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1. INTRODUCTION

Most of sequential procedures are proposed under the assumption that observations are
independent and identically distributed (i. i. d. ). Our concern is to examine performances of
these procedures when the assumption of independence is violated. This paper deals with
sequential estimation with bounded risk.

Let {X:} be a sequence of random variables with common unknown mean g. Given a

— n
sample of size n, ¢ is estimated by the sample mean X, = Z}lXi/n. Then we want to determine

a sample size n such that
1.1 E(Xn—uf/W=1
for a given small constant W >0.

We assume that for every i
1.2 Xi=p+o(Xim—p)+e, o<1,
where {&:} is i. i. d. with Ee; = 0 and Ee? = ¢%(>0), and p and ¢ are unknown. That is, the
sequence {X;—u} is the first order autoregressive process.

It is well known that
(1. 3) nE(Xn— p)—c(1—p)2 as n—oo
(e. g. Brockwell and Davis [1], Theorem 7. 1. 1). Hence if p and o are known, (1. 1) is satisfied
by n=n% = o*/[(1—p)lW].

If p=0, n* = ¢*/W. Since ¢ is unknown, Takada [3] considered the following sequential
procedure. Let #(=2) be an initial sample size such that m = O(W~%) as W—0(0<d<1).
Define the sample size N, by
1. 4) N = min{n=m;n=S./W},

where S, = g(Xi_Xn)zl (n—1), and estimate # by Xx. Then it was shown that
l‘;r_% EXn—p)?*W =1 (asymptotic consistency)

and
1},‘3}, ENifnkx =1 (asymptotic efficiency)

if p=0, Elef??<co (p>1) and [1+(p—1)p* fp]"'<d <1, where p* = p/2 for p=2 and p* = p
—1 for 1<p<2.
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We shall examine performances of the above procedure when observations are not indepen-
dent (p=0).

2. PRELIMINARIES

Let @ be a prameter depending on p and o, and let 7 = §/W. Consider the sample size
defined by
@21 N =min{n2m; n2 Y,/W},
where Y, is an estimator of # based on the sample of size n and m = O(W~%) as W—0. The
proof of the following lemma is similar to that of (2. 32) of Sriram [2], so omitted.

LEMMA 1. For any €>0
E((Xn— X7 V1 /W= f(e),
where f(e) (0<e<1) does not depend on W, f(€)10 as €40, and 1. denotes the indicator
Sunction of the set A ={|N—#i|<en).

LEMMA 2. If for 0<e<1
P(|Ya—6l2€6) = O(n?®)  (p>2)
as n—oo, then

2. 2) P(N<(1+¢)7) = O(weer-)
and

2.3) P(N>(1+¢)@i) = O(WF™)

as W—0.

PROOF. Let m = (1—&)n. By (2. 1) we have that
P(N<n) = P(Ya=nW for some m<n<mn)
< P(Y.SmW for some m<n<mn)
= P(Y,— 6= —e8 for some m<n<mn)

< 3 P(IYa—6l2e6).
It follows from the condition on ¥, that
3 P(va— 61z &) = O(m==-).

Since m = O(W~9), (2. 2) is proved. To prove (2. 3), let #. = (1+¢)%. Then
P(N>n)s P(Yn,>nW)
= P(Yy,—0>e8)
< P(| Y —01>e06)
= O(nz"?"),
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which proves (2. 3).

Using Lemma 2, the following lemma is proved along the proof of (2. 31) of Sriram [2] ,
so omitted.

LEMMA 3. If Elef*<oo(p>2), 2/(p+1)<d<]1 and for 0<e<1
P(|Y.—8|=¢e8) = O(n~*?)
as n—oo, then
lim E{(Xn—uf1i/W} =0,
where A = {|N— n|>en)}.

THEOREM 1. If Elel?*<oo(p>2), 2/(p+1)<d<1 and for 0<e<1
P(|Y.—6l2el) = O(n"?)
as n—oo, then
lim E(Xy—p*/W = ¢*/[(1-0)6)

PRCOF. It follows from (1. 3) that
lim E(Xr —w?/W = o*/[(1- )'6]
Hence to prove the theorem, it is enough to show that
2. 4) ]ulll‘_}‘% E(Xv—X2 /W = 0.
Similar arguments of the proof of Lemma 3 yield
lim E((Xr = P13/ W) = 0.

Then (2. 4) follows from Lemmas 1 and 3, so that the proof is completed.

THEOREM 2. If Elel*<oo(p>2) and for 0<e<1
P Y,—81>e6) = O(n?7?)
as n—oo, then
lui,r_ra EN)n=1
PROOF. Let #, =(1—¢)n and n, = (1+¢&)n. Then we have
ENM={ % + 3 + 3 aP(N=n)/a,

n<ny nisnsnz n>nz

so that
|E(N)/n—1l=(1—-e)P(N< n,)+|i-'n 2 nP(N=mn)-1 .
+n§ nP(N = n)/n.
Since

|27 3 #P(N =n)-1|se, 3 P(N = n)+P(N<m)+P(N>n),
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from Lemma 2 the required result is obtained if it is shown that
2.5 lim 3 nP(N = n)/n = 0.
It is easy to show that

2n>ngnP(N = n) = (nz+1)P(N> n2)+n§2P(N>n).

By the same argument as the proof of (2. 3),
P(N>n) = O(n~??),

Since p>2,
n;!uP(N >n) = O(n~ D),

Hence (2. 5) is proved.
3. EFFECT OF DEPENDENCY

We examine the effect of dependency on the sequential procedure N given by (1. 3) when
the true model is (1. 2).

THEOREM 3. If Elel**<oo (p>2) and 2/(p+1)<d <1, then
lim E(Xun—plW = (1+0)/(1-p)
and
lim E(N))/n* = (1-p)/(1+0)

PROOF. It follows from Lemma 2 of Sriram [2] that
P(ISn—a*/(1~ D) >€) = O(n~"?).
Hence the proof is completed from Theorems 1 and 2.

It turns out that the sequential procedure N, is asymptotically consistent and efficient if and
only if observations are independent, that is, o =0. A sequential procedure which is
asymptotically consistent and efficient is obtained by the following procedure.

Consider the sample size N; defined by

N, =min{n=m; n= 52/[(1— 5.2 W]},
where m = O(W-?) as W—0(0<d<1),
n-1 — — n —
On= E(XI_XPI)(XHI_Xn)/‘,gl(Xi—Xn)z
and
V= B K- i),

Then g is estimated by Xu,.

THEOREM 4. If Elef**<oo(p>2) and 2/(p+1)<d<1, then
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lim E(Xn,—u)}/W =1 (asymplotic consistency)

and
lullr_r‘} E(N2)n% =1 (asympiotic efficiency).

PROOF. Lemma 2 of Sriram [2] shows
P(3: /(1= gAY —0*/(1—0)|>&) = O(n~??).
Then the theorem follows from Theorems 1 and 2.

REMARK. Our attention has been devoted to the sequential estimation with bounded risk.
Other problems such as sequential estimation with cost per observation and fixed-width interval
estimation can be treated by the similar argument and effects of dependency can be examined.
Asymptotically optimal procedure for these problems are obtained by .Sriram [2] under the
model (1. 2).
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