)

d

dx
+ α2 + α3 + 1 + α4x

}
F (x, α).
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Hence the operator Le(1)−e(2) defined by (3.5) is given by

Le(1)−e(2) = x(1− x)
d

dx
+ α2 + α3 + 1 + α4x.

Taking account (3.2) and

C(α+ e(1) − e(2))

C(α)
=

Γ(α2 + α3 + 2)

Γ(α2 + 1)Γ(α3 + 1)
· Γ(α2)Γ(α3 + 1)

Γ(α2 + α3 + 1)

=
α2 + α3 + 1

α2
,

the relation (3.4) is translated to the first half of the contiguity relations in (1) for
the Gauss HGF:{

x(1− x)
d

dx
+ c− 1− bx

}
2F1(a, b, c;x) = (c− 1) · 2F1(a− 1, b, c− 1;x).

In a similar way, we shall compute the second half of the contiguity relation cor-
responding to the root e(2) − e(1). Consider the 1-parameter subgroup generated
by the corresponding root vector E2,1 and its action on X:

z(s) = x exp(sE2,1) =

(
1 0 1 1
s 1 −1 −x

)
.

We normalize z(s) to the normal form. Take g1 =

(
1 0
s 1

)
, h = diag(h1, 1, h3, h4)

and get

g−1
1 z(s)h =

(
h1 0 h3 h4

0 1 −(1 + s)h3 −(x+ s)h4

)
.

Next take g2 =

(
h1

1

)
and consider

g−1
2 g−1

1 z(s)h =

(
1 0 h−1

1 h3 h−1
1 h4

0 1 −(1 + s)h3 −(x+ s)h4

)
.

Determining h by h1 = h3 = h4 = (1 + s)−1, we have

g−1
2 g−1

1 z(s)h = x(s)

with

x(s) =

(
1 0 1 1
0 1 −1 −x(s)

)
, x(s) =

x+ s

1 + s
.

Then from Proposition 2.5, we have

F (z(s), α) = det(g1g2)
−1χ(h, α)−1F (x(s), α)

= (1 + s)α1+α3+α4+1F (x(s), α). (3.7)
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Let us compute the left hand side of (3.4) using (3.7). Noting α1 + α3 + α4 + 1 =
−α2 − 1, we have

Le(2)−e(1)F (x, α) =
d

ds
F (z(s), α)|s=0

=
d

ds
(1 + s)−α2−1F (x(s), α)|s=0

= (−α2 − 1)F (x, α) +
∂F (x, α)

∂x

dx(s)

ds

=

{
(1− x)

d

dx
− α2 − 1

}
F (x, α).

So (3.4) implies{
(1− x)

d

dx
− α2 − 1

}
F (x, α) = α1F (x, α+ e(2) − e(1)).

Taking account of (3.2) and

C(α+ e(2) − e(1))

C(α)
=

Γ(α2 + α3 + 2)

Γ(α2 + 1)Γ(α3 + 1)
· Γ(α2 + 2)Γ(α3 + 1)

Γ(α2 + α3 + 3)

=
α2 + 1

α2 + α3 + 2
,

the relation (3.4) is translated to the second half of the contiguity relations in (1)
: {

(1− x)
d

dx
− a

}
2F1(a, b, c;x) =

a(b− c)

c
· 2F1(a+ 1, b, c+ 1;x).

Remark 3.2. In the above proposition, we showed that the contiguity operators for
the Gauss HGF are obtained from the action of 1-parameter subgroup generated
by root vectors Ee(i)−e(j) . It is to be noted that the operators Le(i)−e(j) does
not necessarily satisfies the similar commutation relations for the root vectors
Ee(i)−e(j) . For example, we know [Ee(1)−e(2) , Ee(2)−e(3) ] = Ee(1)−e(3) holds for the
root vectors, but we do not have [Le(1)−e(2) , Le(2)−e(3) ] = Le(1)−e(3) . It come from
the fact that we used Proposition 2.5 in order to reduce z(s) = x exp(sEe(i)−e(j))
to the normal form x(s) and as a result the operator is twisted. The same remark
should be added to the confluent family case.

