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1. Introduction

The unification of forces seems to be the main theme of elementary particle physics. The
same idea can happen to reach mathematically interesting conclusions. The objective of the
present paper is to give some such examples, and especially to show that the canonical
connections @ on the universal bundles over the Grassmann mainfolds of dimension » satisfy
the Yang-Mills equation

D¥F=d* F+wA*F—(—1)"% FAw=0. 0. 1)

where F is the curvature form of . It should be noted that Yang-Mills fields in higher
dimensions hold their own value even physically [14].

The electroweak theory or the Glashow-Salam-Weinberg theory [1], [12], unites the
electromagnetic force and the weak force. Let M be a Riemannian manifold. An electromag-
netic gauge field is given by a #(1)-connection on a principal U(1)-bundle over M, while the
intermediate vector bosons are given by the components of a Yang-Mills sz(2)-connection form
on a principal SU(2)-bundle over M. They are united in an s%(2) X »(1)-valued form on a
principal SU(2)x U(1)-bundle over the same manifold. We sometimes encounter similar
situations in mathematics. Take the example of a flag manifold

Ux(m)
Uk(my) X -+ X U(my)’

over which there are k canonical bundles: a Ux(mu)-bundle, a Ux(m)-bundle, ---, a
Ux(m.)-bundle, where m=m,+---+my (see Sec. 4 for the notations). Each of these bundles
has its own canonical connection. These connections are united in a gravitational field. It
follows from this fact that each canonical connection satisfies the Yang-Mills equation, though
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we follow a little bit different line, namely the Kaluza-Klein frame work in the proof.

In Sec. 2 we review some aspects of the Kaluza-Klein metric from a mathematical point
of view.

In Sec. 3 we explain some mathematics of the unification of forces.

In Sec. 4 we prove the following fact. Let G.(K") be the Grassmann manifold of n
-planes in vector N -space over K where K is the field of real numbers, complex numbers or
quaternions. Then the universal connection on G(K") (more correctly the canonical connection
on the Stiefel bundle [11]) satisfies the Yang-Mills equation (0. 1).

After a brief exposition of the Glashow-Salam-Weinberg theory, Sec. 3 is devoted to the
calculation of the Maxwell equation in the electroweak field. Suppose there are an electro-
magnetic field and a Yang-Mills Gauge SU(2)-field. The electromagnetic field, interacting
with intermediate vector bosons, generates more current than usually known. The extra term,
mathematically unavoidable, is related to the size of the internal space, i.e. the fibre of the
principal bundle on which the unified connection form is defined. We calculate the exact form
of this current.

In Sec. 5 we retale our story on the special case of quaternionic projective space and the
canonical connection. The curvature form F, in this case, satisfies a self-dual type equation

¥ F=tFA--AF.

The origin of the present paper was a conversation with Professor S. Kobayashi when the
author stayed in University of California at Berkeley a couple of years ago. He would like to
express his gratitude to Professor Kobayashi.

2. Kaluza-Klein Metric [7], [13], [14]
Let G be a compact connected »-dimensional Lie group with Lie algebra G. Let P be a
principal G-bundle over a manifold M of dimension m. AEG generates a l-parameter

subgroup ¢.€ G (—o0< ¢ <o) and defines a vector field on P, denoted A* and called a funda-
mental vector field [8], such that

A;=%‘ (pae)e=o

for p&P. A connection form w on P is a G-valued 1-form on P with the following two
properties
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o(Xg)=Ad(gVw(X) for X T(P) and g=G
wo(Af)=A for AEG

where 7'(P) denotes the tangent bundle of P'. We write Gn(P), for the Grassmann manifold
of m-planes in T(P),, the tangent space at p of P. Then

Gm(P) = pLEJP Gm(P)p

with the natural projection is a bundle over P with fibre Gn(R™*"), the Grassman manifold of
m-planes in R™”. G acts on Gn(P) naturally. We denote by I'(P, Ga(P))¢ the set of
G-invariant sections of Gn(P). The sections ¢€ I'(P, Gu(P))¢ such that ¢(p) is complemen-
tary to T(pG), for any p= P (where pG is the fibre though p of P) will be denoted by I'.(P,
Gn(P))°. Given ¢€@(P, Gu(P))¢, XEI'(P, T(P)) decomposes into the sum

