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§ 0. Introduction.

Inverse factorial series with coefficients in ¢ occur naturally in the theory of linear and of
non linear difference equations in the complex domain, also in the theory of differential-
difference equations in the complex domain, because the basic difference operator acts in a
particularly simple way on inverse factorial series (see [1]). It is surprising that inverse
factorial series where not used systematically in the theory of finite difference equations and
many authors prefer, in this theory of finite difference equations, the use of power series in 1/x.
It is well known that each formal power series in 1/x can be written as an inverse factorial serie
and the converse is also true but in general the convergence is not preserved. A divergent power
series in 1/z can be some times written as a convergent factorial series.

With the classical product introduced by N. Nielsen [2] the set of inverse factorial series
is a commutative ring with unit which is an algebra over ¢. If we want to introduce linear
difference connections it is necessary to know well the structure of the ring of inverse factorial
series which has as we shall see later in some senses a different structure as a ring of power
series in particular the study of the ring of convergent factorial series cannot be reduced to the
study of a ring of convergent power series.

To be complete and general enough for applications we are studying in details the ring of
inverse factorial series with coefficients in an arbitrary commutative ring. In this first paper
we are proving a division theorem and a preparation theorem for the rings of formal and



2 H.CHARRIERE and R. GERARD

convergent factorial series in several variables. It is well known that this two theorems are
playing a very important role in the local complex analytic geometry that is in the case of germs
of holomorphic functions which is the case of convergent power series. As an application we
prove that the ring of germs of holomorphic functions having a factorial series expansion is
noetherian.

§ 1. Formal and convergent inverse factorial series.
1. 1. One variable case.
1. 1. 1. Formal factorial series.

Let A be a commutative € -algebra with identity. We shall make use of the following
notation : for an indeterminate variable z, (x, m+1) = x(x+1)--(x+m) for m=0 and
(x,0)=1.

DEFINITION 1. 1. A formal series of inverse factorials (or simply a formal factorial series)
with coefficients in A is an infinite series of the form :

1) mg}_lamm!/(x, m+1) = a1+ aofz+al! fx(z+1)+
a2! fx(z+1)(x+2)++ +amm! [ (@ + 102 +2) - (z+m)+

where for all m, an€E A.
Let us denote by 5 4[[x]] the set of formal inverse factorial series with coefficients in A.

1. 1. 2. Operations on formal series of inverse factorials.
a) EQUALITY. Two formal factorial series belonging to 5 al[z]]

alx) = mg_‘amm!/(x, m+1)and b(x) = mz_l_lbmm!/(x, m+1)

are, by definition, equal if and only if for all m=—1,

Qn = bn

b) ADDITION. If a(x) = mg_lamm! [(x, m+1) and b(x) = m;_]bmm!/(x, m+1) belong to

Fal[x]], then by definition
(a+b)z) = 3 (an+bm)m!/(z, m+1)

¢) MULTIPLICATION BY AN ELEMENT OF A. Let be given a formal inverse factorial series
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a(x) = 2Z!_lamm!/ (x, m+1) and A an element of A, then by definition

Aa(x) = mg_lziamm!/(x, m+1)

d) MULTIPLICATION OF FORMAL INVERSE FACTORIAL SERIES. Let be given two formal
factorial series

a(x) = a.+a(z) and b(x) = b_,+b'(x), where

a(x)= 0sgimass!/.r(.v:+ 1Yz 42)--(x+s) and

b(x)= osOZimbss Vr(x+1Xz+2)--(x+5)

Then their formal product is by definition :

(a.b)(x) = a-1b-1+ a1 b(x)+ b-la(x)+ISMZchmm!/x(.r+1)(x+2)m(x+ m),

where
mlca= 2 (m—E)(k—=1)!1bn-kCn-rr
1<k<m
with
+m—k
cm—lz.k-l = (P )ak-l-p
0<psh—1 b

PROPOSITION 1. 1. With this operations 5 allx]] is a commutative € -algebra.
Let us denote by A * the subset of invertible elements of A.

PROPOSITION 1.2. The ring 5 al[x]] is a local ring with maximal ideal
#* = {a(x) = ZZ_lamm!/(Jc, m+1) such that a. €A *}; moreover on(M*)"’ = {0} and

Fallx]] is complete with respect to the .#*-adic topology.