3.2 Kummer case

From (2.3) and (2.13), Kummer’s confluent HGF 1F1(a, c;x) is identified with
Gelfand’s HGF of type λ = (2, 1, 1) on the realizationX = Xλ ⊂ Zλ of the quotient
space GL(2)\Zλ/Hλ. We adopt the notation in Subsection 2.3 for numbering the
entries of matrices. We have

F (x, α) = C(α) 1F1(α3 + 1, α3 + α4 + 2;x), (3.8)
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where α = (α1, α2, α3, α4) = (−c, 1, a− 1, c− a− 1), the path of integration C in

(2.13) is
−→
0, 1 and

C(α) =
Γ(α3 + 1)Γ(α4 + 1)

Γ(α3 + α4 + 2)
=

Γ(a)Γ(c− a)

Γ(c)
. (3.9)

Then Proposition 2.6 gives the following result.

Proposition 3.3. The contiguity relations for Kummer’s confluent HGF 1F1(a, c;x)
are given as follows according to the roots ∆ = {e(i) − e(j) | 1 ≤ i 6= j ≤ 3}.

(1) ±(e(1) − e(2)) :

Le(1)−e(2) 1F1(a, c;x) = (c− 1) · 1F1(a− 1, c− 1;x),

Le(2)−e(1) 1F1(a, c;x) =
a

c
· 1F1(a+ 1, c+ 1;x),

where

Le(1)−e(2) = x
d

dx
+ c− 1− x, Le(2)−e(1) =

d

dx
.

(2) ±(e(1) − e(3)) :

Le(1)−e(3) 1F1(a, c;x) = (c− 1) · 1F1(a, c− 1;x),

Le(3)−e(1) 1F1(a, c;x) =
c− a

c
· 1F1(a, c+ 1;x),

where

Le(1)−e(3) = x
d

dx
+ c− 1, Le(3)−e(1) = − d

dx
+ 1.

(3) ±(e(2) − e(3)) :

Le(2)−e(3) 1F1(a, c;x) = a · 1F1(a+ 1, c;x),

Le(3)−e(2) 1F1(a, c;x) = (c− a) · 1F1(a− 1, c;x),

where

Le(2)−e(3) = x
d

dx
+ a, Le(3)−e(2) = x

d

dx
+ c− a− x.

Proof. We prove the case (1) only. Note that x ∈ X(2,1,1) in (3.8) is given

by x = (x1,x2,x3,x4) =

(
1 0 0 1
0 x 1 −1

)
. For the root e(1) − e(2), we take

the root vector given by the matrix unit E1,3 and the action of the 1-parameter
subgroup exp(sE1,3) on x. Then we have

z(s) = x exp(sE1,3) = (x1,x2,x3,x4)


1 s

1
1

1


= (x1,x2,x3 + sx1,x4) =

(
1 0 s 1
0 x 1 −1

)
.
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Let us normalize z(s) to the normal form x(s) =

(
1 0 0 1
0 x(s) 1 −1

)
by the

action of GL(2)×H(2,1,1). Take

g1 =

(
1 s
0 1

)
, h =


1 h2

1
h3

h4


and consider g−1

1 z(s)h. Then we have

g−1
1 z(s)h =

(
1 h2 − sx 0 (1 + s)h4

0 x h3 −h4

)
.

To normalize the first and third column vectors, take g2 =

(
1

h3

)
and consider

g−1
2 g−1

1 z(s)h =

(
1 h2 − sx 0 (1 + s)h4

0 h−1
3 x 1 −h−1

3 h4

)
.

Then taking h with h2 = sx, h3 = h4 = (1 + s)−1, we have

g−1
2 g−1

1 z(s)h = x(s) =

(
1 0 0 1
0 x(s) 1 −1

)
, x(s) = (1 + s)x.

Then from Proposition 2.5 we have

F (z(s), α) = det(g1g2)
−1χ(h, α)−1F (x(s), α)

= e−sx(1 + s)α3+α4+1F (x(s), α). (3.10)

We compute the left hand side of (2.11) for the root e(1) − e(2) using (3.10).

Le(1)−e(2)F (x, α) =
d

ds
F (z(s), α)|s=0

=
d

ds
e−sx(1 + s)α3+α4+1F (x(s), α)|s=0

=

{
x
d

dx
+ α3 + α4 + 1− x

}
F (x, α).

So (2.11) implies{
x
d

dx
+ α3 + α4 + 1− x

}
F (x, α) = α3F (x, α+ e(1) − e(2)).

