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1. Introduction

The process of diagonalization or block-diagonalization is important step in the study of
a system of differential equations. The result of N. Levinson[L] plays an important role in

the study of the asymptotic behavior of solutions of a linear system of differential equations

W - AWy, (L1)

as t — oc, where y is an n-dimensional vector and A(t) is an n X n matrix continous on

Iy = fto, 00) (to: finite). In order to state the Levinson theorem we need:

Assumption 1.1. The matrix A(t) is in the form
A(t) = A() + R(), (1.2)
where A(t) is an n x n diagonal matrix
A(t) = diag{ i (t), X2(2), .-+, An(®) }, (1.3)
with A;(t) (j = 1,2, --,n) continuous on Zp.
Assumption 1.2. Let
Dj(t) =R (8) = 2e(®),  (hk=1,2,---,n). (1.4)

For each fixed j, the set of positive integers {1,2,---,n} is the union of two disjoint subsets

le and P_—,‘z, where
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(i) ke P if
1
lim / Djx(7)dr = —o0,

t— 400
to

t
/ Djk(t)dr < K for to<s<t,
8
for some positive number K,
(ii) k € Pje if
t
/ Dir(r)dr< K  for s>t>to,

for some positive number K.

Assumption 1.3. The matrix R(t) is an n X n matrix satisfying

R(t) € L1(To). (1.5)
A version of the Levinson theorem can be stated as the foilowing (e.g. see E. A. Codding-

ton and N. Levinson[CL] or M. S. P. Eastham[E]).

Theorem 1.1. Under the Assumptions 1.1, 1.2 and 1.3, there exists an n X n matrix Q(t)
such that

(1) the derivative d%gt) exists and entries of Q(t) and i% are continuous in t on the
interval Ty,
(2) lim Q)=0,
(3) the transformation:
y=[In+Q() 2 (1.6)
changes system (1.1) to
dz

on the interval Iy, where I, is the n x n identity matrix.

Remark 1.1. Assume that the functions A (t), - -, An(t) are contiuous on the interval Zo
and that

t—lfgloo A.7(t)=l“.1 (]=1121'”ln)



ASYMPTOTIC DIAGONALIZATION OF A LINEAR SYSTEM 29

exist. Then, if the real parts of ui, -, un are mutually distinct, the functions A1 ), An(?)
satisfy Assumption 1.2.

Remark 1.2. Theorem 1.1 has been shown to be the basis of many important results for
asymptotic integrations of diffrential equations. For instance, see W. A. Harris, Jr. and D. A.
Lutz[HL3] and M. S. P. Eastham[E].

Remark 1.3. A result to Theorem 1.1 for the system (1.1) with coefficient A(t, h(t)) is
obtained recently by W. A. Harris, Jr. and Y. Sibuya[HY]. Here A(t,¢) is periodic in ¢ for

every fixed vector parameter € and h(t) is a vector function tending to zero vector as t — +o00,.
Remark 1.4. The conditions required for the existence of Q(t) globally analytic on Zo
and Zo are studied recently by H. Gingold, P. F. Hsieh and Y. Sibuya[GHY].

Theorem 1.1 can be proved in the following manner. From (1.1), (1.2), (1.6) and (1.7),
we see that Q(t) satisfies a linear differential equation:

990 _ A Q- QAW + RO [T+QL (18)

As (1.8) is a linear equation, if a solution Q(t) is shown to satisfy condition (2) in an interval
I = [t1,00), for a large 1, then, Q(t) exists on Zo and satisfies Theorem 1.1. Assumption 1.2
and 1.3 are employed to show the existence of such Q(t).

P. Hartman and A. Wintner[HW] studied the same problem for (1.1) under slightly dif-

ferent set of assumptions:

Assumption 1.4. There exists a positive constant § such that for each pair of indices j
and k, (5 # k),
|Djx(t)| > 6 >0 for t € Io. (1.9)

Assumption 1.5. There is a positive p, (1 < p < 2), such that
|R(t)| € Lp(To), (1.10)

where | - | denotes the maximum norm.
A version of the Hartman and Wintner Theorem can be given as follows:

Theorem 1.2.  Under the Assumptions 1.1, 1.4 and 1.5, there exists an n X n. matrix Q)
such that
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dQ(t)

(1) the derivative —— exists and the entries of Q(t) and

gt are continuous in t on the
interval Ip,

dQ(t)
dt

(2) Q(t) € Ly(To), dicg Q(t) =0 and lim Q(t) =0,

(3) the transformation:
y=[In + Q) 2 (111

changes system (1.1) to
% — [A(t) + diag R(t)] z (1.12)

on the interval Tp, where I, is the n X n identity matrix.