Xo=(Xn)p+(Xp)p (pEP)

where (X,),€o(p) and (X,),E T(pG),-

From now on assume that G is equipped with a bi-invariant Riemannian metric gc. Let
Rie (M), Rie (P), ... be the totality of Riemannian metrics on M, P, ---. Then a pair (g, 6)E
Rie (M)X (P, Ga(P))° gives rise to a metric g < Rie (P) if we put

g(X)=g(m( X)) +gc(Xo)

where we denote the projection: P— M by 7. We write Rie (P)C for the subset of G-invar-
iant metrics in Rie (P). Since the metric g defined above is clearly G-invariant, we have a
natural map:

Rie (M)X (P, Ga(P))¢— Rie (P)°¢ 2.1

Fix a metric g on M and we have a map:
L(P, Ga(P))¢ — Rie (P)°. Conversely given a G-invariant metric on P we can assign the
orthogonal complement of T(pG), to each p= P and get an element of I'W(P, Gn(P)).

! We denote tangent bundles by T(P), T(M), -+ in this paper.
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Hence if we denote by Rie (P)S the set

(g€ Rie (P)°| g(X,)=g(m(Xy)) for any Xe& T(P)},

then we have

TP, Gu(P)) = Rie (P)§.

The left-hand side is in 1-1 correspondence with the set of connections on P, which is denoted
by A(P). We, therefore, have

A(P) =5 Rie (P)§ 2.2

The map (2. 1), therefore, can be considered as the one:

Rie (M)x A(P)— Rie (P)°. 2.3)

The image g of (g, w)ERie (M)X A (P) is called the Kaluza-Klein metric corresponding to (g,
w). We note that the Kaluza-Klein metric corresponding to (g, w) is defined as follows.

g(X, Y)=g(m(X), m(Y)+b(a(X), o(Y)) for X, YET(P), (pEP)

where b is the inner product in G corresponding to ge.
Now let us seek for the explicit form of the Kaluza-Klein metric. Take a section € I'(U,
P) of the bundle P where U is an open set of M. Then we get a diffeomorphism:

UXG3(x, ¢9) =5 x=d(x)gEx (V).

We identify T(P)x with T(M)xX T(G)s by this isomorphism. Let AEG and A* be the
fundamental vector field corresponding to A. Then we have G = T(G), by A~ A*. Hence
we can identify T(P)z with T(M):XG. Take a frame e, ..., ea for T(M)x and another one
A, ..., A, for G. Then the connection form o is expressed with respect to the chosen frames
by an 7 X(m+ r) matrix
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(@ 15).

Define wy(X)=w(o«(X)) where
X=ée;X.'€ T(M)

Then we find

X
wu(X)=(A1...Ar) Q( : )

Further, as easily calculated, the Kaluza-Klein metric has the matrix form

((gv)'*' ‘Q(bas)Q *Q (baﬁ))
(baﬂ) Q (baﬁ)

with respect to these frames (c. f. [7]), where (gy) (resp. (54)) is the matrix representing g (resp.
b) with respect to the frames.

We assume that G is compact in what follows. Let B (resp. R) be the scalar curvature of
the Kaluza-Klein metric g (resp. the one g of M). Then the following celebrated equality
holds. Suppose M is compact for convenience.

[(§+A)*1=const {_[(R+,i)*1

+ l (TA(FA *F)}

where * 1 denotes the volume element of each manifold, A is a constant and F is the curvature
form da)+%[w, w].
The following lemma follows directly from the above equality.

LEMMA 2. 1. A Gauge field of M is Yang-Mills if the corresponding Kaluza-Klein metric
on P is Einstein.
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3. Unification of Forces

Suppose there are two Gauge field o, " on a manifold M. Let G, G’ be the corresponding
groups of local symmetry and P, P’ the corresponding principal bundles with projections z, 7’
respectively. Let us denote by G, G’ the Lie algebras of G, G’. Then g (resp. &) is a G-valued
(resp. G’-valued) 1-form on P (resp. P"). The bundle induced on P from P’ by r is a principal
G’-bundle, whose total space P is set-theoretically.

