CENTERS OF TWISTED CHEVALLEY GROUPS
OVER COMMUTATIVE RINGS

Kazuo SUZUKI

(Received October 21, 1992)

Introduction.

In [3], E. Abe and J. F. Hurley have studied the structure of centers of Chevalley groups over commutative rings. In this paper, applying the same method as used in [3], we study the structure of centers of twisted Chevalley groups over commutative rings. The main theorem is stated in § 1. In § 2, we deal with some properties related to maximal tori, and in § 3, we prove the main theorem.

We shall freely use the definitions, the notations and the relations between elements of the group given in [2] on twisted Chevalley groups over commutative rings.

§ 1. Statement of the main theorem.

1. 1. Let \(G \) be an almost simple Chevalley-Demazure group scheme of type \(\Phi = A_n(n \geq 2), D_m(m \geq 4) \) or \(E_6 \), and \(\Gamma \) the lattice of weights of the representation which defines \(G \) (as for definition, see E. Abe [1]).

We set \(\Gamma^c \) or \(\Gamma^{ad} \) instead of \(\Gamma \) respectively, if \(G \) is of universal or adjoint type. Then \(\Gamma^{ad} \subseteq \Gamma \leq \Gamma^c \). Let \(\sigma \) be the canonical involutive automorphism of \(\Phi \) and denote by the same symbol as \(\sigma \) the involutive automorphism of \(\Gamma^c \) or \(\Gamma^{ad} \) induced by \(\sigma \). Then \(\Gamma \) is \(\sigma \)-stable, that is, \(\sigma \Gamma \subseteq \Gamma \), except for \(\Phi = D_n, n \) is even, \(\geq 4 \) and \(\Gamma^{ad} \not\subseteq \Gamma \).

Let \(A \) be a commutative ring with \(1 \) and with an involutive automorphism \(\sigma \) and assume that \(\Gamma \) is \(\sigma \)-stable. Let \(G(\Phi, A) \) be the group of \(A \)-valued points of \(G \). We can set \(G(\Phi, A) = \text{Hom}(\mathbb{Z}[G], A) \) where \(\mathbb{Z}[G] \) is a Hopf-algebra over \(\mathbb{Z} \). Then we see that \(\sigma \) induces an involutive automorphism \(\sigma \) of Hopf-algebra \(\mathbb{Z}[G] \). Let \(T(\Phi, A) = \text{Hom}(\Gamma, A^*) \) be the standard maximal torus of \(G(\Phi, A) \) where \(A^* \) is the group of units of \(A \), and denote by \(h(\chi) \) the element of \(T(\Phi, A) \) corresponding to \(\chi \in \text{Hom}(\Gamma, A^*) \). We set \(\sigma(\chi)(\gamma) = \sigma(\chi(\sigma(\gamma))) \) for any \(\gamma \in \Gamma \). Then we have the automorphism \(\sigma \) of \(G(\Phi, A) = \text{Hom}(\mathbb{Z}[G], A) \) induced by \(\sigma \) which satisfies the following (see E. Abe [2]). For an unipotent element \(x_\Phi(a) \) of \(G(\Phi, A) \) where \(a \in \Phi, a \in A \),
\[
s(\tau(a)) = x_{\tilde{a}}(c_{\tilde{a}} \tilde{a}) \quad \text{where} \quad \tilde{a} = \sigma(a) \text{ and } \tilde{a} = \sigma(a), \ c_{\tilde{a}} = \pm 1
\]

and for any \(h(\chi) \in T(\Phi, A) \),
\[
\sigma(h(\chi)) = h(\tilde{\chi}) \quad \text{where} \quad \tilde{\chi} = \sigma(\chi).
\]

We put
\[
G_\sigma(\Phi, A) = \{ x \in G(\Phi, A) \mid \sigma(x) = x \}.
\]

It is called the twisted Chevalley group over \(A \) of type \(\Phi_\sigma \) associated with \(G \).