For a system (1.1) with almost constant coefficient, consider the following:
Assumption 1.6. The matrix A(t) is in the form
A(t) = A1 + B(t) (1.13)

satisfies the conditions:

(i) the constant matrix A; is in block-diagonal form

Ay = diag {An1, A2z, -+, Amm )y
where Aj; is an n; X n; matrix in the form
Ajj=XNIn; +E; +N; (j=1,2,---,m)

with ); a real number, E; an n; X n; diagonal matrix of purely imaginary diagonal
entries, N; an n; X n; nilpotent matrix and n1 +n2 + - +nm =n;
(ii) Am < Am=1 < e < A2 < Ag;

(lli) NjEj=Eij (j=152v"',m);

(iv) the matrix B(t) is expressed in the form (B;k(t))]x=1 With Bjx(t) n;j X ni matrices
satisfying
tlim Bjk(t) =0 G, k=1,---,m).

Let
y=[ny - yml’, (1.14)
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where y; are nj-column vectors. Y. Sibya[S] proved the following (see also P. Hartman[H,
Ch. X, Lemm 12.1]):

Theorem 1.3.  Under the Assumption 1.6, there exists a linear transformation
vi=z+) Tulz (G=1,2-,m) (1.15)
j#k
with nj X n; matrices Tjx(t) such that

Jk( )

(1) for every pair of indices j and k, (j # k), the derivative exists and the entries of

T;k(t) and L;f—) are continuous on the interval To;

() Jim Ta(®)=0, (#k)
(3) the transformation (1.15) changes the system (1.1) with (1.13) to

¢fizt [AJJ + Bj;(t) + ;Bah(t)ThJ @]z G=12--,m). (1.16)

For a more general setting, suppose that the system (1.1) is in the form
dy,
= A;(t)y; + ZBJk(t)'yk, (1.17)
k=1

where y; are nj-column vectors given in (1.14), A;(t) and Bji(t) are n; x n; and n; X ng

matrices, respectively. Let G;(t,s) be the n; x nx matrix such that

e Y L) w1s)
G.f(sis) = Iﬂj (j=1)2:"'sm)

for t, s € To. Assume the folloing:

Assumption 1.7. There exist two positive constants K and & such that for any n; X ng

matrix Cjx, we have
| G2, 8) Cjk G (t, 8) 7 || < Ke™ = || Cje ||, for t<s, j>k 1.19
£ J

and
| G;(t, s) Cjx G (t,s)™? I < Ke5t-2 Cikll, for t>s, i<k (1.20)

for s,t € To. Here || - || denotes the Euclidian norm.
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Assumption 1.8. There exists a function f(t) such that

" Bjk(t) " < f(t) (jvk= 1:2,"’:m) (1.21)
and »
sup(1+p—1)~" / f(r)dr —0 (1.22)
p2t t
as t — +oc.

Y. Sibuya[S] proved the following

Theorem 1.4. Under the Assumption 1.7 and 1.8, there exists a linear transformation

yi =2z; + ZTJk(t) 2k (i=1,2---,m) (1.23)
irk

with n; X ni matrices Tjx(t) such that

(1) for every pair of indices j and k, (j # k), the derivative Tj‘;—t(t) exists and the entries of

T;x(t) and T’;—t(t) are continuous on the interval Zo;
(2) lim Tu()=0, (j#k)
t—+o0

(3) the transformation (1.23) reduces the system (1.17) to

% = A"(t)'*;th(t)Th:‘(t) 7z ((=1,2---,m) (1.24)

Note that the reduced systems (1.16) and (1.24) are not necessarily diagonal and involve
the entries of the respective transformation matrices, while the reduced systems (1.7) and
(1.12) are diagonal and do not involve the entries of the transformation matrices. Further
study of the asymptotic behavior of (1.1) are made to generalize these theorems and applied
to topics such as adiabatic oscillators and deficiency index problems (e.g., see K. Chiba and T.
Kimura[CK], A. Devinatz[D], M. S. P. Eastham(E] and W. A. Harris, Jr. and D. A. Lutz[HL1,
HL2, HL3]). In these studies, the integrability of R(t) and/or its derivatives are always
assumed, except for Theorems 1.3 and 1.4. In this paper, we will generalize these results by
assuming only the integrability of entries of R(t) above (or below) the diagonal and replace
the other half by zero limit as ¢ — co. Furthermore, the reduced system of our new result
has a diagonal coefficient and does not involve the entries of the transformation matrix. In
Section 2, the main theorem is to be stated and examples are to be given to illustrate the
differences of the main theorem with Theorems 1.1 — 1.4. The proof of the main theorem is
to be given in Section 3.
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2. The Main Theorem and Examples