{(p. P)EPXP | 2(p)=n"(p")}

and whose projection z” is given by (p, p’)~ p. Further G hence GX G’ can act on BP.
Actually the action is given by (p, ')~ (pg, p'g’) for any (g, g)EGXG’. Then (P, o z”, M)
turns out to be a GX G’-bundle over M. We write 7 for r o 77. We denote by the symbol P
the bundle itself in the sequel and write @ for the pull-back of w by z”.

Switching P and P’, we can get a X G bundle over M whose total space is

(¥, pEPX P | x'(p)=n(p)).

We also obtain a G-valued form @’ as the pull-back of .

By the diffeomorphism : (p, p) (p, p") we identify the latter bundle with the former. We
use the same symbol P for the identified bundle. Then we have a G X G’-valued form @ X @’
on P

PROPOSITION 3. 1. @ X @’ is a connection form on P, i. e. a Gauge field on M.

Proof. The proof follows from a direct check of the two properties in See. 2 of the
connection form.

We write 7 for the projection: P — P’ which is defined by (p, )~ #. Introduce a
Riemannian metric g in M and denote by k (resp. k’) the Kaluza-Klein metric in P (resp. P’)
corresponding to @ (resp. w’). Define a quadratic form g by

g(X) =Kz (X)) + K (x¥(X))—g( 7:(X)).

Then g is a G X G’-invariant positive definite metric, as is easily seen. Moreover (w X @’)"%(0)
at p € P is the orthogonal complement of 7(5(G X G’))p withrespect to g. We, therefore, see
that @ X @’ corresponds to g by the map (2. 2), provided that P there is replaced by P and G
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by GXG'. wXw' is called the unified field of w and «'.
4. Canonical Connections on Grassmann Manifolds

Let K be one of the filed R, C and H. We write Uk(/) for O(!) if K=R, for U(!) if K=
C, for Sp(J) if K=H. A flag in K" of type v(=(m,, -+, ns) Where 0< 7, <---<n;<N) is, by
definition, a chain ViC---CV; of planes in K" such that dim V;=nJ(i=1, -, s). A flag
manifold F, of type v is the manifold all flags of type y, which is viewed as a homogeneous
space

Uk(N)
Ux(m) X Us(nz— m) X +++ X U(N — ns)

Consider the principal bundles P; over F,:

Uk(N)
Ux(5) X U{mz—n1) X -+ X Us(N — n5)

i—th factor omitted

for {=1, -+, s+1. Take an orthonormal frame &, -+, &y for the orthogonal complement of
Vioi in V: where i(i)=n:—n;_.. Then

wi=d (& Ena)* (&1 Ennr)

are connection forms on P; where &, -+, £u,) are considered as column vectors and*stands for
the transposed conjugate. They are called canonical connection forms. We claim that the
canonical connections are Yang-Mills. To avoid mere cumbersomeness we only prove the
case of Grassmann manifolds, i. e., that of s=1. Let P,, P, be the universal principal bundles
over Grassmann manifold G,(K™**)( = G«(K"**)), the manifold of »-planes in K***( =5 that of
k-planes in K***). These are Ux(n)—, Ux(k)-bundles respectively. The projections are
denoted by , m, though somewhat confusing in the case n=4#. Further the projection of
UK((;J:)X legk)-bundle P; Ukn+k)— %%3 GA(K™*) is denoted by 7. Since P,
= —'z]%, we have a cononical projection Ux(zn+ k) — Pn, which is denoted by z}. Similar-
ly 7

LEMMA 4. 1. The induced bundle from P, by m.: P.— Gu(K™**) is equivalent to (Ux(n+k),
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7?;:, P;;)
Proof. Consider a sequence of product spaces:

U(n+ k)X Udn+ k) Z25* px P =28 G (K™*)X Go(K ).