Denote \(A_\sigma = \{ u \in A \mid u = \tilde{u} \} \) and \(\mathcal{A} = \{ (a, b) \in A \times A \mid a\tilde{a} = b + \tilde{b} \} \). For any \(R \in \Phi_\sigma \), we define
\[
\begin{align*}
(G\ I) & \quad x_\sigma(u) = x_\tau(u) \quad \text{for} \ u \in A_\sigma, \ R = \{ r \} \\
(G\ II) & \quad x_\sigma(a) = x_\tau(a)x_\tau(\tilde{a}) \quad \text{for} \ a \in A, \ R = \{ r, \tilde{r} \} \\
(G\ III) & \quad x_\sigma(\xi) = x_\tau(a)x_\tau(\tilde{a})x_\tau(\tilde{a})x_\tau(N_r, \tilde{r}, b) \quad \text{for} \ \xi = (a, b) \in \mathcal{A}, \\
& \quad \quad \quad R = \{ r, \tilde{r}, \ r + \tilde{r} \} \text{ and } N_r, \tilde{r} = \pm 1.
\end{align*}
\]

Then these elements are contained in \(G_\sigma(\Phi, A) \). We denote by \(E(\Phi_\sigma, A) \) the group generated by these elements, and call it the elementary subgroup of \(G_\sigma(\Phi, A) \).

For the product of \(x_\sigma(\xi), x_\sigma(\eta) \), we use the following notation
\[
x_\sigma(\xi)x_\sigma(\eta) = x_\sigma(\xi + \eta) \quad \text{for} \ \xi, \eta \in \mathcal{A} \text{ and } \mathcal{S} = \{ r, \tilde{r}, \ r + \tilde{r} \}
\]

Then for any \(\xi = (a, b), \ \eta = (c, d) \in \mathcal{A} \), we have \(\xi + \eta = (a + c, b + d + a \tilde{c}) \). Thus the set \(\mathcal{A} \) has a structure of group with the composition \(+ \) and the inverse of \(\xi = (a, b) \) is \(\xi^* = (-a, \tilde{b}) \).

Further we have the following operation \(\neg \) of \(A \) on \(\mathcal{A} \), that is, \(c \neg (a, b) = (ca, c\tilde{c}b) \) for any \(c \in A \) and \(\xi = (a, b) \in \mathcal{A} \).

1. 2. Let \(C_{G_\sigma}(A) \) and \(C_{E_\sigma}(A) \) be the centers of \(G_\sigma(\Phi, A) \) and \(E(\Phi_\sigma, A) \) respectively, and \(C_{G_\sigma}(A) \) the centralizer of \(E(\Phi_\sigma, A) \) in \(G_\sigma(\Phi, A) \). Then by definition, \(C_{G_\sigma}(A) \subseteq C_{E_\sigma}(A) \) and \(C_{E_\sigma}(A) = C_{G_\sigma}(A) \cap E(\Phi_\sigma, A) \). We put \(\mathcal{A}^* = \{ (a, b) \in \mathcal{A} \mid b \in A^* \} \) and
CENTERS OF TWISTED CHEVALLEY GROUPS OVER COMMUTATIVE RINGS

\[\text{Hom}(\Gamma', A^*) = \{ \chi \in \text{Hom}(\Gamma', A^*) \mid \chi = \overline{\chi} \}. \]

Here we state the main theorem in the following.

THEOREM. Suppose that \(A \) has trivial Jacobson radical or that \(\Phi_\sigma \) has rank at least 2. Furthermore assume that \(\mathfrak{a} \) has an element \((a, b) \in \mathfrak{a}, a \in A^* \) and \(\mathfrak{a}^* \neq \phi, \) if \(\Phi_\sigma \) is of type \(2^{2n} \) and the radical of \(A \) is not trivial. Then we have

\[C_{G, \sigma}(A) = C_{G, \sigma}(A) = \text{Hom}(\Gamma'_{ad}, A^*). \]

If \(G \) is of universal or adjoint type, then

\[C_{G, \sigma}(A) = C_{G, \sigma}(A) = C_{G, \sigma}(A). \]

If \(G \) is of adjoint type, then \(C_{G, \sigma}(A) \) is trivial.