A very easy formal computation shows that every inverse factorial series
alx) = = anm!/(z, m+1) such that a-,E A* is invertible in 7 [[z]].
Now let .« be an ideal in 5 4[[x]] then if « is not contained in.#* it does exist in .«
an element a(x) = m;_la...m! /(x, m+1) with a_,€ A* which implies that a(x) is invertible in

Fallz]l and 1€, as a consequence & = 5 4[[x]] and .#* is the unique maximal ideal of
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T allz]].

1. 1. 3. Convergence of formal factorial series.
CASE 1. Assume that A = C, and let us recall the following results: (see (2] and [3] for

details).

1) If a factorial series converges for x = xo, the series converges for every x such that
Re(x)>Re(xo) ;

2) If a factorial series converges for x = xo, the series converges absolutely for every x such
that Re(z)>Re(2o+1);

3) If a factorial series converges absolutely for x = xo, the series converges absolutely for
every x such that Re(z)> Re(xo).

4) If a factorial series converges for x = v, then it converges uniformly for
Re(z)=Re(xo) + ¢ for any € >0.

5) If there exists a real number A such that the factorial series converges for Re(x)>A+ ¢ for
all >0 and diverges, for all e<0, thenAis called the abscissa of convergence of the
factorial series. It can be calculated from the following result of Landau:

Let
@ = Limsup (Log(losgls" as|)/Log n)
and 8 = Limsup (Log(lnsglsm as|)/Log n).

Then the abscissa of convergence A is equal to @ if A=0 and is equal to 8 if A<0. (In the case
A<0, we have to exclude from the convergence domain the points 0, -1, -2,-+)

Let be given a factorial series
a(x) = 'anmm!/x(x+l)---(x+ m)

with abscissa of convergence equal to A and generating function 2(1—¢#). Then the series
#*12(1—£) is uniformly convergent in the interval 0<¢<1 provided that Re(x)>Max. {1, i}.
Conversely, if the series for a(1—t) converges near ¢ = 1, then the factorial series

a(x)=mgoamm!/x(x+1)~-(x+m)= f[ It"‘&(t)dt

0,1

is convergent and defines a holomorphic function in the half plane of convergence. It is easy to
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see using the Mellin transform that the addition and the multiplication of convergent factorial
series is again a convergent factorial series. This means that we can speak about the ring of
germs of convergent inverse factorial series which will be denoted by .9 ¢ {x} and in the same
way as in the formal case we can prove,

PROPOSITION 1. 2. The ring 7 ¢ {x} is a local ring with maximal ideal

« ={alx) = mgl_lamm! [(x, m+1) such that a-1=0}. Movreover P@o(/)’ = {0}.

REMARK.1. 1. The ring .5 ¢ {x} is not complete for the .#-adic topology. It's completion is
e [[x]].

CASE II. Assume that A is a normed € -algebra. A formal inverse factorial series

a€T al[2]], alx) = 2E_Ia,nm!/ (x, m+1) is said to be normally or absolutely convergent if the

inverse factorial series Z_,‘_‘llamllm !/(x, m+1)is convergent. Let us denote by 7 4{x} the set of

normally convergent inverse factorial series. The domain of normal or absolut convergence is
always a half plane in €. Then the results we have in the case A = € can be extented
verbating to .9 a{x} which is now a commutative C-algebra with identity and also a local ring
with maximal ideal

s ={alx) = m}Z_]a,.m!/(x, m+1) such that a_,E€4* }.

1. 2. Several variables case.
1. 2. 1. Factorial series in several variables.

