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NOTATION.
C: the field of complex numbers ;
Z: the ring of integers;
Zz0 = {(REZ; k20);
For 2€C,

Re (2): the real part of z, Im (2): the imaginary part of z;
For a 2-vector @ = (a1, az)EC?,

e) = Ua, @) = (Z‘ a:) and1=1(1, 1);

For 2-vectors @ = (a1, ), 8 = (8, B)EC?,
(a, B) = e+ @B
For a 2-vector x = (1, 2:)€C?and a 2-vector k& = (&, k)EZ.d?,

lx| = max |z, 1Bl = B+ ke, 2* = 2% 20"

For a domain M in C or C?,

¢ (M) : the set of holomorphic functions from M into C?,

#(M): the set of holmorphic and bounded functions from M into C?;
For constants &, &, » and &,

S(6, ;7)) ={teC; bi<arg t< &, |t|< 7},
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D(6, &;7, 8) ={(t, )ECXC?; teS(, &; r), lz|< 6},

(6, 8;7): the set of holomorphic functions from S(6, &;7)into C? admitting
asymptotic expansions in powers of ¢ as t—0, t€S(6,, 6:; 7).
Further, for simplicity, we use

26, 6;7)=2(S(0, 6;7)), 28, &;7, 8)=2(D(6, &;7, 95).
1. Introduction.

In the study of nonlinear ordinary differential equations, it is important to obtain analytic
expressions of general solutions near the fixed singularities. Concering the problem, we have
a general theorem by J. Malmquist ([6], [7], [8]) under the so-called Poincaré condition. We
notice that although the Poincaré condition is a generic one, many interesting equations such as
Painlevé equations do not satisfy the condition.

As far as the author knows, the first work on the construction of general solutions in the
case where the Poincaré condition is completely violated was done by M.Iwano ([4]). He
constructed 2-parameter families of solutions to certain 2-systems of signature (1, 1) near the
irregular singularity. After the work by M. Iwano, S. Yoshida established a general theory for
2-system in which the ratio of the characteristic exponents is equal to -1 in order to investigate
the irregular singularity of Painlevé equations ([12], [13]).

In this paper, we shall study a 2-system with an irregular singularity where the ratio of the
characteristic exponents is a negative irrational number.

The system which is studied is of the form:

> o dxfdt = (A1) + ¢°1(a))x + f(¢, x),

where

(i) ¢is a coordinate of C;

(i) xis a 2-vector in C? with coordinates x, x2;

(i) ois a positive integer ;

v pis a 2-vector with entries s, g with 1 >0,12<0such that the ratio /w2 is an irrational
number ;

(v) ais a 2-vector with entries &, @ satisfying the inequality

a1 Re (tnae— p2a) >0

(v A(t)is a polynomial in t of degree 6—1 with A(0) = 1;
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i) fis a 2-vector function belonging to #(8, 8 ;r, 8) with (¢, ) = O(|z|?) such that the
coefficients fx(¢) in the expansion of f(¢, x) as f(¢, x) = Dmzefi(t)x* are in ¥(8, ;7). Here
8, 8 and », 8 >0 are constants and O denotes Landau’s symbol.

Set

(1.2) A = =§ aneoar.

We say that 6 is a singular direction of A(¢) if
1.3) cos (af+arg A) = 0, 1 = X(0).

A half line passing through ¢ = 0 with argument & satisfying (1. 3) is called a singular line
of A(¢).

We suppose moreover the following assumptions :
(A1) There exist positive constants C and m such that, for eachi =1, 2, the following
inequalities

1.4 (%, &)= pil > ClRI™™

hold, for all 2-vectors & = (k, k)EZ.o* with |k|=2. This conditon is usually called the Siegel
condition.
(A;) S(8, §;7)contains one and only one singular direction of A(#) and neiter Gnor fis a
singular direction of A(¢).

We state our main theorem.

THEOREM. Under the assumptions (A,) and (A,), therve exists a unique 2-vector function p
holomorphic and bounded in D(8, G ; v’, 8)with p(t, y) = O(lyP?) such that a change of coordi-
nates (¢, x)—(t,y) of the form
T: x=y+pt, ¥)
transforms the system X fo

2 £ dyldt = (A(D1(1) + t°Ua))y,

provided that v’ and 8" >0 are sufficiently small. Here the coefficients p«(t) in the power series
expansion of p(t, v) as p(t, ¥) = Dirz2ps(t)y* are in (6, G ; r').
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By virtue of the theorem, we can construct a 2-parameter family of solutions to the system
2. In fact, since the general solution to the reduced system 2’ is

(1. 5) z(t; C) = exp[— A()1(x)+1ogt -1(2)]C,
a 2-parameter family of solutions to the original system X is given by
2(t; C) = y(t; CO)+ (¢, y(t; O)).