Set A={(x, x} | x€ G(K"**)}. The total space of the induced bundle is (7, X m)~*(A), which we
denote by P below. Imbed Uk(n) in Ux(n+k)X U(n+k) by ¢; g~ (g, g)(g= Un+k)).
Then what we have to show is that (1):

TaXweo 1; Un+k)— PaX P

gives rise to a bijection between Ux(n+ k) and P and that (2) : the right actions of g& Uk(n+£)
on Uk(n+k) and P correspond with each other.
First note that (7, X m.) ¢ (X 7%) (g, 9 ) A means to have the same coset

9(U(n) X Ux(k))=g'(U(n) X Ux(k)),
in other words
g'=gh for some A€ Ux(n) X Ux(k).
(1) Set r=m X ks (M€ Ux(n), b€ Ulk)). Then
X kg, gh)=nnX 7l g(hix0), gh(0x h3'))=maX wilg(m X 0), g(h1 % 0)).

Hence m,X n% o 1 (U(n+k£))=P. On the other hand z;X 7% © z clearly is injective.
(2) Let g€ Ux(n+k) and k€ Uk(n). Then

TaX ke © 1 (gh)=(nr(gh), m9))

=(7lg) 7dg))=(TnX i o 1 (g)h.

This completes the proof.
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From now on we introduce on Ux(/) a specific inner product by
(A, B>=the real part of T.(A*B) (4, BE ux({)) 4.1

where ux(/) is the Lie algebra of Uk(/). Then there remains no ambiguity in the correspon-
dence (2. 3), in what follows.

LEMMA 4. 2. P, is equipped with the metric induced from that of Ux(n+4k). The Kaluza
-Klein metric corresponding to the connection induced on Ux(n+ k) by m. from w. coincides with
the metric (4. 1) for U(n+k).

Proof. The horizontal space of the induced connection is just the orthogonal complement of
the vertical space as is easily seen. The lemma follows from it immediately.

LEMMA 4. 3. The connection form (xn)*(wn) on the principal bundle Ux(n+k)— P: is a
Yang-Mills potential.

Proof. Ux(n+ k) is a symmetric space since it has a bi-invariant metric [10]. It is (locally)
irreducible (as a Riemannian space). Hence it is a Einstein space [3] (see [4] for the semi
-simple case). The metric of Ux(n+ k) is the Kaluza-Klein metric corresponding to (z5)*(wx)
according to LEMMA 4. 2. Therefore we can see from LEMMA 2. 1. that (x},)*(w,) satisfies the
Yang-Mills equation.

THEOREM 4. 4. The canonical connection on the canonical bundle over the Grassmann
manifold G.(K"**) is a Yang-Mills Gauge potential where K=R, C, H.

Proof. Let » be any connection on P,. For a section g: U — P, (where UC G.(K™**) is
open) we set wy=0*w. The curvature form

Flwv)=dwy +% [wy, wu]
“has the trace not dependent on the choice of section o [8]. We write
Ymo)=J_ ... T{FsA*F)

Recall that P is the bundle induced from P, by z,: P, — Go(K"**). Define ¢(y)=(y, ¢ * m(y))
for ye a3 (U). Then ¢ is a (local) section of P.
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Let wn, ws be the canonical connection forms on P,, P. respectively. Let o - wr (I=
nk) be an orthogonal coframe on G.(K"**). To avoid cumbersome notations we use @;
themselves for 7¥( ;).

Let us introduce a bi-invariant metric on Ux(k). Take an orthonormal base for ux(%) and
denote by W, -, W, (J=dimgUx(k)) the components of . with respect to this base. Then

ds*= @3+ + @3+ Wi+ + W3 4.2)

turns out to be the Kaluza-Klein metric on P corresponding to ws. We write o* instead of
(#3)*w for notational simplicity. Then we have

o *(F(w*)=n%(Fv)

where F(w*) is the curvature form of w*. Note that z¥(Fy) is a linear combination of w:A
w; (1<i<j<I) with constant coefficients along the fibres. It follow that