Noting (α1, α2, α3, α4) = (−c, 1, a− 1, c− a− 1), α+ e(1) − e(2) = (α1 +1, α2, α3 −
1, α4) and (3.9), which implies

C(α+ e(1) − e(2))

C(α)
=

α3 + α4 + 1

α3
,



28 H. Kimura

we have the contiguity relation{
x
d

dx
+ c− 1− x

}
1F1(a, c;x) = (c− 1) · 1F1(a− 1, c− 1;x)

with the contiguity operator Le(1)−e(2) = x d
dx + c− 1− x.

Next we consider the case for the root e(2) − e(1). In this case a root vector is
given by the matrix unit E3,2. So, as in the previous case, we consider the action
of the 1-parameter subgroup on x ∈ X(2,1,1):

z(s) = x exp(sE3,2) = (x1,x2 + sx3,x3,x4) =

(
1 0 0 1
0 x+ s 1 −1

)
.

Then we see that z(s) is already in the normal form

x(s) =

(
1 0 0 1
0 x(s) 1 −1

)
, x(s) = x+ s,

and hence F (z(s), α) = F (x(s), α). Now we can compute the left hand side of
(2.11) for the root e(2) − e(1)

Le(2)−e(1)F (x, α) =
d

ds
F (x(s), α)|s=0

=
∂F (x, α)

∂x

dx(s)

ds
|s=0 =

d

dx
F (x, α).

So (2.11) implies
d

dx
F (x, α) = α2F (x, α+ e(2) − e(1)).

Taking into account that

C(α+ e(2) − e(1))

C(α)
=

α3 + 1

α3 + α4 + 2
=

a

c
,

we get the contiguity relation:

d

dx
1F1(a, c;x) =

a

c
· 1F1(a+ 1, c+ 1;x)

with the contiguity operator Le(2)−e(1) =
d
dx .

3.3 Bessel case

From (2.1) and (2.14), we see that the Bessel integral IB(c;x) is identified with
Gelfand’s HGF of type λ = (2, 2) on the realization X = Xλ ⊂ Zλ of the quotient
space GL(2)\Zλ/Hλ. We adopt the notation in Subsection 2.3 for numbering the
entries of matrices. We have

F (x, α) = IB(c;x), (3.11)

where α = (α1, α2, α3, α4) = (c − 1, 1,−c − 1, 1) and x = (x1,x2,x3,x4) =(
1 0 0 −x
0 1 1 0

)
. Then Proposition 2.6 gives the following result.
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Proposition 3.4. The contiguity relations for Bessel integral IB(c, x) are given
as follows according to the roots ∆ = {±(e(1) − e(2))}:

Le(1)−e(2)IB(c;x) = IB(c+ 1;x),

Le(2)−e(1)IB(c;x) = IB(c− 1;x),

where

Le(1)−e(2) = − d

dx
, Le(2)−e(1) = x

d

dx
+ c.

Proof. Strategy is the same as in the Kummer’s case. To show the first
relation, note that the root vector for the root e(1) − e(2) is given by the matrix
unit E1,4 and consider the action of the 1-parameter subgroup s 7→ exp(sE1,4) on
x:

z(s) = x exp(sE1,4) = (x1,x2,x3,x4 + sx1) =

(
1 0 0 −(x− s)
0 1 1 0

)
.

Since z(s) is already the normal form

x(s) =

(
1 0 0 −x(s)
0 1 1 0

)
, x(s) = x− s,

we have F (z(s), α) = F (x(s), α) and we can compute the left hand side of (2.11)
as

Le(1)−e(2)F (x, α) =
d

ds
F (z(s), α)|s=0 =

∂F (x, α)

∂x

dx(s)

ds
|s=0 = − d

dx
F (x, α).

So (2.11) implies {
− d

dx

}
F (x, α) = α4F (x, α+ e(1) − e(2)).

Noting that α = (α1, α2, α3, α4) = (c− 1, 1,−c− 1, 1) and that α 7→ α+ e(1)− e(2)

is the change α1 7→ α1 + 1, α3 7→ α3 − 1, we have the contiguity relation

− d

dx
IB(c;x) = IB(c+ 1;x)

with the contiguity operator Le(1)−e(2) = − d
dx .

Next we prove the second half of the proposition briefly. The root vector for
e(2) − e(1) is the matrix unit E3,2.The action of the 1-parameter subgroup on x is

z(s) = x exp(sE3,2) = (x1,x2 + sx3,x3,x4) =

(
1 0 0 −x
0 1 + s 1 0

)
.