Let us introduce the notations: x = (x, ..., Zn) ; m = (m, ..., ms) @ multi-index where for
all i, mENU{—1}; |m| = m+-+ma;

I(m+1) = F'(m)--T(ma) 5 p = (pr, ..., pn) ;

(z, m+p) = (21, M+ p) &z, Mat p2)(Zn, Mat ) 5 (B} = (1, P2, -+, D) With pi = p
foralli =1, 2, ..., n, then

(x, m+{p}) = (21, m+ p)22, M2+ D)+ (T, Ma+p)
in particular,

(z,m+{1}) = (21, m1+1)( 2, m2+1)---(Tn, mn+1)

= (2)(x1+ 1) (21 + m)(22) (24 1)+ (224 m2) - (2a)(En+ 1) (T + m0)

DEFINITION 1. 2. A formal series of inverse factorials (or simply a formal factorial series) in
x = (21, X2,...,Tn) With coefficients in a C-algebra A is an infinite series of the following form
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’IME_ "amm!/(.r, m+(1}),

where for all mE(NU{-1})", an€A.
Let us denote this set of formal inverse factorial series by .7 a[[x]].

1. 2. 1. Operations on formal series of inverse factorials.
a)EQUALITY. Two formal factorial series belonging to 7 a[[x]]

a(x) = |m|§- bum!/(x, m+1)and b(x) = |m|§_ anm![(z, m+1) are, by definition, equal

if and only if for all # such that |m|=—n,

am = bm.

b) ADDITION. If a(x) = |m|‘:"'- ”amm!/(x, m+1)and b(x) = |m|§—nb"'m! Nz, m+1)

are two inverse factorial series belonging to . a[[x]] then by definition
(a+8)(x) = |m|§_.,(a"‘+ bu)ym! [{z, m+1)

¢) MULTIPLICATION BY AN ELEMENT OF A. Let be fiven a formal inverse factorial series

alx) = \ E_ anm!/(x, m+1)and A an element of A then by definition

Aa(x) = |m|§‘- ”/lamm!/(x, m+1)

d) MULTIPLICATION OF FORMAL INVERSE FACTORIAL SERIES. We define the product of
two formal factorial series in several variables by induction on the number of variables.
Let us assume that we have a product formula for formal factorial series in #-1 variables.
Then write a factorial series in n variables as

sz_lam(xl, X2, ooo, Zn)m! [(2n, m+1),
where for all mEN, a2, Xz, .., Tn-1)EF al[ 21, 22, ..., Tn-1]]. Let be given two factorial

series a(x) and b(x) in 7 a[[x1, x2, ..., x2]] and write it as,

alx) = mg}_lam(x;, X2, ooy Tne1)M! ] (Tn, m+1)
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and
b(x) = mg_lbm(xl, X2, ***, Tn-yym! [(xn, m+1)

then we define the product of a(x) and b(x) by

(a.b)(x) = aa(zy, ..., Zu-1)boil2y, ..., Zn-1)+
mé!oa-l(xx, weey Zne)balX1, X2y oory Znc)m! (2, m+1)+
Eob—l(-rl; very Zno1)@n(21, X2, ooy Tn-t)m! (20, m+1)+

Os§5mcm(xl' e x"'l)m!/x"('rn+l)"'(xn+ m),

where
mlem = lSkZSm(m—k) W= bm-sCr-sr
with

Crnrp-1=_ 2 (p+m_k)ak—l-ﬂ

0<p=sk y/

then by the induction hypothesis we have the product formula for factorial series in
several variables. This product is associative and commutative.

PROPOSITION 1. 2. With the operations defined before the set 5 al[x]] is a commutative € -
algebra with unit.

Moreover we have also

PROPOSITION 1. 3. The ring 7 allx]] is a local ring with maximal ideal

2% ={a(x) = |m|§- ”amm!/ (z, m+1) such that a-.E A*}. Moreover an(//*)” = {0},

1. 2. 2. Convergence of formal factorial series.
Using the following notations x = (z1, ..., x») and o = (Zo,, ..., Zo,n), and the results of the
one variable case we can see that in

CASE1.A=C.
1) If a factorial series converges for
X = (xl, T2y weny an) = o = (xo.x, Z0,2) 000y «'Co.n)
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the series converges for every x such that

Re(x)>Re(xs) (Re(x)>Re(x)alli =1, 2, ...,n);
If a factorial series converges for x = xo, the series converges absolutely for every x such
that Re(z)> Re(xo+{1});
If a factorial series converges absolutely for x = xo, the series converges absolutely'for
every x€ R" such that Re(x)> Re(xo).
If a factorial series converges for x = xo, then it converges uniformly for
Re(x)= Re(xo)+ & for any £>0.
If there exists A€ R” such that the factorial series converges for Re(x:)> A:+ ¢ for all ¢>0
and diverges, for all £<0, then A = (A, Az, ..., A») is called a multi-abscissa of convergence
of the factorial series. From all this remarks we see that a factorial series in several
variables when it is convergent then the domain of convergence is the product of half
planes.