% g *(F(®)=nFu)AWiN--AW,.
Hence we have

GHF(0®)A * a*(F(w*))
=g (FuAN* F))AWIN-AW,

whence we can find

[ TAGHF@NA* (F@* )=

-/;n(K""‘) TFun % FU)-/:lx(k) WA-AW;

=constX Ym(w). 4. 3)

Now replace @ in the above by w.+tA where Aisa ux(n+ k)-valued 1-form on P, and tER
is a parameter. By differentiating both sides of (4. 3) with respect to ¢ at =0, we obtain
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f TAAAD*Fy(wa))=const X

[TAARD*Fu(wt))

where D* is the adjoint of D. The right hand side vanishes according to LEMMA 4. 3. Since
A is arbitrary, we can conclude

D*Fu(wn)=0.

This completes the proof of THEO.REM 4. 4.
5. The Electroweak Theory and its Currents

In this section we show that there appears more electric current than we expect in text
books (e. g. [12]). The exact form of the added term is determined, which is connected with thé
size of the internal space i.e. the typical fiber of the principal bundle with a Kaluza-Klein
metric, on which the Gauge potentials are defined. We first review the electroweak theory
from a mathematical standpoint. An electromagnetic field on a Riemannian manifold M is
given by a triple (@, », w) where @ is a principal U(1)-bundle over M, » a linear representation
of U(l), w a connection form on P. Similarly a weak force field is given by (S, s, W) when
S is a principal SU(2)-bundle and so on. Then these two Gauge fields are unified in a field @
X W on a principal U(1)x SU(2)-bundle P as we saw in See. 3.

As bases, take

72. gY for u(l)

and

z'gT1=72 gou, igTz=7’ 902, igTa=7’ gos for su(2)

where Y is the hypercharge, 61, 62, 03 the Pauli matrices and g, ¢’ the coupling constants in the
theory. (For example Y = —1 for the neutrino-electron multiplet (¥¢) and Y=% for the quark
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multiplet (g)). Then the following structure equations hold :

ligTs, igTh]l=g(igT), ligTo tgT3)=9(igTh), [igT, igTel=9(igTs).
Let us write W componentwise as
W= Wi(igTh)+ Walig To) + Wa(ig T3)

and set
Wi= 2 Wadz*  (i=1,2.3)
where m=dim M. Then the covectors

We=—t- (WiTiW5)

give rise to charged vector bosons. We write o instead of B(% g'Y). We are required to
make a rotation of the base

(eiQ. iZO)=(% gIY ins) (COS@ —Smﬁ)

sind cosf@

so that the Gell-mann-Nishijima relation should hold where Q is the electric charge, iZ, the
other vector in the new base and where ¢ means that there are e units of the electric charge.
‘We, therefore, have

’

coso9=¢, sind g , e= -
JF+g? Jg+g” Vg +g”?

and
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oxw=--+Geazo=(_07 500) ()

in the componentweise way. Hence cosd B+sind W is the potential of our electromagnetic
field (while (—sind B+cos8 Ws) is that of the neutral vector boson).
Let us calculate the Maxwell equation for the above potential. It should be noted that this
potential A=cosé B+sind W: can not be considered as any connection form in the strict sense.
In what follows, we write 7; for igT«{(i=1, 2, 3) in brief and Fy stands for the curvature
form of W. Then

Fuw=(dW'+gW*A W3 T\ +(dW*+gW* A W) To+(dW3+ gWi A Wa) T

We denote by r the projection: P— M. Take an orthonormal coframe @y, ***, wm On M. As
before (see Sec. 4), we use @y, -+, @ instead of 7*(@y), -, #*(wn). Note that T3, 75, T are
orthogonal with respect to the inner product (4. 1). Then a Kaluza-Klein metric can be
introduced on P by

ds*= @3+ + 0h+ (W (W2 4+ (WD) + 6282, (5. 1)

where g, b are constants which should be determined physically [2]. Since Fy can be spanned
by w:A w; 1<i<j<m), we have

* Fy=something A W'A W2A W3AB (5. 2)

where, of course, the % -operator is taken with respect to the metric (5. 1). On the other hand