For any elements \(x, y \) and \(z \) of a group, we write \(^x y = x y x^{-1} \) and \([x, y] = x y x^{-1} y^{-1} \). We shall use the commutator relation

\[[x, y z] = [x, y] \cdot ^x [x, z]. \]

§ 2. Properties related to maximal tori.

2. 1. Let \(A \) be a commutative ring with \(1 \) and with an involutive automorphism \(\sigma \), and \(G_\sigma(\Phi, A) \) the twisted Chevalley group over \(A \). We put

\[w_b(u) = \text{id} x_b(u)(-u^{-1})x_b(u) \quad \text{and} \quad h_b(u) = w_b(u)w_b(-1) \]

for \(u \in A_b^* \) or \(u \in A^* \) if \(R = \{ r \} \) or \(R = \{ r, \overline{r} \} \) respectively,

and

\[w_b(\xi) = \text{id} x_b(\xi)(-b^{-1} \rightarrow \xi)x_b(b \overline{b}^{-1} \rightarrow \xi) \]

\[h_b(\xi, \eta) = w_b(\xi)w_b(\eta) \quad \text{for} \quad \xi = (a, b), \eta \in A^* \quad \text{if} \quad R = \{ r, \overline{r}, r + \overline{r} \}. \]
Then we have

\[h_s(u) = h_r(u) \quad \text{if} \quad R = \{ r \} \]

\[h_s(u) = h_r(u) h_r(u) \quad \text{if} \quad R = \{ r, \bar{r} \} \]

\[h_s(\xi, \eta) = h_r(c) h_r(\bar{c}) \quad \text{for} \quad c = b(\xi)b(\eta)^{-1} \quad \text{if} \quad R = \{ r, \bar{r}, r + \bar{r} \} \]

where we denote by \(b(\xi) \) the second component of \(\xi \).

Furthermore we put

\[T_1(A) = \{ h(\chi) \mid \chi \in Hom_1(\Gamma, A^*) \}, \]

\[T_0(A) = \{ h(\chi) \in Hom_0(\Gamma, A)^* \mid h(\chi) \text{ is centralized by } E(\Phi, A) \}. \]

Then

\[[h(\chi), x_s(a)] = x_s((\chi(r) - 1)a) \quad \text{for} \quad a \in A_0 \text{ or } a \in A \text{ respectively} \]

\[\text{if} \quad R = \{ r \} \text{ or } R = \{ r, \bar{r} \}, \]

\[[h(\chi), x_s(\xi)] = x_s((\chi(r) - \xi) + \xi^*) \quad \text{if} \quad R = \{ r, \bar{r}, r + \bar{r} \}. \]

Therefore, we have \(T_0(A) \cong Hom_0(\Gamma/\Gamma_{\text{ad}}, A^*) \).

2. 2. PROPOSITION 1. Let \(C'_{c,e,\sigma}(A) = C_{c,e,\sigma}(A) \cap T_1(A) \) and \(C'_{c,\sigma}(A) = C_{c,\sigma}(A) \cap T_1(A) \). Then we have

\[C'_{c,\sigma}(A) = C'_{c,e,\sigma}(A) = T_0(A) \]

PROOF. By definition \(C'_{c,\sigma}(A) \subseteq C'_{c,e,\sigma}(A) \). On the other hand we have shown that \(C'_{c,e,\sigma}(A) = T_0(A) \cong Hom_0(\Gamma/\Gamma_{\text{ad}}, A^*) \). In [3] we see that \(Hom(\Gamma/\Gamma_{\text{ad}}, A^*) \) is isomorphic to the center of \(G(\Phi, A) \), then we have \(T_0(A) \subseteq C'_{c,\sigma}(A) \).