CASE II. Assume that A is a normed C -algebra. A formal inverse factorial series

a€5 dllz]], alx) = 2 anm! /(x, m+1) is said to normally or absolutely convergent if

the inverse factorial seriesI ,§_ llan|m!/(x, m+1)is convergent. Let us denote by .7 a{x}

the set of normally convergent inverse factorial series. The domain of normal or absolute
convergence is always a product of half planes in €. Then the results that we have in the
case A=C can be extented verbating to 7 a{x}. It is easy to see that with the formal
operation the set .7 a{x} is a commutative ring with identity and also a local ring with
maximal ideal

# ={alz)= Img}_namm!/(:c, m+1) such that a-.EA*}.

Let us denote by 5 a{x} = T a{x1, 22, ..., Ta} the set of inverse factorial series which have a
domain of convergence. It is easy to see that the sum and the product of convergent
factorial series is always a convergent inverse factorial series and them it is easy to see that
7 a{x} is a commutative € -algebra with identity. A factorial series is invertible in the ring
7 a{x} if and only if this factorial series has an invertible constant term. As a corollary we
have

PROPOSITION 1. 4. The 7ing 5 a{x} is a local ring with maximal ideal

2% ={alx) = lmlg}_"a,.mz!/(ac, m+1) such that a-.€A*}. Moreover pgo(/*)’ = {0}.
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REMARK. 1. 2. As in the case of one variable the ring.7 4{z} is not complete for the .#-adic
topology but it’s completion is the ring .5 4[[x]].

REMARK. 1. 3. We have defined 7 a[[x1, 2z, ..., Zal] (resp. 7 a{zy, 2o, ..., Za)) where A is a
commutative € -algebra with identity (resp. a commutative normed C -algebra with iden-
tity).

In particular 5 ¢ [[z, 22, ..., 2a]) = Fal[za]l with A = 7¢ [[z1, 22, ..., Zn-1]]).

This fact will be used later. We have also .5 ¢ {(z1, 2, ..., n} = Fa{zs} with
A =J57¢ {x, 22, ..., 2a-1} equiped with a norm that will be defined later.

Division theorem and preparation theorem.

2. 1. Formal case. Assume first that x is one variable. Let us denote by 7 ¢ [z] the subset
of 7 ¢ [[x]] of inverse factorials series having only a finite numbers of terms.

This means that a€.5 ¢ [[2]],
a= mg}_]amm!/(x, m+1)

belongs to 7 ¢ [x]if and only if it does exist p€ N such that am = 0 for all m> pand ap +
0. Such a factorial series is called a factorial polynomial. One of the important difference
with power series is that.s e [x]is not a ring. In fact the product of two factorials
polynomials is not a factorial polynomial as is shown by the following example.

Example 2. 1.
(1/z)(1/x) is not a factorial polynomial. In fact,
1/2* = 1/z(z+ 1) +1/x(x+ 1)z +2)+2/x(z+ 1)z +2) (2 +3) + -
As a consequence we cannot have a division theorem in.7 ¢ [x] and also not in .7~ alz] for
an arbitrary commutative € -algebra A with unit.
Now consider the ring 5 ¢ [[x1, x2, ..., zx]] of formal factorial series in x = (z,, X2, aeey Tn)
and let us denote it simply by.7¢ [[x]].

An element e€.5 ¢ [[x]],
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a= |m|§— ”amm! Nz, m+1)

is invertible in "¢ [[x]] if and only if a-1,-1,...-1 #0.
Let us denote a-1,-1,...-1 by a(e0) = a(eo, oo, ..., ).

Such an element a(z) belonging to.5¢ [[x1, , ..., Z]) can also be written in the form

a= X2 bam![(xs, m+1),

Iml=—n

where for all m, bn€.5¢ [[21, Z2y..., Zn1]). In the following we write y instead of z» and
x’ for (.’l’l, X2yeeey .Z'n—l).

