CENTERS OF TWISTED CHEVALLEY GROUPS OVER COMMUTATIVE RINGS

Kazuo SUZUKI

(Received October 21, 1992)

Introduction.

In [3], E. Abe and J. F. Hurley have studied the structure of centers of Chevalley groups over commutative rings. In this paper, applying the same method as used in [3], we study the structure of centers of twisted Chevalley groups over commutative rings. The main theorem is stated in § 1. In § 2, we deal with some properties related to maximal tori, and in § 3, we prove the main theorem.

We shall freely use the definitions, the notations and the relations between elements of the group given in [2] on twisted Chevalley groups over commutative rings.

§ 1. Statement of the main theorem.

1. 1. Let G be an almost simple Chevalley-Demazure group scheme of type $\mathcal{O} = A_n (n \ge 2)$, $D_m(m \ge 4)$ or E_6 , and Γ the lattice of weights of the representation which defines G (as for definition, see E. Abe [1]).

We set Γ_{sc} or Γ_{ad} instead of Γ respectively, if G is of universal or adjoint type. Then $\Gamma_{ad} \subseteq \Gamma \subseteq \Gamma_{sc}$. Let σ be the canonical involutive automorphism of Φ and denote by the same symbol as σ the involutive automorphism of Γ_{sc} or Γ_{ad} induced by σ . Then Γ is σ -stable, that is, $\sigma\Gamma \subseteq \Gamma$, except for $\Phi = D_n$, n is even, ≥ 4 and $\Gamma_{ad} \not\subseteq \Gamma \not\subseteq \Gamma_{sc}$.

Let A be a commutative ring with I and with an involutive automorphism σ and assume that Γ is σ -stable. Let $G(\emptyset, A)$ be the group of A-valued points of G. We can set $G(\emptyset, A) = Hom(Z[G], A)$ where Z[G] is a Hopf-algebra over Z. Then we see that σ induces an involutive automorphism σ of Hopf-algebra Z[G]. Let $T(\emptyset, A) \cong Hom(\Gamma, A^*)$ be the standard maximal torus of $G(\emptyset, A)$ where A^* is the group of units of A, and denote by $h(\chi)$ the element of $T(\emptyset, A)$ corresponding to $\chi \in Hom(\Gamma, A^*)$. We set $\sigma(\chi)(\gamma) = \sigma(\chi(\sigma(\gamma)))$ for any $\gamma \in \Gamma$. Then we have the automorphism σ of $G(\emptyset, A) = Hom(Z[G], A)$ induced by σ which satisfies the following (see E. Abe [2]). For an unipotent element $\chi_{\sigma}(a)$ of $G(\emptyset, A)$ where $\alpha \in \emptyset$, $\alpha \in A$,

$$\sigma(x_{\alpha}(a)) = x_{\overline{\alpha}}(c_{\alpha}\overline{a})$$
 where $\overline{a} = \sigma(a)$ and $\overline{a} = \sigma(a)$, $c_{\alpha} = \pm 1$

and for any $h(\chi) \in T(\Phi, A)$,

$$\sigma(h(\chi)) = h(\bar{\chi})$$
 where $\bar{\chi} = \sigma(\chi)$.

We put

$$G_{\sigma}(\boldsymbol{\varphi}, A) = \{x \in G(\boldsymbol{\varphi}, A) \mid \sigma x = x\}.$$

It is called the twisted Chevalley group over A of type Φ_{σ} associated with G.

Denote $A_0 = \{u \in A \mid u = \overline{u}\}$ and $\mathfrak{A} = \{(a, b) \in A \times A \mid a\overline{a} = b + \overline{b}\}$. For any $R \in \mathcal{O}_{\sigma}$, we define

(GI)
$$x_R(u) = x_r(u)$$
 for $u \in A_0$, $R = \{r\}$

(GII)
$$x_R(a) = x_r(a)x_r(\bar{a})$$
 for $a \in A$, $R = \{r, \bar{r}\}$

(GIII)
$$x_R(\xi) = x_r(a)x_r(\bar{a})x_{r+\bar{r}}(N_r, \bar{r}b) \quad \text{for } \xi = (a, b) \in \mathfrak{A},$$
$$R = \{r, \bar{r}, r+\bar{r}\} \text{ and } N_r, \bar{r} = \pm 1.$$