To prove \(C_{c,\sigma}(A) = C_{c,e,\sigma}(A) \), it is sufficient to prove that
\[C_{c,e,s}(A) \subseteq T_0(A). \]

In next section, we shall show this fact under the hypotheses of the main theorem (see section 1).

\section*{§ 3. Proof of the main theorem.}

3. 1. Let \(\Phi \) be a root system and \(\Pi \) a fixed fundamental basis of \(\Phi \). Denote by \(\Phi^+ \) or \(\Phi^- \) the set of positive or negative roots associated with \(\Pi \) respectively. Here we shall fix a regular order in \(\Phi \). By definition, if \(\alpha < \beta \) for \(\alpha, \beta \in \Phi \), then \(ht(\alpha) \leq ht(\beta) \) where \(ht(\alpha) = \Sigma m_i \) for \(\alpha = \Sigma m_i \alpha_i, m_i \in \mathbb{Z} \) and \(\Pi = \{\alpha_i, \ldots, \alpha_l\} \). Then the regular order in \(\Phi \) induces the following order in \(\Phi \).

\textbf{Definition.} 1) For \(R, S \in \Phi^\prime \),
\[R \triangledown S \text{ if and only if } \text{Min}(R) < \text{Min}(S). \]
2) For \(\alpha \in R, \beta \in S \)
\[\alpha \triangledown \beta \text{ if and only if } \begin{cases} a) & R = S, \alpha < \beta \\ or & b) & R \neq S, R \triangledown S. \end{cases} \]

We set \(h(R) = \text{Min}(ht(r) \mid r \in R) \) and call it the height of \(R \) (see N. Iwahori[5]).

We set
\[U^\prime(A) = U^+(A) \cap G_0(\Phi, A) \text{ and } U^\prime(A) = U^-(A) \cap G_0(\Phi, A) \]
where \(U^+(A) = \prod_{\alpha \in \Phi^+} x_\alpha(A) \) and \(U^-(A) = \prod_{\alpha \in \Phi^-} x_\alpha(A) \).

Then for any \(x \in U^\prime(A) \) and \(y \in U^\prime(A) \), we have
\[x = \prod_{\alpha \in \Phi^+} x_\alpha(a) \]
\[y = \prod_{\alpha \in \Phi^-} x_\alpha(a) \text{ where } a \in A_0, A \text{ or } \mathfrak{a}, \]
and this expression is unique where the product is taken in the order \(\triangledown \).

3. 2. Let \(W \) be the Weyl group associated with root system \(\Phi \) and \(\sigma \) the canonical automorphism of \(\Phi \). Put \(W = \{w \in W \mid w = \sigma w \sigma^{-1}\} \). Let \(\mathfrak{B} \) be the subgroup of \(G_0(\Phi, A) \)
generated by the elements of \(\{ w_R(u), w_R(\xi) \mid R \in \Phi_\sigma, u \in A_0^* \text{ or } A^* \text{ and } \xi \in \mathfrak{W} \} \) and \(T_1(A) \), then we see that \(\mathfrak{W}_1/T_1(A) \cong W_1 \). Let \(w \) be a representative of \(\mathfrak{W}_1 \) modulo \(T_1(A) \), we identify \(w \) with the corresponding element of the group \(W_1 \).

For a field \(K \), we have the Bruhat decomposition of \(G_0(\Phi, K) \), that is, for any element \(g \) of \(G_0(\Phi, K) \) we can write

\[
g = utwu' \quad \text{for some } u \in U_t(K), \, t \in T_1(K), \, w \in W_1 \text{ and } u' \in U_{v,1}^*. \]

where \(U_{v,1}^* \) is the subgroup of \(U_t(K) \) generated by the elements of \(\{ x(a) \mid R \in \Phi_\sigma^*, w(R) \leq 0, \, a \in K_0, \, K \text{ or } \mathfrak{W} \} \). This expression is unique.