Here C = Y(C,, C.)is an arbitrary constant 2-vector.

The transformation T is given as a composition of three transformations, say 7;, 7, and
T;, namely T = Tse T Th.

By the transformation T; we make the nonlinear term f = *(f, f2) of X to be of order O(¢9).
The transformation 7; changes the system X7 obtained by T} to a system 2™ so that each f;,
i=1, 2, has x:as a factor. Then we construct the transformation 7; which eliminates the
nonlinear term f = (#, /o) of 2™

We remark that the preliminary reduction of X by 7, and 7, is needed for proving the
convergence of the formal power series 2az2px(2)y".

We use the following abbreviation :

S(r) = S8, §;7), D(r,8)=D(6, §;7,9),
#(r)=x(8, §;7), @(r, 8) =2(D(4, ;7))

since 6 and & are fixed, and

(1. 6) A(t) = A1) + t°1(a).

2. The construction of preliminary transformations T, and T,.

2. 1. The construction of T,. In this part, it will be shown that we can find a 2-vector function
« holomorphic at (¢, 7) = (0, 0)€CX C? with # = O(|7/?) so that a change of coordinates (¢, x)
-(t,7) of the form

Th: x=n+ult, 7)

changes the system X to a system ™ of which the nonlinear terms are of order O(t9).
This is proved by making use of the following lemma successively.
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LEMMA 2. 1. Given a system of the form
2.1 7 dxldt = A(t)x+ (L, x),

where A(t) is the matrix of (1. 6) and fEB(r, 8). Then there exists a change of coordinates (¢,
x)-(t, n) of the form

@.2) x =g+t u(y)

which transforms (2. 1) into a system of the form

2. 3) o dyldt = A(t)n+ tg(t, 7).

Here u€ 0 ({(n<=C;|9|< &) and g€#(r', &), provided that v, 8 >0 are sufficiently small.

PROOF. We see that the change of coordinates (2. 2) transforms (2. 1) into a system of the
form

2. 4) t7*dyldt = A(t)g+t""h(t, 7),
where
@2.5) Bt n) = U+ 0ufon) X [— (G —1)t%u—(Bufon) A(t) g+ A(Du—f(t,72+ " u)).

Therefore, in order that (2. 4) is of the form (2. 3), it is necessary and sufficient that #(0, 7)
vanishes identically, that is, 4

(2.6) (0ufon)A0)p— A(0)u—F(0, n+u(7)) =0
ifj=1, or
@mn (8ufan) A(0)n— A(0)u— (0, ) =0

if 2<j<0¢. Hence, we have only to show that a system of partial differential equations (2. 6) or
(2. 7) has a solution «(7) with « = O(|[*) holomorphic at » = 0. Here we notice

2. 8) A(0) = 1(p).
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The existence of a holomorphic solution to (2. 7) will be shown in Appendix. On the other
hand, the existence of # to (2. 6) is an immediate consequence of a famous Siegel’s theorem.

LEMMA 2. 2 (Siegel). Let there be given an autonoumous n-system
2.9 dxldt = 1n(p)x + f(x)
where u = (w1, -+, ta)EC", 1.(1r) = diag (1, -+, un), and an n-vector function f is holomorphic
at x =0 with f = O(|x?). Suppose that there exist positive comstants C and m such that the
Jollowing inequalities hold ;

(k) )= il < ClAl™™, (1<i<n)

Jor all n-vector k = (k, -+, kn)EZ2o" with k| =ki+-+ kn22.

Then there exists an n-vector function u holomorphic at 5 = 0 with u = O(|5?) such that a
change of coordinates (t, x)~(t, 7) of the form
(2. 10) x = n+u(y)
transforms (2. 9) into

2.11) dnldt =1(u1)7.