Then these elements are contained in $G_{\sigma}(\Phi, A)$. We denote by $E(\Phi_{\sigma}, A)$ the group generated by these elements, and call it the elementary subgroup of $G_{\sigma}(\Phi, A)$. For the product of $x_s(\xi)$, $x_s(\eta)$, we use the following notation

$$x_s(\xi)x_s(\eta)=x_s(\xi+\eta)$$
 for ξ , $\eta\in \mathfrak{A}$ and $S=\{r, \overline{r}, r+\overline{r}\}$

Then for any $\xi = (a, b)$, $\eta = (c, d) \in \mathfrak{A}$, we have $\xi + \eta = (a+c, b+d+a\overline{c})$. Thus the set \mathfrak{A} has a structure of group with the composition + and the inverse of $\xi = (a, b)$ is $\xi^* = (-a, \overline{b})$. Further we have the following operation - of A on \mathfrak{A} , that is, $c - (a, b) = (ca, c\overline{c}b)$ for any $c \in A$ and $\xi = (a, b) \in \mathfrak{A}$.

1. 2. Let $C_{G,\sigma}(A)$ and $C_{\mathcal{E},\sigma}(A)$ be the centers of $G_{\sigma}(\Phi,A)$ and $E(\Phi_{\sigma},A)$ respectively, and $C_{G,\mathcal{E},\sigma}(A)$ the centralizer of $E(\Phi_{\sigma},A)$ in $G_{\sigma}(\Phi,A)$. Then by definition, $C_{G,\sigma}(A) \subseteq C_{G,\mathcal{E},\sigma}(A)$ and $C_{\mathcal{E},\sigma}(A) = C_{G,\mathcal{E},\sigma}(A) \cap E(\Phi_{\sigma},A)$. We put $\mathfrak{A}^* = \{(a,b) \in \mathfrak{A}^*\}$ and

$$Hom_1(\Gamma, A^*) = \{ \chi \in Hom(\Gamma, A^*) \mid \chi = \overline{\chi} \}.$$

Here we state the main theorem in the following.

THEOREM. Suppose that A has trivial Jacobson radical or that Φ_{σ} has rank at least 2. Furthermore assume that $\mathfrak A$ has an element $(a, b) \in \mathfrak A$, $a \in A^*$ and $\mathfrak A^* \neq \phi$, if Φ_{σ} is of type $^2A_{2n}$ and the radical of A is not trivial. Then we have

$$C_{G,\mathcal{E},\sigma}(A) = C_{G,\sigma}(A) = Hom_1(\Gamma/\Gamma_{ad}, A^*).$$

If G is of universal or adjoint type, then

$$C_{G,\sigma}(A) = C_{E,\sigma}(A) = C_{G,E,\sigma}(A)$$
.

If G is of adjoint type, then $C_{G,\sigma}(A)$ is trivial.

For any elements x, y and z of a group, we write $y=xyx^{-1}$ and $[x, y] = xyx^{-1}y^{-1}$. We shall use the commutator relation

$$[x, yz] = [x, y] \cdot {}^{y}[x, z].$$

§ 2. Properties related to maximal tori.

2. 1. Let A be a commutative ring with I and with an involutive automorphism σ , and $G_{\sigma}(\Phi, A)$ the twisted Chevalley group over A. We put

$$w_R(u)=x_R(u)x_{-R}(-u^{-1})x_R(u)$$
 and $h_R(u)=w_R(u)w_R(-1)$
for $u\in A_0^*$ or $u\in A^*$ if $R=\{r\}$ or $R=\{r, \overline{r}\}$ respectively,

and

$$w_R(\xi) = x_R(\xi) x_{-R}(-b^{-1} \to \xi) x_R(b\overline{b}^{-1} \to \xi)$$

$$h_R(\xi, \eta) = w_R(\xi) w_R(\eta) \qquad \text{for } \xi = (a, b), \eta \in \mathfrak{A}^* \quad \text{if } R = \{r, \overline{r}, r + \overline{r}\}.$$

Then we have

4

$$h_R(u) = h_r(u)$$
 if $R = \{r\}$
 $h_R(u) = h_r(u)h_{\bar{r}}(\bar{u})$ if $R = \{r, \bar{r}\}$
 $h_R(\xi, \eta) = h_r(c)h_{\bar{r}}(\bar{c})$ for $c = b(\xi)b(\eta)^{-1}$ if $R = \{r, \bar{r}, r + \bar{r}\}$
where we denote by $b(\xi)$ the second component of ξ .