3.3. Lemma 1. Let \(K \) be a field, Then we have \(C_{G,\Phi,\sigma}(K) \subseteq T_1(K) \).

Proof. If \(w \in W_1, \, w \neq 1 \), then we have a root \(R \geq 0 \) such that \(w(R) \leq 0 \). Then for \(z \in C_{G,\Phi,\sigma}(K) \), we set

\[
x_{w}(a)z = x_{w}(a)utwu' = zx_{w}(a) = utwu'x_{w}(a). \]

By uniqueness of expression, we must have \(x_{w}(a)u = u \) for any \(a \in A_0, \, A \) or \(\mathfrak{W} \). This is a contradiction, and \(w = 1 \), therefore \(C_{G,\Phi,\sigma}(K) \subseteq U_t(K)T_1(K) \). Since there exists an element \(w_0 \) of \(W_1 \) such that \(w_0(\Phi_\sigma^*) \subseteq \Phi_\sigma \), we have

\[
C_{G,\Phi,\sigma}(K) \subseteq U_t(K)T_1(K) \cap U_1(K)T_1(K) = T_1(K). \]

3.4. We set \(\Omega(A) = U^*(A)T(A)U^-(A) \). Then there exists an element \(d \) in \(Z[G] \) such that \(\Omega(A) = (x \in G(\Phi, A) \mid d(x) \in A^*) \) ([4], Section 4). Since for \(g \in \Omega(A) \), \(g = utv \) where \(u \in U^+(A), \, t \in T(A), \, v \in U^-(A) \) is unique expression, we have

\[
\Omega_1(A) = \Omega(A) \cap G_0(\Phi, A) = U^+(A)T_1(A)U_1(A). \]

Lemma 2. \(C_{G,\Phi,\sigma}(A) \subseteq U_1(J)T_1(A)U_1(J) \)

where \(J \) is the Jacobson radical of \(A \). In particular if \(J = 0 \), then
CENTERS OF TWISTED CHEVALLEY GROUPS OVER COMMUTATIVE RINGS

\[C_{G,F,A} \subseteq T_i(A) \]

PROOF. Let \(M \) be any maximal ideal of \(A \) and \(\pi: G_0(\Phi, A) \to G_0(\Phi, A/M) \) the homomorphism induced by the canonical map \(A \to A/M \). Then for any element \(z \) of \(C_{G,F,A}(A) \), \(\pi(z) \) belongs to \(C_{G,F,A}(A/M) \). By lemma 1 \(\pi(z) \) belongs to \(T_i(A/M) \), and then there exists an element \(d \) of \(Z[G] \) such that \(d(z) \notin M \). Thus \(d(z) \notin A^* \), that is, \(z \in \Omega_i(A) \). We can set \(z = xhy \) for some \(x \in U_i(A) \), \(h \in T_i(A) \) and \(y \in U_i(A) \) and \(\pi(x) = \pi(x) \pi(h) \pi(y) \in T_i(A/M) \), then \(\pi(x) = \pi(y) = 1 \), that is, \(x \in U_i(M) \) and \(y \in U_i(M) \) for any maximal ideal \(M \) of \(A \). Therefore \(z \in U_i(J) T_i(A) U_i(J) \).

3.4. PROPOSITION 3. If rank \(\Phi_0 \geq 1 \), then \(C_{G,F,A}(A) \subseteq T_i(A) \).

PROOF. For \(z \in C_{G,F,A}(A) \), we set

\[z = xhy \quad \text{where} \quad x \in U_i(J), \ h \in T_i(A) \text{ and } y \in U_i(J) \]

and

\[x = \prod_{R \leq 0} x_R(a_R) \quad \text{and} \quad y = \prod_{R \leq 0} x_{-R}(b_R) \]

where \(a_R \) and \(b_R \) belong to \(J \) or \(\mathcal{Y} = \{(a, b) \in \mathcal{Y} | a, b \in J\} \). The product of this expression is taken in the order fixed above. We shall use induction on heights to show that for every positive root \(R \), \(a_R \) and \(b_R \) are zero element in \(A \) or \(\mathcal{Y} \).