In fact, in order that (2. 10) transforms (2. 9) into (2, 11), it is necessary and sufficient that # =
u(7) is a solution to

(ufoma()n —1aw)u—f(n+u) = 0,
which is just of the same form as (2. 6) in case of z = 2. Q.E.D.
2. 2. The construction of T,. Let 2™ be the system transformed from X by the 7,. Then it is
written as follows:

zn o £ dpldt = A(t)g+£%(¢, 1),

where g€2(7’, §), " and & being sufficiently small.
We obtain:

LEMMA 2. 3. The system T can be reduced to a system
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zn o Lo defde = [A(8) +¢°1(h(t, D)1
by a suitable transformation of coordinates (¢, 7)—(¢, &) of the Jorm
T : 7= ¢+%(w'(t, L)+ wit, &)

where two 2-vector functions w',i =1, 2, hE€B(r”, 8”) and that h = 0(|&|), provided that 0<
r"'<r’, 0< 8" <8 are sufficiently small.

PROOF. Let
2.12) todeldt = A()E+1t°G(t, §)
be the system transformed from X7 by 7.. We have, then,
G(¢, 5,5) = —[7"' 0w ot + dw' 05, £ 0% fot — (A(£) — ot ") w']
—[£7%' 0w [0t + 0w 3%+ £ 7+ 3% /0t — (A(£)— 0t ) w?]
+£(¢, £+ W'+ t%w?)
We consider the following partial differential equations:
(2.13); 7' 0w /ot + (ud(2) + ait ) Low' (0L — (A(8) — ot Yw' — f(¢, (8a by, 8ul)+ W) =0
i =1, 2, 8;; being Kronecker’s delta. Notice that (2. 13); is the condidtion that G(¢, &, &) has &;

as factor.
We first obtain a formal solution to (2.13): of the form

2. 14); wi(t, &) = Dizaw'(8)E7
Inserting (2. 14); into (2. 13); and equating the coefficients of powers in {;, we have

(2. 15); £ dwfdt AN G — i, jui— )+ t°1(ai— v+ 0, jai — e+ o)) w';

_ - ) o o
= 2D iuj=previzz £ et Whar oo Wia, Whay o Wi, F22
ar1+-+ay
+B1++ By

where wji, ; and wj, ; are the first and the second entries of w’; respectively. It is easy to see that
we can uniquely determine w';E¥(»"), j 22, recursively, by using the following lemma.
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LEMMA 2. 4 (Hukuhara). For preassigned constants 6., 6; and v >0, we consider a diffeven-
tial equation of the form :

o dwldt = c(Hw+ £(2),

where 0 is a positive integer, c(t) is a polynomial in t of degree 6—1 with c(0)*0 and fEv (6,
6; 7). Suppose that S(8, 6 ; r) contains one and only one singular line of —S:c(t)t‘”"dt,

then the equation has a unigue solution wE (6, 6:; ).
It should be remarked that the domain S(8, & ; ") contains only one singular direction of
the system (2. 15);.
We next prove the covergence of (2. 14);.
Let Z(¢) be the general solution to
ENdZdt = (uid(t)+ ait®)Z:, i =1, 2.
Then it follows that the formal series w’ = w(¢, Z¢)) formally satisfies

9 dwildt = (A(8)— ot D)w'+ (¢, "(0uh, SizZ2)+ tw").

Therefore, by utilizing the following lemma, we see that w'(f, &) converges absolutely and
uniformly in D(#’, 8"), provided that »’ and ¢’ are taken in a suitable way.

LEMMA 2. 5 (Iwano). Let
W(t, Z) = Zu WAt)Z?

be a formal power sevies in Z, where W; belong to #(6,, 6:; 7). Let c(t) be a polynomial in ¢ of
degree 0—1 with c(0) # 0. Suppose that S(0, 6:; r) contains one and only one singular line of

C(t) = =S ()"t and that W, Z(1)) formally satisfies

17 aW (e, Z(O)dt = f(¢, Z(2), W(t, Z(1)),

where Z(t) is the general solution to
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t'dZldt = c(t)Z
and f(t, Z, W) is holomorphic and bounded for
(¢, 2)ED(6), 6:; 7, 98), |WI<o.
Then W(t,Z) converges absolutely and uniformly for
(¢, Z2)ED(8, &; 7', &),
provided that ', 8’ >0 are sufficiently small.

It is not difficult to show that, for w'; determined above, 2™ is reduced to a system of the
form X" by 7. Q.E.D.