DEFINITION 2. 1. An element a5 ¢ [[x]] is called of order q+1 with vespect to y if it can

be written in the form: a= 2 ‘bm(x’)ml/(y, m+1) where bn(c0’) = 0 for all m<gq and

|l = — »

be(0") =+ 0,

This means that bq(z’) is a unit in ¢ [[2]] and for all m<g ba(x’) is not invertible in
Fe [[z7]].

Then

a = br(x)+ -+ ber(Z W g =D/ (g, @)+ balx W)/ (g, g+1)+-
= b 1(x)+ + ba-r(2")g— D /(y, @)+ bo(x')co(),

where co(x) is a factorial series in y with coefficients in.5"¢ [[x']] and moreover cqlx) is
invertible and a(co’, y) = ba(0")co(o0’, ¥) where co(oo’, ¥) is also invertible.

DEFINITION 2. 2. A factorial series a5 ¢ [[x]] is a factorial polynomial in y if

a= |m|§ b™(xYm![(y, m+1),

-n

where bn(x’) * 0 only for a finite number of index m.
If bo(z’) * 0 and bu(x’) = 0 for all m>q, we say that the factorial polynomial a is of degree
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g+1.
For a given integer ¢ 20 we can write an element a5 ¢ [[x]] in the form
a = (asy+(q!/(y, a+1))as)",
where (aq)’ is a factorial polynomial of degree ¢ .
DIVISION THEOREM. Let bE5 ¢ [[x]] of order q+1 with respect to vy . Then for every
a€5 ¢ [[x]] it does exist g=.5¢ [[x]] and a factorial polynomial rE5 ¢ [[x')y] of degree
at least q such that
a=bg+vr.
Moreover g and r are uniquely determined.
Proof. Define recursively
w=a, .. vn=I(q!/(x, g+1)—b{(5")a}"N(v:)a)"
we have

a= 2 (vj—v,-n)
0< ;<o

= 2@+ T _ (@)

Setting 7 = 33 ((v5)¢) and g = {(bq)"}“0 > ((v;:)q)” we get the existence part of the
=j<oo Lj<oo

division theorem:
a=bg+r.

Uniqueness of the decomposition. 1t is enough to prove that bg +#» = 0 implies that
b=0and » = 0. We have

beo’, y)g(oo’, y)+7(0”, y) =0

which is
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(g!/(y, g+1))g(eo’, y)+7(eo’y) =0,

as 7(x’, y) is a factorial polynomial of degree strictly smaller than ¢+1, we see that
g(o0’, y) = 0 and this means that the coefficients of the factorial series in y g(z’, ¥) are in
the maximal ideal .#"* of 5 ¢ [[2’]].

We have now

(b)Y g+(ba)"(q! /(y, a+1))g = —7(z’, ¥)

and this implies that the coefficients of the factorial polynomial »(z’, y) are in (.#'*)%
Then using the identity

(@' /(y, g+1)g(x’, y) = {(5)} (', ¥)—(bs) g(x’, ¥)),

we see that the coefficients of g(x’, ) as a factorial series in y are in (#’*)? and then we
deduce that the coefficients of the factorial polynomial in y, (2, ) are in (#'*)? then by
induction the coefficients of g(x’, ¥) and »(z’, ¥) are in (.#"*)* for all p which implies that

gz, y)=r, y) =0
and the unicity in the division theorem is proved.

DEFINITION 2. 3. A monic factorial polynomial g€ 5 ¢ [[x']lly], g(x’, y) = g-1(z)
+alx)/(y, D4+ gnslzYWm—=D/(y, m)+(m)!/(y, m+1) of degree m+1 is called
Weierstrass factorial polynomial in y if go0’) =0 for all j = —1, 0, 1,....m—1.

PREPARATION THEOREM. Let g€5 ¢ [[x]] be of order g+1 with respect to y = xa. Then
there exist a uniquely determined Weierstrass pobymomial Q€5 e [[x'1lly] of degree g+1
and a unit e€J ¢ [[x]] such that

g = eQ.

