A NOTE ON ERGODIC STATES ON C*-DYNAMICS

Yukimasa OKA

(Received November 8, 1990)

1. Introduction.

In this note we will discuss an ergodicity of invariant states on C*-dynamics. We will present a subspace \mathscr{H}_{φ} to get a characterization of the ergodicity of an invariant state φ on a C*-dynamics (A, G, a) (Theorem 1), which makes the same role as $L^2(\varphi)$ in the case the C*-algebra A is commutative. Also, an application of the subspace \mathscr{H}_{φ} will be given for some property of $\pi_{\varphi}(A)$ and of the set \mathscr{L}_{G} of all invariant states (Theorem 2).

Let A be a C*-algebra with unit element and α an action of a group G on A. We say that (A, G, α) is a C^* -dynamics. A state φ on A is said to be invariant if $\varphi(\alpha_{\theta}(x)) = \varphi(x)$ for $x \in$ A and $g \in G$. Let $(\pi_{\varphi}, \mathcal{X}_{\varphi}, \mathcal{E}_{\varphi})$ be the cyclic representation of A induced by φ . If φ is an invariant state on (A, G, α) , then it induces a unitary representation u^{φ} (or simply u) of G on the Hilbert space \mathscr{X}_{φ} such that $u_{g}\pi_{\varphi}(x)u_{g}^{*}=\pi_{\varphi}\circ\alpha_{g}(x)$ for $x\in A$ and $g\in G$ and $u_{g}\xi_{\varphi}=\xi_{\varphi}$ for g $\in G$. In fact, it is defiend by $u_{\theta}^{\rho} \pi_{\rho}(x) \xi_{\rho} = \pi_{\rho}(\alpha_{\theta}(x)) \xi_{\rho}$, $x \in A$, $g \in G$. A non-commutative version of ergodicity of an invariant state φ on the C*-dynamics (A, G, α) is that φ is an extreme point in the set of invariant states. We say φ to be *ergodic* in this case. We are concerned with the following properties of the C*-dynamics (A, G, α) : (I) dim $\{\xi \in \mathscr{X}_{\varphi} : u_{\varphi}\xi = \xi(g \in G)\} = 1$; (II) $\{\pi_{\mathfrak{p}}(A), u_{\mathfrak{c}}\}' = \mathbb{C}1_{\star_{\mathfrak{p}}}$. The following implications are known ([1], [4], etc.). (I) implies (II) and that φ is ergodic, and (II) is equivalent to the ergodicity of φ . If the C*-algebra A is commutative, that is, A = C(X) and X a compact space, then the action α_{θ} , $g \in G$, is realized from homeomorphisms on X. φ is considered to be an invariant probability measure under the group of these homeomorphisms. \mathscr{X}_{φ} is in fact the Hilbert space $L^{2}(\varphi)$ and the condition (I) is equivalent to the ergodicity of φ . However if the C*-algebra A is not commutative, then the ergodicity of φ does not imply the condition (I) ([1] p. 395). So, we would like to present the subspace \mathcal{H}'_{φ} (see Notation 1) in place of \mathcal{H}_{φ} in order to get a non-commutative version of the above characterization of the ergodicty of φ .

2. Ergodic states.

NOTATION 1. By \mathscr{H}_{φ} , we denote the closed subspace $[\pi_{\varphi}(A)'\xi_{\varphi}]$ of \mathscr{H}_{φ} , which is the closed linear span of the subset $\pi_{\varphi}(A)'\xi_{\varphi}$.

2 Y. OKA

THEOREM 1. Let φ be an invariant state on a C^* -dynamics (A, G, α) . Then φ is ergodic if and only if

$$\dim\{\eta \in \mathscr{H}_{\sigma}' : u_{\sigma}\eta = \eta(g \in G)\} = 1.$$

PROOF. Let e_{φ} be the projection of \mathscr{H}_{φ} onto \mathscr{H}_{φ}' . It is clear that e_{φ} belongs to $\pi_{\varphi}(A)''$. Since the central support of e_{φ} is the identity, the induction of $\pi_{\varphi}(A)'$ onto the induced von Neumann algebra $\pi_{\varphi}(A)'_{e_{\varphi}}$ is an isomorphism, which also gives the equivalence between the W*-dynamics $\{\pi_{\varphi}(A)', G, Adu\}$ and $\{\pi_{\varphi}(A)'_{e_{\varphi}}, G, Adv\}$, where $v_{\varphi} = u_{\varphi}|_{\pi_{\varphi}'}$. Hence the above induction induces an isomorphism of $[\pi_{\varphi}(A)']^{Adu}$ onto $[\pi_{\varphi}(A)'_{e_{\varphi}}]^{Adv}$, and in particular we have that $[\pi_{\varphi}(A)']^{Adu} = \mathbb{C}1_{\pi_{\varphi}}$, that is, φ is ergodic, if and only if $[\pi_{\varphi}(A)'_{e_{\varphi}}]^{Adv} = \mathbb{C}1_{\pi_{\varphi}'}$. Since $\pi_{\varphi}(A)'_{e_{\varphi}}$ is a von Neumann algebra acting on \mathscr{H}_{φ}' and ξ_{φ} is a vector in \mathscr{H}_{φ}' such that $v_{\varphi}\xi_{\varphi} = \xi_{\varphi}$ for $g \in G$ and moreover ξ_{φ} is cyclic and separating for $\pi_{\varphi}(A)'_{e_{\varphi}}$, we have that $[\pi_{\varphi}(A)'_{e_{\varphi}}]^{Adv} = \mathbb{C}1_{\pi_{\varphi}'}$ if and only if

$$\dim\{\eta \in \mathcal{H}_{\sigma}' : v_{\sigma}\eta = \eta(g \in G)\} = 1$$

([2] Th. 2. 4). Thus we have that φ is ergodic if and only if

$$\dim\{\eta \in \mathcal{H}_{\sigma}' : u_{\sigma}\eta = \eta(g \in G)\} = 1$$

This completes the proof.