3. Construction of the formal transformation T;.

We rewrite the system 2™ as follows:
DR t7dzfdt = [A(8)+°1(f(¢, 2))]x.
We can verify that, by a transformation of coordinates (¢, x)- (¢, ¥) of the form
Ts: z = 1UI*Q, D+s(¢, 9)],
2™ s changed to a system of the form

t°* dyldt = A(t)y+1t°F(¢, ),

where

F(t, y) = [1+1(p) +1(»)dp/oy]) ™"
X1(y)[ 7+ 3pfot + dpfoy - A(#)y— t°1(F (¢, 1w)(*(L, D+ N, D+p)).

Hence, in order that 3™ is linearized by 75, it is necessary and sufficicent that p(¢, y) satisfies
the following system of partial differential equations :

(3.1 £713pfot + dplay - A(t)y = t71(f(¢, Wy)(*(L, 1)+ (', 1)+2).
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We want to obtain a formal solution to (3. 1) of the form
(3.2 e, ) = Diwaape( By
Substituting (3. 2) to (3. 1) and equating the coefficients of like powers in ¥, we have

(3.3 1o gpaldt + At e, B)+ 1%, B)]pa
= Dastr+vizt i Prarve Prars Pam - Pogr,

PR3 priewriys 2 3
B fredi=p

where px = (prx, por), 2|20 (oo = (1, 1)), &', B E€EZL=?, 1<i<y+1,1<j<y+1and for f(¢, z)
= Dimarft)x’, fr = {(fu, far). .

We can uniquely determine paE.(»’) recursively by the Lemma 2. 4. Thus we have
constructed a formal transformation 7; given by x = 1()[*(1, 1)+ Diuz1+(2)7*].

4. Sketch of the proof of Theorem.

4. 1. Truncated system fo formal power series 2px(t)y*. Let 2ps(¢#)y* be the formal power
series constructed in 3 and set, for each N=1,

4.1 pan(t, ¥) = (1, 1)‘*"5'%:5"1)*0)1/"-

Then, in order that a change of coordinates (¢,z)-(¢,y) of the form
4.2 x = Uy)(pw(t, v)+o(t,9)),

transforms the system 57 into the system 3’ it is necessary and sufficient that the 2-vector
function ¢ satisfies the following system of partial differential equations:

4. 3~ t(dldt)e = fwt, v, @),
where #(d/dt) is the differential operator defined by

Hdldt)p = t3¢fat+ dpldy - t~°A(t)y,
and
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4.9 flt, y, @) = — t(dfdt) pon+1{f (2, LyXpwn+ 2NN P+ @).
We can verify
LEMMA 4. 1. There exist positive constants Cy and M such that
(4. 5) I/ ()2, 3, OI<Culy|***,
(4. 6) 1)t v, @)= F(n)(t, 3, DI<Mlyllo—¢]
hold for (¢, y)ED(rn, 6x), |@l, |9|< on, provided rn, n, on >0 ave sufficiently small.
We note that the inequality
@7 [f(n)(E, v, @<Cnlyl"*'+Mlyllel,
for (¢,y)ED(7w, 8x), |@|< 0w, is derived from (4. 5) and (4. 6).
4. 2. Fundamental lemma. We now state the lemma which is important in proving the

convergence of 2px(1)y*.

FUNDAMENTAL LEMMA. Suppose that the assumptions given in Theovem hold. Then, for
each N 21, the system (4. 3)v possesses one and only one solution ¢ = pw(t, y)EF(rn, 6n)

satisfying
4.8 ea(t, ¥) = O(ly|"*")
Jor (t, ¥)ED(fx,0n), provided that rx, O >0 are sufficiently small,
By this lemma, we can prove the convergence of 2)p.(¢)y*. Indeed, for each N=1, set
(¢, ¥) = pun(t, ¥)+owlt, v),

where g\ (¢, ¥) is the unique solution to (4. 3)» with (4. 8). Then a change of coordinates (¢,z)
= (¢, ¥) of the form

z = Uy)e"(t, ¥)

takes the system X7 into the system X’. We see that ¢" does not depend on N. We can assume
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that both the constants »» and v are monotone decreasing in N. For any N’ and N with N'>N,
(D= b)) + oy

is a solution to the system (4. 3)v in Z(7»*6"), of order O(|y|**'). From the uniqueness assertion,
in Fundamental lemma, it follows that

P = (P — pan) + oy

which implies that ¢* is independent of N. Now put
p=¢, v =n 0 =20d.