Proof. By the division theorem, ¢!/(y, g+1) = bg+» where b€5 ¢ [[x]] and

r€s e [[x))l¥]is a factorial polynomial of degree smaller than g+1.

Then g(oo’, y) = q!/(y, q+1)e*(y) where e*(e0) = 0. Thus r(c0’, ) = 0and b(’, y) =
{e*(y))™*. This implies that &(z”, ¥)is a unit in.7 ¢ [[x]].
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Now, g = eQ withe = (b)"'and Q(x’, ¥) = q!/(y, g+1)—»(z’, y); clearly Q(z’, y)is a
Weierstrass polynomial in y.

REMARK 2. 1. It is well known (see (4]) that, in the ring of formal power series C[[1/x1, 1/z2,
v, 1/z2]] we have a division theorem. that is if g(1/z, 1/xs,..., 1/za)is of order ¢ with
respect to 1/zx for every f€ C[[1/x1, 1/xz,..., 1/x2]] we have f = bg+» where r(1/x,1/y) is
a polynomial in1/y of degree strictly smaller than ¢, moreover 4 and » are uniquely
determined. It is also well known that each formal power series in 1/x1, 1/z3,..., 1/z» can be
written as a formal factorial series and vice versa each formal factorial series in x1, xz,...,
Z» can be written as a formal power series in 1/r1, 1/x3,..., 1/z» . The fact that a polynomial
in 1/y written as a factorial series is not a factorial polynomial means that the division
theorem in €[[1/x), 1/z,...,1/x.]] does not imply the division theorem in.7¢ [[x]].
Conversely the division theorem in the ring .7 ¢ [[x]] does not imply the division theorem in
C[[1/x1, 1/x,...,1/x2]] the reason is that a factorial polynomial written as a power series in
the 1/x1 is not in general a polynomial.

2. 2. Convergent case. We are here following the ideas of [5].
Letf = \ g}_ fam!/(z, m+1) be a formal factorial series in x = (x1, Z2,..., Z») With coeffi-

cients in €. We are introducing the following notation for p = (o1, 02,..., P2)E(R*)",
1A= B lfalmt/o, mt1)

and

Te={fE€5¢[[z]] | Ifl.<oo}.
The set 5, with the usual operations on factorial series is clearly a normed € -algebra
which is a subalgebra of the € -algebra #, of functions holomorphic in the product of the

half planes Re(x:)> p..

If f€#,and if f has an expansion into a factorial series such that it does exist p with
[fllo< + o0, then

}_l_l;fl("f o) = ()| = @-1,-1,.0m1

LEMMA 2. 1. 5 ,is a Banach algebra.
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Proof. If f = |m|§- "fmm!/ (z, m+1)is in.7,, then we have for all m
[falm! (o, m+1)<|fll.

Now let f; = |m|§— fasm!{(x, m+1)be a Cauchy sequence in.7, then by the inequality
given above for each m fixed fn,; is a Cauchy sequence in €. We put fu = }lﬂr}, Jfm;and

Ff= 2 fam!/(x, m+1).

|| —n

We claim that the sequence f; converges toward f€5,. The argument is standard.
For given €>0, there is an N such that

lmlg_ulfiﬂ,m_fi.mlm!/(@ m+1) = Ilfiﬂ'_.ﬂ'llpse

for alli>0andj=N;
From

'fm“'f;',ml < Ifm_f;'q-i.ml + lf:v‘-n'.m —fi.ml

we conclude

> <s]fm—ff.rn|m!/(Py m+1)

—n<|m|

[fn— fivimm! [(p, m+1)+&

—n<|mi<s

for alls>0, />0and j=N. Choosing ¢ large enough we see that

|[fu—Fimlm! [(po, m+1)<2e

—n<|m|<s

for all /=N and s=0. This implies that
lmlg_nlfm—fj,mlm!/(@ m+1) = [lf—fj"pSZE

for j=N.

Hence,
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I o<ilfwllo+1f — fullo< +o0

so f€.9, and moreover ||f — filo<2¢& for j = N implies that lim /; = f in.9, amd proves that
7 »is a Banach algebra.