Furthermore we put

$$T_1(A) = \{h(\chi) \mid \chi \in Hom_1(\Gamma, A^*)\},$$

 $T_0(A) = \{h(\chi) \in Hom_1(\Gamma, A)^* \mid h(\chi) \text{ is centralized by } E(\Phi_{\sigma}, A)\}.$

Then

$$[h(\chi), x_R(a)] = x_R((\chi(r) - 1)a)$$
 for $a \in A_0$ or $a \in A$ respectively
if $R = \{r\}$ or $R = \{r, \overline{r}\}$,
 $[h(\chi), x_R(\xi)] = x_R((\chi(r) \rightarrow \xi) + \xi^*)$ if $R = \{r, \overline{r}, r + \overline{r}\}$.

Therefore, we have $T_0(A) \cong Hom_1(\Gamma/\Gamma_{ad}, A^*)$.

2. 2. PROPOSITION 1. Let $C'_{c,\varepsilon,\sigma}(A) = C_{c,\varepsilon,\sigma}(A) \cap T_1(A)$ and $C'_{c,\sigma}(A) = C_{c,\sigma}(A) \cap T_1(A)$. Then we have

$$C'_{G,\sigma}(A) = C'_{G,E,\sigma}(A) = T_0(A)$$

PROOF. By definition $C'_{G,\sigma}(A) \subseteq C'_{G,\varepsilon,\sigma}(A)$. On the other hand we have shown that $C'_{G,\varepsilon,\sigma}(A) = T_0(A) \cong Hom_1(\Gamma/\Gamma_{ad}, A^*)$. In [3] we see that $Hom(\Gamma/\Gamma_{ad}, A^*)$ is isomorphic to the center of $G(\emptyset, A)$, then we have $T_0(A) \subseteq C'_{G,\sigma}(A)$.

To prove $C_{G,\sigma}(A) = C_{G,E,\sigma}(A)$, it is sufficient to prove that

$$C_{G,E,\sigma}(A) \subseteq T_0(A)$$
.

In next section, we shall show this fact under the hypotheses of the main theorem (see section 1).

§ 3. Proof of the main theorem.

3. 1. Let φ be a root system and Π a fixed fundamental basis of φ . Denote by φ^+ or $\varphi^$ the set of positive or negative roots associated with Π respectively. Here we shall fix a regular order in Φ . By definition, if $\alpha < \beta$ for α , $\beta \in \Phi$, then $ht(\alpha) \le ht(\beta)$ where $ht(\alpha) = \sum m_i$, for $\alpha = \sum m_i \alpha_i$, $m_i \in \mathbb{Z}$ and $\Pi = \{\alpha_1, \dots, \alpha_l\}$. Then the regular order in Φ induces the following order in O.

DEFINITION. 1) For
$$R, S \in \Phi_1^+$$
, $R \angle S$ if and only if $Min(R) < Min(S)$.
2) For $\alpha \in R$, $\beta \in S$ $\alpha \angle \beta$ if and only if a) $R = S$, $\alpha \angle \beta$ or b) $R \neq S$, $R \angle S$.

We set $ht(R) = Min\{ht(r) \mid r \in R\}$ and call it the height of R (see N. Iwahori[5]). We set

$$U_1^+(A) = U^+(A) \cap G_{\sigma}(\Phi, A)$$
 and $U_1^-(A) = U^-(A) \cap G_{\sigma}(\Phi, A)$

where
$$U^+(A) = \prod_{\alpha \in \Phi^-} x_{\alpha}(A)$$
 and $U^-(A) = \prod_{\beta \in \Phi^-} x_{\beta}(A)$.

Then for any $x \in U_1^+(A)$ and $y \in U_1^-(A)$, we have

$$x = \prod_{R \in \Phi_{\hat{G}}} x_R(a)$$

$$y = \prod_{R \in \Phi_{\hat{G}}} x_R(a) \quad \text{where } a \in A_0, A \text{ or } \mathfrak{A}, A \text{ or } \mathfrak{A$$

and this expression is unique where the product is taken in the order \angle .

3. 2. Let W be the Weyl group associated with root system ϕ and σ the canonical automorphism of Φ . Put $W_1 = \{w \in W \mid w = \sigma w \sigma^{-1}\}$. Let \mathfrak{W}_1 be the subgroup of $G_{\sigma}(\Phi, A)$

generated by the elements of $\{w_R(u), w_R(\xi) \mid R \in \mathcal{O}_{\sigma}, u \in A_{\sigma}^* \text{ or } A^* \text{ and } \xi \in \mathfrak{A}^* \}$ and $T_1(A)$, then we see that $\mathfrak{B}_1/T_1(A) \cong W_1$. Let w be a representative of \mathfrak{B}_1 modulo $T_1(A)$, we identify w with the corresponding element of the group W_1 .