Then ¢ is in (7', &) satisfying

o(t, y)— 2 pu()y* = O(lyI"*),

|RISN

for each N=1, which yields the convergence of 2 p.(#)y*.
Therefore we have only to prove the fundamental lemma. It should be remarked that ¢ is
the solution to (4. 3)~ if and only if ¢ = @(¢, y(¢)), satisfies the following system : '

4. O tdeldt = fu (2, ¥(8), @),

where d/dt is the usual ordinary differential operator and y(¢)is the general solution to 2’
Further (4. 9)~ is equivalent to the system of integral equations:

(4. 10 #lts, v°) = § finlt, 9O olt0(at,

where y(¢) is a solution to 2’ with ¥° =y(%) and 7 is a path of integration joining # = 0to ¢ = &
which will be specified later.

5. Determination of sectorial domain .~ and path of integration y.

To prove the fundamental lemma, we have to define a sectorial domain % in ¢-plane and
a path of integration y joining t = 0to ¢t = 4 in.%. For this purpose, we begin with determing
positive constants » and v;, i = 1,2. Recalling the assumptions Re (s — t2an) >0, >0 and 1
<0, we have inequalities either
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Re (a2) >0 or Re (a1) >0.

(i) In the case Re (a2) >0, we choose x in such a way that

— 126/ Re (an)< x if Re (a) =0,
— 120/ Re (@) < x < — o/ Re (a) if Re(a)<0
and we put
5.1 vi = pio+xRe (af)y i=1,2.

(i) In the case Re ()<0, then Re () >0, and we take x such that
10/ Re (&)< x < — 1120/ Re ()

and we set

(5.2) vi= —uc+xRe(a), i =1, 2.

In either case vy, 7 = 1, 2, are positive.
We next determine 2 with 7/4<2< /2 by

(5.3) tanQ = [omax {za, — 2} +(3x +4) max (| Re (@)|, | Re (@)} + min {11, v2}]/ min {1, 12}

Note that
(5. 4) tan 2>1.

We now pass to define a sectorial domain.s. For this purpose, for a set E in f-plane, we
denote by A(E)™" the set in the s-plane defined by {s€C; s = 1/4(¢), tEE}. By assumption,
A(S(7))™* contains a half linearg s = 2/2 or arg s = — /2. In the following, we only consider
the case where A(S(7))~! contains a half line arg s = /2. The other case be treated by the
same way. In our case, we can choose a small number >0 so that

A(S())'c(seC;s|I<(1+¢e)or?, |arg s—a/2|< 71— &}

for every small » >0.
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Let / and 7 be half lines starting from the origin defined by {¢;arg ¢t =8} and {¢;arg t =
@}, respectively, and let

c=AW" e=AI)"
We denote by &(8, 7 ; r) the domain in s-plane bounded by ¢, € and the curve

’ if |@—x/2|<n/2—
.5 ||_{"’ if |@—n/2l<x/2—-Q

- or°| cos @/ cos 2| if 7/2—Q<|@—nrf2l<nx—e,
where @ = arg s. We define a sectorial domain.#(4, 7 ; r) by
(5. 6) A&, ;7)) =89, §; 7).
We now divide & into three parts:
& =6N{s;|arg s—x/2|<x/2— 02}
G, =6N{s; —n/2< arg s< 2}
G =8N{s; 71— R< arg s<3x/2}
and define the domains %, i = 1, 2, 3in ¢-plane by
6.7 M) =6,i=123.
Then it is evident that

5.8 = U 9

15¢<3

For a given 58, we define, in &, a path I'" joining s =0 to s = so which generally consists
of two paths I and I'”.
(1) The case of Re (az) >0.
(i) When sois in ®,, I" consists of only I". The coordinate s, on IV, is paramatrized by r as
follows:

(5. 9) 1/s(z) = r+a—J/—=1be*, r<€[0, +0),
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where
(5. 10) 1/so =a—+—1b, s = s(0).

(i) When sois in &{(0rS;), I consists of two paths " and I”. The coordinates, on I, is
parametrized by @ as follows:

(5. 11) s(®) = (Isol/ cos @) cos Oe’™T8,

for @€[6,, 2] (or OS[7— R, b)) respectively, where

(5. 12) 6 = arg so.

Then s(2) (or s(x—£)) is located in &.. The coordinate s on I is defined by the same way as
(5. 9), where starting point is s(2) (or s{(x—£)).

