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— DEPENDENCE ON THE INITIAL MATRICES
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Abstract
We study the dependence of a formal fundamental matrix of a linear differential system, at an
irregular singular point, on the initial matrices.

1. Introduction
1-1 Motivations

We study the following differential linear system :

z’Y(x) = Alx) Y(x), (1)
where Y(z), A(x) are nX » matrices with entries in C, pEN*, »>1 and A(x) has the formal
expansion :

Alx) = '§ko".

The behavior at the singular point x = 0 is well known (see [1], [2]) : when Ao has # distinct
eigenvalues, there exists a formal fundamental matrix of (1) of the form:
Y(x) = P(x)Z(x),
where :
P(z) = Z Pux*, Z(z) = exp[Q(z)]z”,

where Q(x) is a diagonal matrix whose diagonal entries are polynomials in 7%, k€{l, 2, ...,
p—1} and D a constant diagonal matrix.

This result is based on the diagonalization of A,, so it is very hard to determine exactly how
the matrices @(x), D, P(x) depend on the entries of A, (kEN).

We propose, here, an equivalent form for Y(x), without using a matrix diagonalization.
The method gives explicit results, shows that the matrices of the irregular part and the regular
part of Y(x) depend rationaly on the entries of Ax.

It gives also, an exact finite (and very simple) numerical algorithm to compute Y(x).

1-2 Results



12 B.Klaras

Theorem 1
When Ao is diagonalizable, there exists a formal fundamental matrix Y(x), of (1) of the
Jorm : '

Y(z) = P(z)Z (.r)exp[Ao .lr l_-; ].

where :
P(z) = D P, B=1,
k20

22 (z) = goB,,ﬂxk)Z(x).

The P. and Bx and polynomials of A: (0<i<k) whose coefficients are rational fractions of the
entries of Abo. ’

Theorem 2
When Ao has n distinct eigenvalues, there exists a formal fundamental matrix of the form :
Y(x) = P(x)Q(x)Z(x),

where :
P(x) = D Px* Bh=1,
k20
_ xl+l
Qx) = exp[g‘an———, 1 ]
— oxol SR, Z P ] s
2() = exo £ B oy e
with :

By = Ao and [Bs,Bj] = Bx‘Bj—BjBi =0 Vi, ]
The P. and By are polynomials of A: (0<i<k) whose coefficients are rational fractions of the

entries of Ao.

Property
There exists a finite exact numerical algorithm to compute the P:,B; from the A(0<:<k).

2. Linear part

Let A, BEM(C). We study the following system of linear equations:
AX-XA=B-Y,
{ AY-YA=0 X, YEMC).
Let f be the endomorphism of M,(C) defined by :
A(X)=AX—-XA.

2

The problem (2) is equivalent to:
B = f(X)+Y with YEKer f.
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It has solutions for all B in M.(C) if and only if :
M, (C)=Ker f+Im f & M.C)=Ker f@Im f.
But we have:

2-1 Theorem
MnC) =Ker f+Im f & A is diagonalizable in C.

The (easy) proof of this theorem is given in [4].

2-2 Corollary
If A is diagonalizable in C, there exists an unique X<Im f and an unique Y EKer f such
that :
AX-XA=B-Y,
{ AY-YA=0.

It suffices to remark that the restriction of f on Im f is an isomorphism.

We will give, now an explicit form for the solutions X and ¥, We suppose, hence, that
M,(C) = Ker f@®Im f.

Let p(2), be the characteristic polynomial of /. Remark that f depends linearly on A, that
the coefficients of p(1) are polynomials of Trace (f*)(1<%< #?), thus, they are polynomials of
the entries of A, which can be explicitly computed (by the Newton or Fadev-Frame formula, see
[3]). Put:

B = B~ D an.i™,
where :
m=n% an=1, an-x+0, k<m (as IEKer £, det f =0, so @ = 0).
Moreover, we have: an-x+1 = 0 (because if A, and A, are two distinct eigenvalues of A, Ai—A

and A2— A are roots of (1) of the same order, and all non zero roots of p(A) are obtained in
such a way).

2-3 Proposition
k=2 ot Ams .
X i 2(_1)k—)+1 m Jfk-.)—l(B)'
J=0 Am-&
Y= B—"Z_!z(—l)""'“m *~(B)
j=0 Qm-n :

PROOF
Let us prove first that:

k
=D aneif 1 =0,
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By Hamilton-Cayley, we have:
L3
—1ym=i fm=i
S D g = 0,

As Mu(C) = Ker f+Im £, for all B in M.(C), we have:
B = C+f(D) with f(C) = 0.