For a field K, we have the Bruhat decomposition of $G_{\sigma}(\Phi, K)$, that is, for any element g of $G_{\sigma}(\Phi, K)$ we can write

$$g = utwu'$$
 for some $u \in U_1^+(K)$, $t \in T_1(K)$, $w \in W_1$ and $u' \in U_{w,1}^+$,

where $U_{w,1}^+$ is the subgroup of $U_1^+(K)$ generated by the elements of $\{x_R(a) \mid R \in \mathcal{O}_{\sigma}^+, w(R) \geq 0, a \in K_0, K \text{ or } \mathcal{U}\}$. This expression is unique.

3. 3. LEMMA 1. Let K be a field, Then we have $C_{G,E,\sigma}(K) \subseteq T_1(K)$.

PROOF. If $w \in W_1$, $w \neq 1$, then we have a root $R \geq 0$ such that $w(R) \geq 0$. Then for $z \in C_{G,E,\sigma}(K)$, we set

$$x_R(a)z = x_R(a)utwu' = zx_R(a) = utwu'x_R(a).$$

By uniqueness of expression, we must have $x_R(a)u=u$ for any $a \in A_0$, A or \mathfrak{A} . This is a contradiction, and w=1, therefore $C_{G,E,\sigma}(K) \subseteq U_1^+(K) T_1(K)$. Since there exists an element w_0 of W_1 such that $w_0(\Phi_\sigma^*) \subseteq \Phi_{\overline{\sigma}}$, we have

$$C_{G,F,\sigma}(K) \subseteq U_1^+(K) T_1(K) \cap U_1^-(K) T_1(K) = T_1(K).$$

3. 4. We set $\Omega(A) = U^+(A)T(A)U^-(A)$. Then there exists an element d in Z[G] such that $\Omega(A) = \{x \in G(\emptyset, A) \mid d(x) \in A^*\}$ ([4], Section 4). Since for $g \in \Omega(A)$, g = utv where $u \in U^+(A)$, $t \in T(A)$, $v \in U^-(A)$ is unique expression, we have

$$\Omega_1(A) = \Omega(A) \cap G_{\sigma}(\Phi, A) = U_1^+(A) T_1(A) U_1^-(A).$$

LEMMA 2. $C_{G,E,\sigma}(A) \subseteq U_1^+(J) T_1(A) U_1^-(J)$ where J is the Jacobson radical of A. In particular if J=0, then

$$C_{G,\mathcal{E},\sigma}(A) \subseteq T_1(A)$$

PROOF. Let M be any maximal ideal of A and $\pi: G_{\sigma}(\Phi, A) \to G_{\sigma}(\Phi, A/M)$ the homomorphism induced by the canonical map: $A \to A/M$. Then for any element z of $C_{G,\varepsilon,\sigma}(A)$, $\pi(z)$ belongs to $C_{G,\varepsilon,\sigma}(A/M)$. By lemma 1 $\pi(z)$ belongs to $T_1(A/M)$, and then there exists an element d of Z[G] such that $d(z) \notin M$. Thus $d(z) \in A^*$, that is, $z \in \Omega_1(A)$. We can set z = xhy for some $x \in U_1^+(A)$, $h \in T_1(A)$ and $y \in U_1^-(A)$ and $\pi(z) = \pi(x)\pi(h)\pi(y) \in T_1(A/M)$, then $\pi(x) = \pi(y) = 1$, that is, $x \in U_1^+(M)$ and $y \in U_1^-(M)$ for any maximal ideal M of A. Therefore $z \in U_1^+(J)T_1(A)U_1^-(J)$.

3. 4. PROPOSITION 3. If rank $\Phi_{\sigma} > 1$, then $C_{G,\mathcal{E},\sigma}(A) \subseteq T_1(A)$.

PROOF. For $z \in C_{G,E,\sigma}(A)$, we set

$$z=xhy$$
 where $x \in U_1^+(J)$, $h \in T_1(A)$ and $y \in U_1^-(J)$

and

$$x = \prod_{R \geq 0} x_R(a_R)$$
 and $y = \prod_{R \geq 0} x_{-R}(b_R)$

where a_R and b_R belong to f or $\mathfrak{U}_f = \{(a, b) \in \mathfrak{U} \mid a, b \in f\}$. The product of this expression is taken in the order fixed above. We shall use induction on heights to show that for every positive root R, a_R and b_R are zero element in A or \mathfrak{U} .