Each f€.9, can be written as a factorial series inx» = ¥
flx)= mglfm(xl, Tayeer, Zn-)m! [y, m+1)

and

1Al = 2 Wl m!/(on, m+1)

with o’ = (o1, P2,..., Pn-1). Using this notation we define for a given integer ¢ =0,

oy :=_ 5 fum!/(y, m+1)

which is a factorial polynomial of degree <g+1. Then
f=y+b /(y, a+1(f)".

It is easy to see that we have
1A le<iflle and 1(fe)lo<{(tn, a+1)/a!}f],.

Let us recall that an element g€.5 ¢ {x} has order ¢ with respect to x» = y, if g(c0’, y) =
{q1/(y, g+1)}e(y) where e(y) is a unit in 7 ¢ {y} that is e(e0) + 0. Expressing

gx)= 3 en(zIm!/(y, m+1)

as a factorial series in y with coefficients in 5 ¢ {z’} where ' = (21, .., Zx-1) the condition
given before is equivalent to gn(c0") = 0 for all m< g and gq(0) == 0.

DIVISION THEOREM Let g€ ¢ {x} of order q+1 with respect to xn = y, then for every
FET ¢ {x}there exist bET ¢ {x} and a factorial polynomial rE5 ¢ {x'})y] of degree <q+1
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such that

f=tbg+r;
the elements b and r are uniquely determined.
Proof. Let eER, 0<e<1 be given and

g = (g’ +{q!/(y, a+1}ga)".

In the following we drop the index g. We first choose p = (#1, p2,..., pu) such ghait,
1) ge5,

2) g"is a unit and (g”)'€5,,

3) la!/(y, a+1)—glg”)<{q!/(y, g+ D}e,

4) fET..

We define v;E€.9 , recursively by setting

v 1= fr, v = (g /(y, ¢+ 1) —g(@") " NuY = —(&)Xeg") (vs)".
Since

"(UJ)”"pS {(ﬁny q+ 1)/4 ! }" ‘U.i"m
we conclude that
lwsille < ellvsllo< &Y wollo

and

v=2U,ET,
F=0
We now have

f= jgo(vf—vjﬂ)
= igo{(w)'+(q Yy, a+1))X0)"—(a!/(y, a+1)—g(g”) ") vs)")

= iglo{(w)’+g(g”)“(vf)”
= v'+g(g”) ' (v)";
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v’ is a polynomial » €5 .{x"}[¥] of degree strictly smaller than ¢+1. We have
(*) f=bg+r where b= (g")v)
which proves the existence part of the division theorem.
UNICITY. If we are looking at the identity (*) as a formal identity replacing all terms by
their factorial expansion, we get the formal division theorem and the formal unicity implies
the unicity in the convergent division theorem.
A monic factorial polynomial
P(x’, y) = q!/(y, e+ 1)+ Plx'Wg—1)!/(y, @)+ + Pox")
is called a Weierstrass factorial polynomial in y if
Py(00) = Py00") = - = Py(0’) =0,
Thus the Weierstrass factorial polynomial P(z’, ¥) is of order g1 with respect to v.
PREPARATION THEOREM. If gE€9 ¢ has finite order g+1 with respect to xn =y, then
there exist a uniquely determined Weierstrass factorial polynomial P(x’, y)€5 ¢ {x'}y] of
degree g+1 and a unit e(x)E5 ¢ {(x} such that
g = eP.
The proof is exactly the same as in the formal case.
REMARK. 2. 2. In the classical Weierstrass theory in ring of germs of holomorphic functions
at the origin of € " we have moreover the following result : if g is a polynomial then e is

a polynomial.

This result is not longer true for the ring of germs of factorial series. In fact the product
of two factorial polynomials is not in general a factorial polynomial.

Observation. Let g€5 ¢ {x} (or 7¢ [[z]])
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g(x) = gz, Toeeey ZTn-, ¥) = B alz)m!/(y, m+1).