(i) The case of Re () <0.
(i)When sois in &, I consists of only I". The coordinate s, on I”, is parametrized by r as

follows :

(5. 13) 1/s(r) = —r+a—V—1be", r€[0, +),
where

(. 14) 1/so =a—+—1b, 50 = s(0),

(i)When s, is in &; (or &), we define I"” by the same way as (5. 11) and I as (5. 13).
For a given .7, we define a path y in & by

(5. 15) A(y) =T,
where so = A(#)"'€®. Then we can verify
LEMMA 5. 1. We can choose a sufficiently small positive constant v in such a way that

(i) When tye2, then yCF1 ;
(i) When he.s, then yC.5 .
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6. The stability of the domain £ which is a deformation of D.

We define a domain & = 2(r, 8) = 2(4, 8 ;r, 0)in (¢, y) -space by

6.1 g = (¢, Y)ECXC*; teZ(r), lyd<oddt)elt)},
where

€2 aln) = {l[ik/(lng();l/ S;:;nmo)]"e(ﬁ)w 0
and

6.3 edt) = exp[— Im (a:)- 6]

with § = arg £.

We note that the domain 2(r, 8) is equivalent to domain D(r, §), namely, for given » and

8>0, we can choose constants »’ and 6">0 so that 2(#’, §)CD(r, &), and conversely, for given

7" and 8’ >0, we can take constants » and 8 >0 so that D(», §)CZ(r’, &).
We now give some properties for the £.

LEMMA 6. 1 (Stability of 2). Let (t, y°)E2(r, 6) and let y(t) be the solution to X' with
y(k) = o°, then (¢, y(£))E 2 (7, 8) for every tEy, provided that r and >0 ave sufficiently small.

In order to prove lemma 6. 1, we use following lemma.

LEMMA 6. 2. Let y(t) be the function given in lemma 6. 1 and let
©. 4) ult) = Cie ) Ay elee, i =1, 2.
Then, for tE v with &1 the pull back udt) of u: by (5. 9) satisfy

(6. 5) d loglul7)|/dr< —3vifdo.

It should be remarked that, in particular, |«:(7)| are monotone decreasing functions with

respect to z.

PROOF OF LEMMA 6. 1. By the definition of %¢), we have
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(6. 6) y'.([) = ui(t)A(t)Re(a')"f"‘
= u‘.(t)(td/l(t))Re(m)ldt—Re(m)tﬂ‘

Let us suppose that (%, ¥°) = (%, y(k))E2.
(1) In case that #€.%,; Because of (6. 6), we have

ly()] = a2 APl e (1)
which yield the ineqalities
(| = Ly )|/ U )| Al to)Fol e (8)] X |l | £ AN % (£)
= |y t)l(laee( O/ |t A ) e 2) [ ) e 1))

<8ddtedt), i =1, 2,

& being a small constant.
(1) In case that 4E.%:(or ¥3); Noting that we have

Re A(¢) = Re A(t)
on 7’ and
C:= y.-(to)e“"‘(“)to"", i=1,2,
where C;, 1 = 1, 2, are arbitrary constants in (1. 5), we have the inequalities :
v &) = lytr)e™alta)gy-eegmale) g
= |y t)II£°/t7 R (ei(£) fe( 1))
= |y:(t)l[(| cos 81/ cos Q)| t°A(t)]**“eLt)
/(| cos 81/ cos )|t A(t)| 1% to)

<dddt)elt), i=1,2,

¢ being a small constant.
Thus we have proved Lemma 6. 1. Q. E. D.

In order to prove Lemma 6. 2, we make use of the following lemma.

LEMMA 6. 3. We have

37
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6.7 |a/b|<1/tan 2<1,
6. 8) b=(tan 2sine)/r > tan 2,
6.9 xb=tan 2

Jor any LES 1.

The proof of this Lemma is omitted (see Proposition 2 in [12]).
We now procced to prove Lemma 6. 2.

PROOF OF LEMMA 6. 2. We consider only the case that Re(az) >0, because the other case
is shown in the similar way.
We have
(6. 10) dlogudt)/dt = —(ui+ 0 'Re(a:)A(t)VdA(2)/dt
from (6. 4) and
6. 11) difdr = (dA(8)/dt) (1 — V=1xbe*")
from (5. 9). Consequently, we have
d log |u{7)l/dr = d Re [log ur))/dr
=Re [d log u:(t)/dt - dt/dr]
= —Re [(g:+ 0 'Re () A(D) N1 —V=1xbe*)], i =1, 2.
So, we prove the following inequalities ;
Re [(g:+ 07 Re (@) A(#(2)) )1 — /= 1xbe**)] >3vif4a
or equivalently,

6. 12) vib*e® —(— o+ 3x Re a:)(r+ a)*+4 Re (a:)(z+a) >0.