Normalization x(s) of z(s) is

x(s) =

(
1 0 0 −x(s)
0 1 1 0

)
, x(s) = (1 + s)x,
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where x(s) = g−1z(s)h with g =

(
h1 0
0 1

)
, h = diag(h1, h1, 1, 1) ∈ H(2,2)with

h1 = (1 + s)−1. Then Proposition 2.5 tells us

F (z(s), α) = det(g)−1χ(h, α)−1F (x(s), α) = (1 + s)α1+1F (x(s), α). (3.12)

Then using (3.12), the operator Le(2)−e(1) can be computed as

Le(2)−e(1)F (x, α) =
d

ds
(1 + s)α1+1F (x(s), α)|s=0

=

{
x
d

dx
+ (α1 + 1)

}
F (x, α).

So (2.11) reads as{
x
d

dx
+ (α1 + 1)

}
F (x, α) = α2F (x, α+ e(2) − e(1)),

which gives the contiguity relation{
x
d

dx
+ c

}
IB(c;x) = IB(c− 1;x)

with the contiguity operator Le(2)−e(1) = x d
dx + c.

3.4 Hermite-Weber case

By comparing (2.1) and (2.15), Hermite-Weber integral IHW (a;x) is identified
with Gelfand’s HGF of type λ = (3, 1) on the realization X = Xλ ⊂ Zλ of the
quotient space GL(2)\Zλ/Hλ. We use the similar notation as above for numbering
the entries of matrices. Note that an element x ∈ X(3,1) is of the form x =

(x1,x2,x3,x4) =

(
1 0 0 −x
0 1 1 0

)
and

F (x, α) = IHW (a;x), (3.13)

where α = (α1, α2, α3, α4) = (a − 1, 0, 1,−a − 1). Then Proposition 2.6 gives the
following result.

Proposition 3.5. The contiguity relations for the Hermite-Weber integral IHW (a;x)
are given as follows according to the roots ∆ = {±(e(1) − e(2))}:

Le(1)−e(2)IHW (a;x) = (−a− 1)IHW (a+ 1;x),

Le(2)−e(1)IHW (a;x) = IHW (a− 1;x),

where

Le(1)−e(2) =
d

dx
− x, Le(2)−e(1) =

d

dx
.
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Proof. We proceed in the same way as in the Bessel case. Note that the
matrix units E1,4 and E4,3 are root vectors for the roots e(1) − e(2) and e(2) − e(1),
respectively.

1) e(1)−e(2) case. Consider the action of 1-parameter subgroup s 7→ exp(sE1,4)
on x ∈ X:

z(s) = x exp(sE1,4) = (x1,x2,x3,x4 + sx1) =

(
1 0 0 s
0 1 x 1

)
.

We check that z(s) is normalized to

x(s) =

(
1 0 0 0
0 1 x(s) 1

)
, x(s) = x+ s (3.14)

by the action of GL(2)×H(3,1). Take

g =

(
1 s
0 1

)
, h =


1 h2 h3

1 h2

1
1


and consider g−1z(s)h. Then we have

g−1z(s)h =

(
1 h2 − s h3 − sh2 − sx 0
0 1 h2 + x 1

)
.

Taking h with h2 = s, h3 = s2 + sx, we see that g−1z(s)h is of the normal form
given in (3.14). It follows from Proposition 2.5 that

F (z(s), α) = det(g)−1χ(h, α)−1F (x(s), α)

= exp(−sx− 1

2
s2)F (x(s), α). (3.15)

Then by using (3.15), the left hand side of (2.11) in this case is computed as

Le(1)−e(2)F (x, α) =
d

ds
F (z(s), α)|s=0

=
d

ds
exp(−sx− 1

2
s2)|s=0F (x, α) +

∂F (x, α)

∂x

dx(s)

ds
|s=0

=

{
d

dx
− x

}
F (x, α).

So (2.11) implies {
d

dx
− x

}
F (x, α) = α4F (x, α+ e(1) − e(2)).

Noting that α = (α1, α2, α3, α4) = (a − 1, 0, 1,−a − 1), we have the contiguity
relation {

d

dx
− x

}
IHW (a;x) = (−a− 1)IHW (a+ 1;x).
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2) e(2)−e(1) case. Consider the action of the 1-parameter subgroup {exp(sE4,3)}
on x ∈ X:

z(s) = x exp(sE4,3) = (x1,x2,x3 + sx4,x4) =

(
1 0 0 0
0 1 x+ s 1

)
.