Then it does exist a linear change of coordinates (or parameters),

12’y =1ljzv—cfly v=12,.., n-1
such that g is of finite order in y with respect to the new coordinates (or parameters).
First let us remark that the formal order is also the convergent order and vice versa. So, it is
enough to prove the result in the formal case. Moreover if a formal power series in 1/x1, 1/,
wesy /a1, 1/y is of order g with respect to 1/y then written as an factorial series it is also of

order g as a factorial series. The converse is also true. Let us prove the result for a power
series in 1/x1, 1/xs,..., 1/xn-1, 1fy , let g€ C[[1/zy, 1/x,..., 1/zr-1, 1/y]] and write

g= le”Pj(l/xx, 1/xzyens, 1/zn-1, 1/y)

where for all j, P;is a homogenous polynomial in 1/xi, 1/xz,..., 1/za-1, 1/y and moreover
P; += 0. Now make the change

1z =1/xv—cfy v=1,2,.., n—1,

we see easily that

g(o’ 07'-': 0) I/y) = qS;ESij(Cl/y’ Cz/y)"-y Cﬂ—l/y’ l/y)

= Pfci, C2perr, Cnoty D1fy9++
since Py = 0 we can choose ¢, ¢z,..., ¢n-1such that
Pyc, Coyeey €1, 1) F0
and the result is proved.
§ 3. Properties of the rings of formal and convergent factorial series.

Consider now the set 9 ¢ of functions f for which it does exist a coordinate system
(x1, x2,..., Tn) in €" and an m-tuple of positif real numbers
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@0 = (@01, @02y, @on)2(], 1,..., 1)

such that for all w> &’y it does exist A€(R*)" such that
flx) = Im’gf_”fmm!/(x/w, m+1)

= Imlg_"fmx.mz ..... m..{mllmz!-"mn!}/(xx/cun, ml+1)"' (-Z'n/ft)n, mn+1)

the factorial series being uniformely and absolutely convergent in Rex;>A:. It is easy to see
with the usual operations on factorial series that 9" ¢ is a commutative ring with identity.
This ring is called the ring of holomorphic functions having convergent factorial
expansions. This ring is also a local ring the maximal ideal is the ideal of non invertible
functions in. ¢ . It is also clear that we have a division theorem in.9¢ and also the
preparation theorem.

THEOREM 3. 1. The ring 5 ¢ is noetherian.

Proof. We proceed by induction on the numbers of variables #. For # = 0 the result is
clear. Let gE5 ¢ , g =+ 0arbitrary, we choose the parameters i, Zz,..., Zn-1, ¥ such that
g is of order g+1 with respect to . In order to show that . ¢ is noetherian it is enough
to show that the residue ring 5¢ /g5 ¢ is always noetherian. Let fE5 ¢ , we have

f = gb+r where r = rot+nlfy+-+re-1(g—1)!/(y, g) where for all /, »E5” ¢ (the same
ring but in the variables ' = (21, x2,..., Zn-1)).

The map

Te—(5’¢)?

f—(r, Ny, 74-1)

is a.7"'¢ -module epimorphism with kernel g9 ¢ and as consequence we have an .9’ ¢ -module
isomorphism,

Fe b e— (5" ¢).

By induction 9~ ¢ is a noetherian ring ; hence ¥ ¢ /b5 ¢ is a noetherian 9’ ¢ -module and
therefore a noetherian ring.
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H.CHARRIERE and R. GERARD

REMARK 3. 1. The ring .7 ¢ is not a factorial ring always because of the fact that we
cannot consider the ring of factorial polynomials and therefore we don’t have a Hensel’s
lemma. As a conclusion the ring ¢ is not factorial and also not henselian.

REMARK 3. 2. The fact that the ring ¢ is noetherian will play an important role in the
theory of linear difference connexions that we will develop in an other joint paper.

Bibliography.

R. Gérard and D. A. Lutz. Convergent factorial series solutions of singular operators
equations. to appear in the Journal Analysis.

Nielsen N. Recherches sur les séries de factorielles. Ann. Ec. Norm., (3), XIX, November
1902.

Norlund N. E. “Mémoire sur le calcul aux différences finies”, Acta Math. 44, (1923),
pp. 71-211. )

Cartan H. Seminaire Ecole Norm. Sup., Paris 1962.

H. Grauert and R. Remmert. Coherent Analytic Sheaves. Springer Verlag 1984.

Institut de Recherche Mathématique Alsacien
10 rue du Général Zimmer
Strasbourg, Alsace (France).