So:
f(B) = fAD) and f{(B) = f"*(D) Vi=1l
But we have:
2D an-if D) = 0 = FY=1)"an-.f"+X(B) = 0.
Thus:

R
B anif " =0,
We apply m—k—1 times this reasoning and get :
jéo(_l)m—jam_jfkﬂ—f = 0
We have:
k=2 . s
(=D an-if " HD)+(=1)"*an-uf (D) = 0.
So:
=2 ktj-1.8m=j rh—j
(D) = F(~1y ezt pros(B),
J= m-hk
It suffices to take:
X = %2(_1)1’:-;“ am—j F4=i=1(B)
Jj=0 Am-n
and
Az j+1_Am=j
Y = B_ 2 (_ l)k—’“—Lfk_j(B)
Jj=0 Am-&

to get the result.

2-4 Corollary
X and Y are polynomials of A and B whose coefficients ave rational fractions of the

entries of A.

PROOF
f(B) = AB—BA, fAB) = A’B+ BA?—-2ABA, thus (by induction) f*(B) is a polynomial of A
and B. We have already proved that as-; is a polynomial in the entries of A4, so we get the

result.
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2-5 Example
Let A be the matrix:
1 0 -1 2
a=ly 4 o 1
1 0 1 0
We have:
HA) = A®—24A"+ 214112 — 8524+ 13614°— 3964°+ 324"
S0 :

X = 99/8f(B)—1361/32/%(B)+213/8/%(B)—107/16f"(B)+3/4/(B)—1/32/"(B)
and:
Y = B—99/8%(B)+1361/32/(B)—213/81%B)+107/16%B)—3/4"B)+1/32f*(B).

2-6 An exact finite numerical algorithm

We will describe an easy exact finite algorithm to get a solution X and Y. We identify
My(C) with C™. Let A, be the matrix of f in the canonical basis of C™. Let B; the column
of the components of B in this basis. We first determine Y; by the two conditions:

AYi =0,
{ A Y = Bi— Y1 has solutions.
To express these two conditions we write: A, = KA, where A; is a row echelon form of A,
and K is invertible (it is a classical decomposition which can be done with the Gauss elimina-
tion’s method). Let » be the rank of A; (i. e. the number of non zero rows of A.). Put B: =
K7'B.. Let As be the the square matrix of order m* formed with the first » rows of A, and
the last #°—» rows of K~'. Let B; be the column of order m* which has the first » entries
equal to 0, and the last »*—» rows equal to the last m?—r entries of B.. We now solve the
linear system: A3:Y: = Bs. So, we get Y; and the corresponding matrix Y.

Let C be the matrix B—Y, and C, the corresponding column. Put C. = K~'C.. Let G
be the column of order »*® with the first » entries equal to the first » entries of C; and the last
m?—r equal to 0. We solve the linear system: A: X = Cs. So, we get X, and the correspond-
ing matrix X.

As we use only a finite number of the four operations: {+, —, =, /}, the above method is
an exact finite algorithm.

We can also get a second finite algorithm by using 2-3.

Remark

The first algorithm is based on classical numerical methods: product of matrices, PLU
decomposition of a matrix, inverse of a matrix, and resolution of a linear system. The study
of the errors of such computations is done in any classical book of numerical linear analysis.
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Note that, if the entries of A and B are in N, and if » is not too large (2<10), we can solve
exactly the problem (with Maple, for example).

2-8 An example

m 2 -1 2 1 -2
as(T 17D sf 1)

1 0 -1 1 -2 1
We use Maple for the computations and get :
2w +5m+9 2m+6 —m—3
m*+2m+5 m*+2m+5 mP+2m+5
Y= m+3 m*+7 m—1
“{ m*+2m+5 P +2m+5 m+2m+5 |
m+3 2—2m m*+3m+4
mt+2m+5  wmP+2m+5 wmE+2m+5
1 2m*+4m+8 —2m*—4m—9
mE+2m+5 m:+2m—+5 m+2m+5
X = m+m+5  —4m*—11m?—26m—17 3m’+8m*+19m+11
- me+2m~+5 m*+2m+5 m*+2m+5
2P +3m+16 —6m*—17m*—40m—27 Am*+11m*+26m+16
m+2m+5 me+2m+5 me+2m~+5

3. Application to the linear differential system

3-1 Theorem
When Ao is diagonalizable, there exists a formal fundamental matrix of (1) of the type :

z'-*
Y(x) = P(x)Z (x)exp[Aom],
where :
P(z) = "Zzloka“, Py = I, (formal series)
27'2(2) = (ZBana*)2(2).

The P. and By ave polynomials of A:{(0<i<k) whose coefficients are rational fractions of the
entries of Ao.