Since z(s) is already a normal form

x(s) =

(
1 0 0 0
0 1 x(s) 1

)
, x(s) = x+ s.

From Proposition 2.5 we have F (z(s), α) = F (x(s), α) and the left hand side of
(2.11) in this case is computed as

Le(2)−e(1)F (x, α) =
d

ds
F (z(s), α)|s=0 =

∂

∂x
F (x, α)

dx(s)

ds
|s=0 =

d

dx
F (x, α).

So (2.11) implies
d

dx
F (x, α) = α3F (x, α+ e(2) − e(1)).

Noting that α = (α1, α2, α3, α4) = (a−1, 0, 1,−a−1) and that α 7→ α+e(2)−e(1)

implies α1 7→ α1 − 1, α4 7→ α4 + 1, we have the contiguity relation

d

dx
IHW (a;x) = IHW (a− 1;x).

4 Contiguity of beta and gamma functions

In this section, we show that the famous contiguity relation (recurrence relation)
Γ(a + 1) = aΓ(a) for the gamma function can be derived from that for Gelfand’s
HGF. We also establish the similar assertion for the beta function.

4.1 Beta and Gamma as Gelfand’s HGF

The beta function and the gamma function are defined by the integrals

B(a, b) =

∫ 1

0

ua−1(1− u)b−1du, (4.1)

Γ(a) =

∫ ∞

0

ua−1e−udu, (4.2)

which converge for Re(a),Re(b) > 0 and for Re(a) > 0, respectively, and define
holomorphic functions there. We explain these functions can also be identified
with Gelfand’s HGF on the Grassmannian Gr(2, 3) corresponding respectively to
the partitions λ = (1, 1, 1) and λ = (2, 1). To the partition λ, we associate the
group Hλ as
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H(1,1,1) =


 h1

h2

h3

 | h1, h2, h3 6= 0

 ,

H(2,1) =


 h1 h2

h1

h3

 | h1, h3 6= 0

 .

Then the characters χλ : H̃λ → C× we use are given by

χ(1,1,1)(h) = hα1
1 hα2

2 hα3
3 , α1 + α2 + α3 = −2,

χ(2,1)(h) = hα1
1 exp

(
α2

h2

h1

)
hα3
3 , α1 + α3 = −2, α2 = −1.

Then the spaces on which Gelfand’s HGF are defined for λ = (1, 1, 1), (2, 1) are

Z(1,1,1) = {(z1, z2, z3) ∈ Mat(2, 3) | det(zi, zj) 6= 0 (i 6= j)} ,
Z(2,1) = {(z1, z2, z3) ∈ Mat(2, 3) | det(z1, z2) 6= 0, det(z1, z3) 6= 0} .

The space Zλ is invariant by the action of GL(2) and Hλ defined by the left
and right multiplication of matrices and we can consider the quotient spaces
GL(2)\Zλ/Hλ. The quotient space consists of one point and are realized as a
subset Xλ of Zλ as

X(1,1,1) =

{(
1 0 1
0 1 −1

)}
⊂ Z(1,1,1),

X(2,1) =

{(
1 0 0
0 1 1

)}
⊂ Z(2,1).

The restriction of Gelfand’s HGF for λ = (1, 1, 1) onX(1,1,1) 3 x =

(
1 0 1
0 1 −1

)
gives the beta function

F (x, α) =

∫
C

(u⃗x1)
α1(u⃗x2)

α2(u⃗x3)
α3du

=

∫
C

1α1uα2(1− u)α3du = B(α2 + 1, α3 + 1), (4.3)

where we take C =
−→
0, 1. Similarly, the restriction of Gelfand’s HGF of type

λ = (2, 1) on X(2,1) 3 x =

(
1 0 0
0 1 1

)
gives the gamma function:

F (x, α) =

∫
C

(u⃗x1)
α1 exp (α2(u⃗x2)/(u⃗x1)) (u⃗x3)

α3du

=

∫
C

1α1eα2uuα3du = Γ(α3 + 1), (4.4)

where we take C =
−−→
0,∞.



34 H. Kimura

4.2 Beta case

Note that the correspondence between the weights of χ and the independent vari-
ables a, b of the beta is

α1 = −a− b, α2 = a− 1, α3 = b− 1.