(1) First, suppose that \(a_R \) is not zero element with \(ht(R) = 1 \). Since rank \(\Phi_0 \geq 1 \), there is a root \(S \) such that \(R + S \in \Phi_0 \) and \(ht(S) = 1 \). Then

\[[x, a_R, z] = [x, a_R, xh] \cdot x^k[x, a_R, y] \]

this is conjugate to

\[x^{ht(R)} [x, a_R, xh][x, a_R, y] \]

and
\([x_{\delta}(\pm), x_{-\delta}(\pm)] \in x_{\delta}(J) T_i(A)x_{-\delta}(J)\) for \(u \in J\) or \(u \in \mathbb{N}_j\).

then we have

\([x_{\delta}(\pm), y] \in x_{\delta}(v) T_i(A) U_i(J)\) for some \(v \in J\) or \(\mathbb{N}_j\).

On the other hand, we have

\([x_{\delta}(\pm), xh] \in U_i(J) T_i(A)\)

If \(a_\delta \in A^*\) or \(a_\delta = (a, b) \in \mathbb{N}, a \in A^*\), then \([x_{\delta}(\pm), xh]\) has a factor \(x_{\delta + \delta}(u) \neq 1\). Thus

\[x^{-1}\sigma^{-1}[x_{\delta}(\pm), z] = x^{-1}\sigma^{-1}[x_{\delta}(\pm), xh][x_{\delta}(\pm), y] = x_i h_i y_i,\]

where \(x_i \in U_i(A), h_i \in T_i(A)\) and \(y_i \in U_i(A)\). By \(z \in C_{C_{c_{e}}} A\) and uniqueness of the expression of \(z\), \(x_i = h_i = y_i = 1\), this is contradictory.

Let \(\omega_0\) be the element of \(W_i\) such that \(\omega_0(\Phi_\delta) = \Phi_\sigma\). Then the elements

\[z = \omega_0 z\quad \text{and} \quad x_i = \omega_0 x_i \quad \text{and} \quad x_i = \omega_0 x_i \quad \text{and} \quad h_i = \omega_0 h_i\]

are conjugate, where \(x_i = \omega_0 y = u_0 w_0 y \in U_i(J)\), \(h_i = \omega_0 h \in T_i(A)\) and \(y_i = \omega_0 h^{-1} x_i \omega_0 h \in U_i(J)\).

By uniqueness of the expression, \(y\) contains no factors \(x_{-\delta}(a_\delta)\) with \(ht(R) = 1\).

(2) We assume that \(x\) and \(y\) contain no factors \(x_{\delta}(a_\delta)\) or \(x_{-\delta}(a_{-\delta})\) for \(R \in \Phi_\delta\) with \(ht(R) \leq m\). Then if \(a_\delta \neq 0\) for some \(R \in \Phi_\delta\) of height \(m + 1\), there exists a root \(S\) such that \(ht(S) = 1\) and \(ht(w_0(R)) \leq m\) where \(w_0\) is the reflection of \(\Phi_\delta\) corresponding to \(S\). Thus

\[z = \omega_0 u_0 z = \omega_0 u_0 x_i \quad \text{and} \quad \omega_0 u_0 h i = x_i h_i y_i,\]

where \(u_0 \in A^*\) or \(u_0 = (a, b) \in \mathbb{N}^*\), and \(x_i \in U_i, h_i \in T_i(A)\) and \(y_i \in U_i\). In \(x_i\) there exists the non-trivial factor \(x_{\omega_0(R)}(a)\). This would contradict the inductive hypothesis. Hence \(a_\delta = 0\) and as above also, \(a_{-\delta} = 0\) for all \(R \in \Phi_\delta\) with \(ht(R) = m + 1\), therefore \(z = h_i\) belong to \(T_i(A)\).
References.

Department of Mathematics
Faculty of Education
Kumamoto University