(1) First, suppose that a_R is not zero element with ht(R)=1. since $rank \ \varphi_{\sigma} > 1$, there is a root S such that $R+S \in \varphi_{\sigma}$ and ht(S)=1. Then

$$[x_s(a_s), z] = [x_s(a_s), xh] \cdot {}^{xh}[x_s(a_s), y],$$

this is conjugate to

$$^{h^{-1}x^{-1}}[x_s(a_s), xh][x_s(a_s), y],$$

and

$$[x_s(a_s), x_{-s}(u)] \in x_s(J) T_1(A) x_{-s}(J)$$
 for $u \in J$ or $u \in \mathfrak{A}_J$,

then we have

$$[x_s(a_s), y] \in x_s(v) T_1(A) U_1^-(J)$$
 for some $v \in J$ or \mathfrak{A}_J

On the other hand, we have

$$[x_s(a_s), xh] \in U_1^+(J) T_1(A)$$

If $a_s \in A^*$ or $a_s = (a, b) \in \mathfrak{A}$, $a \in A^*$, then $[x_s(a_s), xh]$ has a factor $x_{s+R}(u) \neq 1$. Thus

$$h^{-1}x^{-1}[x_s(a_s), z] = h^{-1}x^{-1}[x_s(a_s), xh][x_s(a_s), y] = x_1h_1y_1,$$

where $x_1 \in U_1^+(A)$, $h_1 \in T_1(A)$ and $y_1 \in U_1^-(A)$. By $z \in C_{c,\varepsilon,\sigma}(A)$ and uniqueness of the expression of z, $x_1 = h_1 = y_1 = 1$, this is contradictory.

Let w_0 be the element of W_1 such that $\omega_0(\Phi_{\sigma}^+) = \Phi_{\sigma}^-$. Then the elements

$$z = {}^{w_0}z$$
 and ${}^{w_0}v \cdot {}^{w_0}x \cdot {}^{w_0}h = x_1'h_1'v_1'$

are conjugate, where $x_1' = {}^{w_0}y = w_0yw_0^{-1} \in U_1^+(J)$, $h_1' = {}^{w_0}h \in T_1(A)$ and $y_1' = {}^{w_0}h^{-1} \cdot {}^{w_0}x \cdot {}^{w_0}h \in U_1^-(J)$. By uniqueness of the expression, y contains no fuctors $x_{-R}(a_{-R})$ with ht(R) = 1.

(2) We assume that x and y contain no factors $x_R(a_R)$ or $x_{-R}(a_{-R})$ for $R \in \Phi_{\sigma}^+$ with $ht(R) \le m$. Then if $a_R \ne 0$ for some $R \in \Phi_{\sigma}^+$ of height m+1, there exists a root S such that ht(S)=1 and $ht(w_s(R)) \le m$ where w_s is the refrection of Φ_{σ} corresponding to S. Thus

$$z = {}^{W_s(u_s)}z = {}^{W_s(u_s)}x \cdot {}^{W_s(u_s)}h \cdot {}^{W_s(u_s)}v = x_2h_2v_2$$

where $u_s \in A^*$ or $u_s = (a_s, b_s) \in \mathfrak{A}^*$, and $x_2 \in U_1^+$, $h_2 \in T_1(A)$ and $y_2 \in U_1^-$. In x_2 there exists the non-trivial factor $x_{W_s(R)}(a)$. This would contradict the inductive hypothesis. Hence $a_R = 0$ and as above also, $a_{-R} = 0$ for all $R \in \mathfrak{O}_\sigma^+$ with ht(R) = m+1, therefore $z = h_1$ belong to $T_1(A)$.

References.

- [1] E. Abe: Chevalley groups over local rings, Tôhoku Math. J., 21 (1969) 474-494.
- [2] ---: Coverings of twisted Chevalley groups over commutative rings, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, Vol. 13, No. 375 (1977) 194-218.
- [3] E. Abe and J. F. Hurley: Centers of Chevalley groups over commutative rings, Communications in algebra, 16 (1), (1988) 57-74.
- [4] A. Borel: Properties and linear representations of Chevalley groups, Lecture Notes in Math. 131, Springer-verlag, New York, 1970, 1-55.
- [5] N. Iwahori: Theory of Lie algebra and Chevalley groups, Seminary note of Dep. Math. Tokyo Univ. (Japanese), (1965).
- [6] K. Suzuki: On normal subgroups of twisted Chevalley groups over local rings, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, Vol. 13, No. 375 (1977) 238-249.
- [7] R. Steinberg: Lectures on Chevalley groups, Yale univ., (1967).

Department of Mathematics Faculty of Education Kumamoto University