The contiguity relation is linked with the action of the 1-parameter subgroup
generated by a root vector in the root space decomposition of Lie algebra gl(3):

gl(3) = h⊕
⊕
α∈∆

gα

with the set of roots ∆ = {e(i) − e(j) | 1 ≤ i 6= j ≤ 3} and the root space
ge(i)−e(j) = C ·Ei,j , where Ei,j is the (i, j) matrix unit. Then Proposition 2.6 tells
us that we can obtain the contiguity relation

Le(i)−e(j)F (x, α) = αjF (x, α+ e(i) − e(j)) (4.5)

from the action of the 1-parameter subgroup generated by the root vector Ei,j .
Here, as explained earlier, the operator Le(i)−e(j) is defined by

(Le(i)−e(j) · f)(z) =
d

ds
f(z exp(sEi,j))|s=0 (4.6)

and α 7→ α+e(i)−e(j) implies that αi, αj are changed as αi 7→ αi+1, αj 7→ αj −1
and the rest is left unchanged.

Proposition 4.1. The operator Le(i)−e(j) acts on F (x, α) as a multiplication by
the constant Ai,j and the relation (4.5) is written as

Ai,jF (x, α) = αjF (x, α+ e(i) − e(j)),

which is rewritten into the contiguity relation for the beta function as described in
the table. In particular, it gives the relation

B(a+ 1, b) =
a

a+ b
B(a, b), B(a, b+ 1) =

b

a+ b
B(a, b).

Roots Ai,j a b Contiguity relation

e(1) − e(2) −(α1 + 1) −1 B(a, b) = a−1
a+b−1B(a− 1, b)

e(2) − e(1) −(α2 + 1) +1 B(a, b) = a+b
a B(a+ 1, b)

e(1) − e(3) −(α1 + 1) −1 B(a, b) = b−1
a+b−1B(a, b− 1)

e(3) − e(1) −(α3 + 1) +1 B(a, b) = a+b
b B(a, b+ 1)

e(2) − e(3) α2 + 1 +1 −1 B(a, b) = b−1
a B(a+ 1, b− 1)

e(3) − e(2) α3 + 1 −1 +1 B(a, b) = a−1
b B(a− 1, b+ 1)
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Proof. We discuss the cases of the roots ±(e(1) − e(2)). Consider the 1-
parameter subgroup generated by the root vector E1,2 for the root e(1) − e(2)

and its action on x = (x1,x2,x3) =

(
1 0 1
0 1 −1

)
:

z(s) = x exp(sE1,2) = (x1,x2,x3)

 1 s
1

1


= (x1,x2 + sx1,x3) =

(
1 s 1
0 1 −1

)
.

Next we normalize z(s) to the normal form x. Put g1 =

(
1 s
0 1

)
and h =

diag(1, h2, h3) and consider

g−1
1 z(s)h =

(
1 −s
0 1

)(
1 s 1
0 1 −1

)
h =

(
1 0 (1 + s)h3

0 h2 −h3

)
.

Further we put g2 = diag(1, h2) and consider

g−1
2 g−1

1 z(s)h =

(
1 0 (1 + s)h3

0 1 −h−1
2 h3

)
.

Taking h with h2 = h3 = (1 + s)−1, we get

g−1
2 g−1

1 z(s)h = x.

It follows from Proposition 2.5 that

F (z(s), α) = det(g1g2)
−1χ(h, α)−1F (x, α) = (1 + s)α2+α3+1F (x, α). (4.7)

Since the left hand side of the contiguity relation (4.5) is given by the operator
(4.6) with (i, j) = (1, 2), we compute it using (4.7) as

Le(1)−e(2)F (x, α) =
d

ds
F (z(s), α)|s=0

=
d

ds
(1 + s)α2+α3+1|s=0 · F (x, α)

= (α2 + α3 + 1)F (z, α).

This implies that A1,2 = α2 + α3 + 1(= −α1 − 1) and (4.5) reads

F (x, α) =
α2

α2 + α3 + 1
F (x, α+ e(1) − e(2)).

Taking into account that α1 = −a − b, α2 = a − 1, α3 = b − 1, this identity is
translated to the contiguity

B(a, b) =
a− 1

a+ b− 1
B(a− 1, b).
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The case for the root −(e(1) − e(2)) is treated in a similar way. The action of the
1-parameter subgroup exp(sE2,1) on x is

z(s) = x exp(sE2,1) =

(
1 0 1
s 1 −1

)
.