As immediate consequences of Theorem 1, we obtain the following corollary, which is known ([1] Th. 4. 3. 20, [4], etc.).

COROLLARY. (1) If $\dim\{\xi \in \mathcal{H}_{\varphi} : u_{\varphi}\xi = \xi(g \in G)\} = 1$, then φ is ergodic.

(2) Suppose that ξ_{φ} is separating for $\pi_{\varphi}(A)$ ". If φ is ergodic, then

$$\dim\{\xi \in \mathcal{X}_{\sigma}: u_{\sigma}\xi = \xi(g \in G)\} = 1.$$

NOTATION 2. By \mathcal{S}_G , we denote the set of all invariant states on the C*-dynamics (A, G, a). For $\varphi \in \mathcal{S}_C$, we denote q_{φ} be the projection onto the subspace $\{\eta \in \mathcal{H}_{\varphi}' : u_{\varphi}\eta = \eta(g \in G)\}$.

One can get the following facts by replacing the projection onto the subspace $\{\xi \in \mathcal{X}_{\varphi} : u_{\varphi} \xi\}$

 $= \xi(g \in G)$ by q_{φ} in Prop. 3. 1. 13, Th 3. 1. 14 ([4]):

FACT 1. For $\varphi \in \mathscr{S}_G$, if $q_{\varphi}\pi_{\varphi}(A)q_{\varphi}$ is commutative, then $\{\pi_{\varphi}(A), u_G\}'$ is commutative.

FACT 2. If $q_{\varphi}\pi_{\varphi}(A)q_{\varphi}$ is commutative for all $\varphi \in \mathscr{G}_{G}$, then \mathscr{G}_{G} is a simplex.

The proof of these facts are almost similar with those of Prop. 3. 1. 13. and Th. 3. 1. 14 ([4]), so are omitted.

Thanks to the use of the subspace $\mathscr{H}_{\mathfrak{P}}$, in fact we will show that the condition of Fact 1 is a necessary and sufficient condition.

THEOREM 2. For $\varphi \in \mathscr{S}_{G}$, if $\{\pi_{\varphi}(A), u_{G}\}'$ is commutative, then $q_{\varphi}\pi_{\varphi}(A)q_{\varphi}$ is commutative.

PROOF. Let p be the projection onto the subspace $[\{\pi_{p}(A), u_{G}\}' \xi_{p}]$. Then we have that $u_{0}p = p$ and $p\pi_{p}(A)p \subseteq \{p\pi_{p}(A)p\}'([1] \text{ Th. 4. 1. 25, Prop. 4. 3. 1)}$. In particular, we have $p \subseteq q_{p}$. Hence it suffices to show that $p = q_{p}$. Since ξ_{p} is cyclic and separating for $\pi_{p}(A)_{e_{p}}'$ in \mathscr{H}_{p} , there exists an $E(a) \subseteq \pi_{p}(A)_{e_{p}}' \cap v_{G}'$ such that

$$E(a)\xi_{\varphi} = q_{\varphi}a\xi_{\varphi}, (a \in \pi_{\varphi}(A)_{e}'),$$

where e_{φ} is the projection onto \mathscr{H}_{φ} and $v_{\varphi} = u_{\varphi}|_{\mathscr{X}_{\varphi}}$ ([1] Prop. 4. 3. 8, [3]). Hence we have

$$q_{\varphi}\mathcal{H}_{\varphi} = q_{\varphi}\mathcal{H}_{\varphi}' \subseteq [E(a)\xi_{\varphi} \colon a \in \pi_{\varphi}(A)_{e_{\varphi}}']$$
$$\subseteq [(\pi_{\varphi}(A)_{e_{\varphi}}' \cap v_{\varphi}')\xi_{\varphi}] = [(\pi_{\varphi}(A)' \cap u_{\varphi}')\xi_{\varphi}] = p\mathcal{H}_{\varphi}$$

Thus we have $q_{\varphi} = p$.

This completes the proof.

References

- [1] Bratteli, O. and Robinson, D. W., Operator algebras and quantum statistical mechanics I, 2nd ed., Springer-Verlag, New York, 1987.
- [2] Jadczyk, A. Z., On some groups of automorphisms of von Neumann algebras with cyclic and separating vector, Commun. math. Phys., 13 (1969), 142-153.

4

- [3] Kovács, I. and Szücs, J., Ergodic type theorems in von Neumann algebras, Acta Sci. Math. Szeged, **27** (1966), 233-246.
- [4] Sakai, S., C*-algebras and W*-algebras, Springer-Verlag, Berlin-Heidelberg-New York,
- [5] Takesaki, M., Theory of operator algebras I, Springer-Verlag, New York, 1971.

Department of Mathematics Faculty of Science Kumamoto University