In order to formulate the main theorem, let

R(t) = (rie(®) (2.1)

Jk=1
and

ri(t) =max |r(t)],  ra(t) = max | 75x(t) - (22)
We assume the following

Assumption 2.1. There exist two positive constants § and K and a constant o 0<ax
1), independent of ¢, such that for each pair of indices j and k, (j,k = 1,2,---,n;j # k),

exp {/ D,-k('r)d'r} < Kexp{—6 G tl""‘)}, whenever s>t (2.3)
t

exp {/ Diji (-r)d'r} < Kexp{—& (e - sl“’)}, whenever s <t (2.4)
t

Assumption 2.2. The matrix R(t) is continuous and satisfies:

|R(t)| =0(t™) as t— 40 (2.5)
and either oo
/ e max [s%r1(s)] dt < +o00 (2.6)
to 2
or
+ 00
/ t™= max [s%r2(s)] dt < +oo0. (2.7)
to 32

We will establish the following main theorem:

Theorem 2.1.  Under the Assumptions 2.1 and 2.2, there exists an n X n_matrix Q)
such that

do(t)
dt

(1) the derivative %ﬁt) exists and the entries of Q(t) and are continuous in t on the

interval T,
@ lim Q@) =0,

(3) the transformation:
y=[I. +Q(t)] 2 (2:8)
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changes system (1.1) to
% = [AQ) + diagR(t)) 2 (2.9)

on the interval To, where I, is the n X n identity matrix.

Note that Assumption 2.1 is equivalent to Assumption 1.7 when o = 0. On the other
hand (2.5) implies Assumption 1.8. Thus Assumption 2.1 is weaker than Assumption 1.7 for
a > 0 and Assumption 2.2 is stronger than Assumption 1.8. However, the reduced system
(2.9) does not involve the entries of the transformation matrix Q(t) in (2.8). Moreover, the
reduced system (2.9) has a diagonal coefficient.

The proof of this theorem will be given in Section 3. In order to utilize the Assumption
2.2, we will develop a “row-wise” (or “colum-wise”) successive approximations method, similar
to the Gauss-Seidel interaton (e.g., see [GVI] and [V]), in the proof. In this process, we need
only the continuity of R(t) along with either (2.6) or (2.7) and not the integrability of entire
R(t), or that of R'(t) (e.g., see [CK], [E], [HL1] and [L]). Furthermore, as we do not require
that tlirfm A(t) has distinct eigenvalues, Theorem 2.1 can be applied to diagonalize some

systems which are not doagonalizeable by previous results.

Remark 2.1. If {t®r(t)|5 > k} (or {t°r;x(t)|j < k}) are all monotonic decreasing,
then t%r1(t) (or t*r2(t)) is monotonic decreasing and, consequently, (2.6) (or (2.7)) can be

+00 +00
/ r1(t)dt < oo (orr / ra(t)dt < +oo) . (2.10)

to 0

replaced by

The system (1.1) with A(t) in each example below is compared for the applicability of
Theorems 1.1, 1.2, 1.3, 1.4 and 2.1 on [to, 00).

Example 1. Consider

1+ t—lg- lsf;tl
3
Alt) = 1 1
Vtint N

for ¢ € [2,+00). We consider Mi(t) = 1,A2(t) =1+ %, ru(t) = ig and r22 = 0. The sys-
t3
tem (1.1) with this A(t) is not diagonalizeable by Theorem 1.1, because Assumption 1.3 is not
satisfied. It is not diagonalizeable by Theorem 1.2 or 1.3 because lim A(f) = lim 1 + — =
t—+4o0 t—-+co \/i
1 = Ai(t). It is also not diagonalizeable by Theorem 1.4, because Assumption 1.7 is not
satisfied. On the other hand, it is diagonalizeable by Theorem 2.1 with a = %
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Example 2. Consider

‘ cost _1_

t2 t%

1 1

A(t) = - 2 —
® . e
t2 {3 Int i3

for t € [2,4+00). The system (1.1) is not diagonalizeable by Theorem 1.1, 1.2, 1.3 or 1.4

because . li_r'.n As(t) = , Iigl 2+ il = 2= Az(t). On the other hand, it is diagonalizeable
— 400 — 400 t3

by Theorem 2.1 with & = % In this case, max r2(t) = ig, thus, [t'% max r2(t)] = ti., is
tz &

monotonic decreasing for ¢ € [2, +00) and (2.10) follows.