Define a function in z, ¥:(7), by the left hand side of (6. 12), then we can see that, for r€[0,
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+00),

(6. 13) A(0)>0, A/(0)>0, A ()>0,i=1, 2.
In fact, we have the first inequalities in the following way :

UA(0) = vib®—(—pic+3x Re a;)a®*+4Re (a))a
26 1—((—1)"'uo+3x Re a:)/v{a/b)*—4| Re aillal/v:b%]
> b (1—((—1) o +3x Re @:)/vi-1/ tan 2 —4| Re ai|/(vitan Q)]

>(v:b*/ tan 2)[ tan 2 —((— 1) i +(3x +4)| Re ad)/vi]
>0.

Next since

(1) = 2vindb®e® —2(— p;6+3x Re .)(r+ a) +4 Re a;,

we have the secound inequnlities

A/ (0) = 2vib®*—2(— t:0+3x Re ai)a+4Re a:
>2uib[xb—((—1)"" wic+ 3x| Rea) fvi+|afbl — 2| Re el /(v:b)]
>2v:b[1—((—1) ' i0+3x| Reai|)/vi+1/ tan 2 — 2| Re ad/(v:itan 2)]

= 2u:bf/ tan 2+[tan 2 — ((—1)"'pi6+(3x +2)| Re ai) /v:]
>0.

We have, further, the last inequalities

A" (1) = dvi®b*e®™ —2(— o+ 3x Re o))

24va®b*—2((— 1)1+ 3x| Re a)

= 2va b2 —((—1)"""pio+ 3x| Re ai]) fvi+ 1 2b7)]

>2vix*b*/tan Q- [2tan 2 —((—1)'wio+ 3x| Re aif) /v:]

>2v:f tan 2+[2((— 1) .o+ (3 +4)| Re @l fvi—((— 1) 1.0+ 3x| Re ail)/vi]

= 2/tan 2-[(—1)""' w0+ (3x +8)| Re ]
>0.

Thus we have obtained (6. 13), which yield (6. 5). Q. E. D.
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7. Proof of Fundamental lemma.

7. 1. In this part, we show the following lemma.

LEMMA 7. 1. Let y(t) be the general solution to the reduced system X’.
a positive constant Jy depending on N so that we have the inequality ;

@.1) § laon=iiei-iatl < Tyl

Jor any 4EZ(8, § ;r), r >0 being sufficiently small.
PROOF. Recalling (6. 6), we have

ly()l = lud (A% ¢)l, i = 1, 2.

Then we can find

Notice that |(¢9/1(2))%*%e«(¢)| is bounded from below and above by constants B, B, respective-

ly. Hence We have
ol < B+ Jud 11

or 7. Moreover we have
A1/ 1°A(0)|> B
for a suitable positive constant B, and hence, we have
(7. 2) |dt|/|¢]< B"\dsl/ls]-
Further we see that the pull back u:(s) of u; by (5. 9) satisfy
(7.3 d log |u(s)| > 3v:/(44/2x0)|s| "} ds|.
Indeed, by (6. 5), we have

dlogluds)l/|ds| = d logludz)l/dr-dz/|ds|
= d log|ud)|/dr-(—|dz/\ds])
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and we have
(7. 4)

because

>3vif(40)+|dr/ds],

slldz/ds| >(/2x)",

the left hand side of (7. 4)
=[(T+a)2+ bZeZKT]IIZ(l +)‘2b2ezxt)-ll2
>[b2e2n]112(2x2b2e2u)-1/2 = (ﬂk)-l.

Hence (7. 3) holds.
Now, by (7. 2) and (7. 3), we have

and hence

JAZG R
<B Ju sl
<4¥2x0@u N+ Jud )" d log luds) !

= 4/2x0BuN+ 1) _dluis)"
<4/2x0(Bv{N+1))"ulso)|¥*,

JRZOLR TR

<4 ﬁxo‘(Su.~B(N+1))"Bz”“|uf(So)|””
<4 V2x0Bv:B(N+1))"(Ba/B)" Yy so) V1.

We obtain, therefore, the inequality (7. 1).
Next we have, on I'”,

s(®) = |sol/ cos By cos Be™T°,

41

Noting |ds| is a decreasing of increasing function in ® = arg s corresponding to $E€.%2 or
Zsrespectively, we have

|ds| = 5|ds/dO|de
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= I'So/ cos @old@
and
|s|=!|ds| = 3| cos O|'d6.