PROOF

Put Y(x) = P(x)Z(x) with: 2°T'(z) = B(x)T(x). If Y(z) is a solution of (1), we have:
PP (z) = A(x)P(z)— P(x)B(z). (3)

Put:

P(x) = 3 Pux* and B(x) = ) Bux*
k20 k20

with: Py = I, and By = Ao in (3). We identify the terms of degree £ in x and get:
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—[Ao, Ple] = Hy+Av—Bs, 4)

where H, is a polynomial of A;, P;, B; with 0</<k—1.
We proceed by induction and by using the previous linear part with :

A=A, B=H.,+As X=—-P,, Y =18,
As A, is diagonalizable, there exists an unique B in Ker f and an unique P, in Im f which
are solutions of (4). Moreover, B: and P. are polynomials of A; with 0<7/</% which can be
explicitely computed.
As B.€Ker f,wehave:[As, B:] =0 VEEN. Thus, the linear system : x* T (x) = B(x) T(x)
has a fundamental matrix of the form:

T(x)=2 (x)exp(Ao%),
where :
2#712(2) = (5 Bousz* ) 2(2).

We have proved the theorem.

3~2 Theorem
When Ao has n distinct eigenvalues, there exists a formal fundamental matrix of (1) of the
type :
Y(x) = P(x)Q(x)Z(x),

where :
P(Jf) = kgoP"Ik’ P= In,
_ Xl+l
Qx) = exp(lZEOBle—_H').
— 2 ﬂ Bp-y —
Z(x) = exp(kZZ!OBkk_p_'_l)x , Bo= Ao
and :

[B:, Bl=0 Vi, i
The Pr and B are polynomials of A; (0<i<Fk) whose coefficients are rational fractions of the
entries of Ao.

PROOF
As A, is diagonalizable, we can use the previous theorem : there exists a fundamental matrix
Y(x) = P(x) T(x) with:

P(x) = Eopkl‘k, B=1,

2*T'(x) = Bx) T(x),

B(z) = g}oka", By= Ao and [Ao, B:] =0 VE

As Ao has = distinct eigenvalues, [Ao, Bx} =0 V% implies:[B:;, B;] =0 Vi,j, and
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T(x) = Q(x)Z(x) with:
_ xl-}-l
Q(x) - exp(lgl]BP+l l+1);
_ p—2 famtar! -
Z(x) = exp(EOBk—k_ Pt1 ).r" .
Note that the condition:

“A, has » distinct eigenvalues” is equivalent to: rank f =rank f? = #*—# and can also be
verified by an exact finite algorithm.

Remark 1
When A, has # distinct eigenvalues, Y(z) is uniquely determined: we will call it the

natural formal fundamental matrix.

Remark 2
We can use the same method for the system:
ex2?Y'(x) = Az, €)Y(x), (5)
where :

Alx, €) = EﬂA;,(x)e" and Au(x) = lZzoAk,zx‘

and Ao diagonalizable.

Example
We consider the system :

Yi(z)= (A° +%+A2) Y(x)

v
with :
2 0 1 1 2 1 1 -1 0
Av=1(0 1 —-1), A={0 -1 -1} Az=(0 -1 1
1 -1 m 1 0 1 1 -1 -1
then :
2
Y{(x) = P(.r)exp(Bzx+ Ba—‘%-+ '")x” ‘exp( —%)
with:
P(x) = (b+ Pix+ Px*+++)
and:
m:—3m+6 2m—3 3
mr—3m+9 wm*—3m+9 m*—3m+9
B 2m—3 —m’+2m —2m
V2 mP=3m+9 mP—3m+9 m’—3m+9
3 —2m m—2m+3

m—3m+9 w?=-3m+9 m*—3m+9
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2m—3 —2m*+Tm—12 —m
m*—3m+9 m*—3m+9 m*—3m+9
p = —2m+6 —2m m
7 P =3m+9 m?—3m+9 m:—3m+9
—m—3 2m—9 3
m'=3m+9 m*—3m+9 m*—3m+9
m'=13m*+51m*—121m+96 20— 20n’ +62m—111 =2+ 192 —61m+123
(m*=3m+97 (m*=3m+9)° (m*—3m+97
B 208~ 20mP+62m—111 — '+ 110 —50m*+113m—138 nt—m—12
2 (m?—3m+9¢ (m*—3m+9) (m*=3m+9)
=2 +19m7 —61m+123 m—-m=-12 — '+ 8 — 28n 4 62m—39
(m*=3m+9)" (2 =3m+9) (m*—3m+9Y
—3m*+9m*—22m+32 3m'—16m+50m*—83m+71 3mP—6mP+21m+8
(m*—3m+9y° (m*—3m+9)? (m2=3m+9)y
P = 3m—9m*+11m—7 3m*—11m*+38m—64 m®—8m*+21m—13
= (m*—3m+9) (m*—3m+9)? (m*=3m+9)°
—m 4+ 5m*— m—40 —2m*+25m—19 2mP—16m+32
(m?—3m+9)* (m*—=3m+9y (m*—3m+9)
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