*Fw=zs: (% dWHTi+ g3 (£ WAW) T

i=1

where 3}’ expresses the sum taken cyclically with respect to 7, 7, £ (1<3, 7, £<3). Writing Fy
=34, FiT, we have

D* Fu=3d(* Fi) T+ g> (Wi A % Fiyx * FiyA W) T

It follows from (5. 2) that the second term in the right hand side vanishes (it is interesting to note
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that this always happens if we take any Kaluza-Klein metric). Setting D* Fw=23X%., (D*
FW)i?‘iy

(D* Fw)=d * F}.
Hence
d*dW=—gd *(W'AW3)+(D* Fy)?

dB, da . are spanned by @;A @: (1<j<k<m) as F, because dB is the curvature form and w;
are forms on M. Consequently we can see

d*(W'A W2)=% d(WEABA @A A o™

=~%(W‘/\ W2ZABA@'A-Aa™).
We, therefore, have
*d % dW'=-F W+ (x D% Fu).
We set as usual

*d*dB="jr

* D% Fi=g]*
Then we have
*d* dA=-:—, W3+(cos8) * d * dB

+(sind) (% D* Fy)

1 .
=e(—a; W’+-‘%— Jy+g]3).



SOME MATHEMATICAL PROBLEMS ON THE UNIFICATION OF FORCES 25

Hence we can obtain the following theorem.

THEOREM 5. 1. Let V be the volume of the SU(2)-part of the internal space with respect
to the Kaluza-Klein metric. Then the Maxwell equation in the electroweak field can be written
as follows :

Tsuay WA WEA VV:’)% W3+jem}

*d*dA=e{( >

where jen=—1jy+J"

6. Quaternionic Projective Space

Consider the (#+1)-dimensional quaternionic right-vector space H**!. We give it an

inner product
(9, ¥)=goyo+ -+ yayn 6.1)

where y=(yo, -, ya)» ¥'=(yb, -, ya)€H™". The underlying set of quaternionic projective
n-space HP(#) is the set of quaternionic lines through the origin, {yH | y € H**'—0}. HP(#n) is
also considered as Sp(n+1)/Se(n) X Sp(1). Let xEHP(#n). Let xo, -+, x2 be the homogeneous
coordinates of x. Set y=(xq, ---, 25) and

x=y/y, v).

Then x € S*"*2 (the round unit sphere with the origin as center, in H**!). Considering x H as
fibre over x, we get the canonical line bundle over HP(n). We denote it by L. We write dx
for the identity isomorphism of the tangent bundle 7(S**3). Let el=x), e1, -, . be an
orthonormal frame for H**!. Then ¢, ---, e, span the tangent space T(S***®); and can be
viewed as an orthonormal frame for T(S5***3). We write

dx=eowo+ 1w+ +erwn

Then @, is purely quaternionic. Define x: S$*"**— HP(#) by z(x)=x. Then we have a
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principal SU(2)-bundle ($***, x, HP(#)), which is the associated bundle to L. The canonical
connection form is given by

wo=x*dx

wheresmeans the transposed conjugate. @ wo gives rise to the natural metric, i. e., the metric
induced from (6. 1), on each fibre. We denote by @y, *+, @» the pull-backs 7*(@\), -, 7*(@m)
for simplicity. As in Sec. 4,

d$2= Cﬁowo'l‘ 510)1"'""*‘ Cl:)n(l)n-

is the Kaluza-Klein metric on $*"*3, which is nothing but the ordinary metric of the round
sphere. Hence it is an Einstein metric. It follows from this that @, is a Yang-Mills potential
We can rediscover this fact more directly. Namely an easy calculation shows us

F( o) (=dwo+ @o wo)=(dx, dx,)—(dx, x)A\(x, dx)

=A@+ + B\ Gne

This expression can be considered as one on HP(#»). Through a calculation we find

* F(@o)== F(@o) A~ AF (o)

(2n—1) copies

on HP(x). We might call this type of F(anti-) selfdual. From this it follows rather directly
that @, is Yang-Mills.
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