We have, hence,

Sr~|8|"|ds| < ;Sr--l cos O'd@

do

. | cos ®|"'d@< z/ min {sin ¢, cos 2}

6o

R_nl cos O|"'d® < z/ min {sin ¢, cos 2}

for O[O, 2] or [1— 82, &) respectively. We have, then,

(. Js"asl< Bs

for some positive constant Bs. Noting that, on I'”,
lyi(s)| = |ys(so)ldi(s)ed(s)/(di(so)e(s0)) < Bilyi(so)l, i = 1, 2,

for a suitable positive constant B; where di(s) (or ei(s)) is the pull back of d: (or e:) by s, we
have

§, o ist-tias|<§ Bt aso)l*s|-tlasl

< B Bilyiso)|" .
Therefore if we choose J~ such that
Jv>442x0(3v:B(N +1))"(Be/B)"*' +(Bs/B) B,
then we have the inequality (7. 1). Q.E.D.

7. 2. In this part, we give the proof of fundamental lemma.
First of all, we define the family of functions 5 by
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F={p:2-C; o€ 2(2), |o|<Knly|"*}

where & = Z(7n, 6v)and Ky is a positive constant depending of N which will be specified
later. It is evident that .5~ is non-empty and convex, and further closed and normal with respect
to the topology of uniform convergence on every compact subset of &. Next we define an
operator 9 acting on .7

Let (%, °) be a point in & and let y(¢) be the solution to 3" satisfying the initial condition
y(4) = ¥°. Moreover we set

.5) 0(ts, 4) = § fu(t, 9(0), olt, y(ONEal

and define an operator .~ from .5 into .5 by
(7. 6) o(t, y)- (¢, y).

This is well-defined. Indeed, first, we can take r» and 8 so small that (¢, y, @) D(rn, 6n) X{w
€C?; |w|< pn}, where rn, 3 and on are specified in Lemma 4. 1.
Next let =7, then, by (4. 7), we have

|@(t, <Y |f ()2, w(8), (2|7 at|

4

7

<\ [Cv+ M|yl Knlly|™*|¢]"|at]

14

§
<{ [Culy™=+ Mgl ar)
|

sg,[CN+M6~K~]lyl”“ltl“ldtl
<[ Cn+ MENKN]Twy( L)Y+,

and hence we obtain
|0(to, ¥°)| < Knly(ta)l**,
provided that d~ is choosen so small that
MonJn<1/2

and that we set Ky = 2Cx/n. Further we can verify that €.2(2). So, O(f, ¥°)E.5, and fence
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F(5)Cs. Moreover, it is evident that .7 is continuous on 5 by (4. 6). Thus we see that .5~
admits a fixed point by virtue of Schauder-Tihonov fixed point theorem, which shows the
existence of ¢n in Fundamental lemma.

We now prove the uniqueness of @x.

Let ¢'and ¢* be two solutions satisfying the lemma and put

¢=9o'—¢

Then ¢€2(2) and |¢] = O(|y|"*").
We define a positive constant H by

H =inf (H'20;|¢|<H'|y|"*, (¢, y)E2).
Then we have

I, 1< Mlglgllzi-at

<§ MiylElyl e a

< MSxHJw|y{&)|¥+!
<27 H|y(t)"*

by (4. 6), and hence, by the definition of H, we have H = (. Thus we have shown the lemma.
Q.E.D.

Appendix.

To prove the existence of a holomorphic solution to (2. 7), we consider the following
system :

5 oulon-An—Au = f(n),
where A = A(0), f(3) = £(0, 7). Suppose that
(1) = Duwpafin®, fEC{n;10l<7},

and let #(7) = 2 uxn* be a formal solution to 21. Then, substituting it to 2, we obtain
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(e, B)—Alur = £

for |[k|=2. We have, therefore,

ur = [(n, B)— A",

and hence, by (1. 4), we have

el < CV| k| Mr 1,

where M = sup {|f]; |71< »}. Consequently

Ug) = Z Ckl"Mr—*9*

is a majorant series of 2] ux7*. Now

U(7) = 2 w22 2 1n=nC | B M | 7fr|™
=C'MInaxN"(N+Dn/r|",

which proves the convergence of #(7) for |3|<». Q.E.D.
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