Normalization of z(s) to the normal form is g−1
2 g−1

1 z(s)h = x is with

g1 =

(
1
s 1

)
, g2 =

(
h1

1

)
, h =

 h1

1
h3


and h1 = h3 = (1 + s)−1. It follows from Proposition 2.5 that

F (z(s), α) = det(g1g2)
−1χ(h, α)−1F (x, α) = (1 + s)α1+α3+1F (x, α). (4.8)

Then

Le(2)−e(1)F (x, α) =
d

ds
(1 + s)α1+α3+1|s=0 · F (z, α) = (α1 + α3 + 1)F (z, α).

So A2,1 = α1 + α3 + 1 = −α2 − 1 and (4.5) implies

F (x, α) =
α1

α1 + α3 + 1
F (z, α+ e(2) − e(1)).

Noting (α1, α2, α3) = (−a − b, a − 1, b − 1), this identity is translated to the
contiguity

B(a, b) =
a+ b

a
B(a+ 1, b).

4.3 Gamma case

We establish a result for the gamma function similar to Proposition 4.1. Note that
the correspondence between the weights of χ and the independent variable a of
the gamma function is

α1 = −a− 1, α2 = −1, α3 = a− 1.

The contiguity relation is linked with the action of 1-parameter subgroup generated
by a root vector in the generalized root space decomposition of Lie algebra gl(3):

gl(3) = h⊕ ge(1)−e(2) ⊕ ge(2)−e(1)

with the set of roots ∆ = {±(e(1) − e(2))}. The root vectors corresponding to
the roots e(1) − e(2) and e(2) − e(1) are complex constant multiples of Ee(1)−e(2) :=
E1,3 and Ee(2)−e(1) := E3,2, respectively. Then Proposition 2.6 tells us that the
contiguity relation for F (x, α) = Γ(α3 + 1) has the form

Le(i)−e(j)F (x, α) = βj · F (x, α+ e(i) − e(j)), (4.9)

where β1 := α2, β2 := α3 and the operator Le(i)−e(j) is defined by

(Le(i)−e(j) · f)(z) =
d

ds
f(z exp(sEe(i)−e(j)))|s=0. (4.10)
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Proposition 4.2. The operator Le(i)−e(j) acts on F (x, α) as a multiplication by
the constant Ai,j and the relation (4.9) is written as

Ai,jF (x, α) = βj · F (x, α+ e(i) − e(j)),

which is rewritten as the contiguity relation for the gamma function described in
the following table. In particular, it gives the relation Γ(a+ 1) = aΓ(a).

Roots Ai,j a Contiguity relation

e(1) − e(2) 1 −1 Γ(a) = (a− 1)Γ(a− 1)

e(2) − e(1) −(α3 + 1) +1 −aΓ(a) = −Γ(a+ 1)

Proof. The strategy of proof is the same as in the beta case. Consider the
1-parameter subgroup generated by the root vector E1,3 for the root e(1) − e(2)

and its action on x = (x1,x2,x3) =

(
1 0 0
0 1 1

)
and obtain

z(s) = x exp(sE1,3) = (x1,x2,x3 + sx1) =

(
1 0 s
0 1 1

)
.

We normalize z(s) to the normal form x. Put

g =

(
1 s
0 1

)
, h =

 1 h2

1
1


and consider

g−1z(s)h =

(
1 h2 − s 0
0 1 1

)
.

Then we have g−1z(s)h = x by taking h with h2 = s. It follows from Proposition
2.6 that

F (z(s), α) = det(g)−1χ(h, α)−1F (x, α) = esF (x, α). (4.11)

Since the contiguity relation is given by (4.9), (4.10), we compute the left hand
side of (4.9) using (4.11) as

Le(1)−e(2)F (x, α) =
d

ds
F (z(s), α)|s=0 =

d

ds
es|s=0 · F (x, α) = F (x, α).

So Le(1)−e(2) acts on F (x, α) as a multiplication by the constant A1,2 = 1 and (4.9)
implies

F (x, α) = β2F (z, α+ e(1) − e(2)).

Taking into account the fact that (α1, α2, α3) = (−a−1,−1, a−1), α+e(1)−e(2) =
(α1 + 1, α2, α3 − 1) and β2 = α3, this identity reads as the recurrence relation

Γ(a) = (a− 1)Γ(a− 1).

The case for the root e(2) − e(1) is shown in the same way, so we omit it.
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tions multiformes, J. Fac. Sci. Univ. Tokyo, Sec. IA 22 (1975), 271–297.
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