Example 3. Consider

1

1 -

H

A(t) = . t.t
mt+2) ©

for t € [1,400). The system (1.1) with this A(t) is not diagonalizeable by Theorem 1.1 as
Assumption 1.3 is not satisfied. As the diagonal elements coincide at ¢t = 2kw, (k: positive
integers), Theorem 1.2 and Theorem 1.3 are not applicable. On the other hand, the system
(1.1) with this A(t) is diagonalizeable by Theorem 2.1 with « = 0. This system (1.1) is
diagonalizeable by Theorem 1.4, however, the reduced system has different coeficients from
that obtained by Theorem 2.1

Example 4. Consider

13

e

A() = 2+ sint sint
Vit

for t € [1,+00). The system (1.1) with this A(t) is not diagonalizeable by Theorem 1.1
as Assumption 1.3 is not satisfied. As the diagonal elements coincide at ¢ = (2k + %) T
(k: nonnegative integers), Theorems 1.2 and Theorems 1.3 are not applicable. The system
(1.1) with this A(t) is diagonalizeable by Theorem 2.1 with @ = 0. Note that in this case,
rar(t) = 2 +sint

different coefficients in the reduced system.

is not monotonic decreasing. It is also diagonalizeable by Theorem 1.4 with

3. Proof of Theorem 2.1

We will prove Theorem 2.1 under the condition (2.7) in Assumption 2.2. The proof is
to be given in seven steps. Similar proof is valid also under (2.6).
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STEP 1: By differentiating both sides of (2.8) and by (1.1), we obtain

dQ dz
B+l + Q5 = [A®) + ROV + Q).

Hence, by (2.9), Q should satisfy the linear differential equation:

7 =A@+ R@)] I + Q] - [In + QI[A(t) + diagR(¢)]
or, equivalently,

Q _
dat

A general solution Q(t) of (3.2) can be written in the form
Q) = ®(t) C¥(t) ! +/ ®(t)®(s) " [R(s) — diagR(s)] ¥(s)¥(t)~' ds,

where C is an arbitrary constant matrix, ®(t) is an n x n fundamental matrix of

d®
= = [A®) +R@)®

and ¥(t) is an » X n fundamental matrix of

% = [A() + diagR(£)] ¥.

[A() + diagR(t)] Q — Q [A(t) + diagR(t)] + [R(¢) — diagR(?)] [In + Q).

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Thus Q(t) exists on Zy satisfying condition (1). We shall prove the existence of the solution
of (3.3) satisfying condition (2) of Theorem 2.1, in an interval T = {t : ¢; <t < +oo} for a

large t1, then, by (3.4), Q(t) exists on Zy satisfying Theorem 2.1.

STEP 2: We shall construct Q(t) by means of equation (3.3) and condition (2) of Theorem

2.1. To do this, let ®(¢, s) be the unique solution of the initial-value problem:

% = [A(t) + diagR(®)]Y,  Y(s) = In.
Also, let
Q) = (‘b‘k(t))

n
F.k=1
and
() =X(@) +ri(t), F=1,20m;
:\jk(t) =ij(t)_xk(t)1 5hk=1,2,---,m, (J#k)

(3.7)

(3.8)

(3.9)
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Then, (3.3) is equivalent to the following linear integral equation:

Q) = ‘/t (¢, s) [R(s) — diagR(s)] [I» + Q(s)] ®(¢, s)'1 ds, (3.10)
where
( Fi(t,s) 0O 0 0o o0
B(t,s) = g Fz(;’s) - 0 o 0 .
5(s8) --- O 0
4 0 0 0 0 F.(¢, s)

F;(t,3) = exp [/t:\j(r)dr] (G=12---,n).

\

STEP 3: By Assumptions 2.1 and 2.2, there exists a positive constant ¢, independent of ¢,
such that for each pair of indices j and k, (j,k = 1,2,---,n; j # k),

exp {/ Xjr(T) dr} < Kexp{—e (- sl"')}, whenever t > s, (3.11-1)
t

or
exp {/ Xk (T) dr} < Kexp{—e (s - tl'“)}, whenever t < s, (3.11-ii)
t

for ¢ € [t1,00), where K and o are given in Assumption 2.1. Here (2.4) and (2.3) implies
(3.11-i) and (3.11-ii), respectively. Let

71(t) = max [s971(8)] and  F(t) = max [s*72(s)]. (3.12)

Then 71(t) and 2(t) are monotonic decreasing and tending to zero as ¢ — o0, by (2.5).
Moreover, by (2.7), we have
/ t™ %7 (t) dt < +o0. (3.13)

to
By the notations (2.1), (3.8) and (3.9), we can write the integral equation (3.10) in the
following form:

, -

g;5(t) = / t i?‘jh(S)th(S) ds,
i3 | h=1

$ heti - (3.14)

an(®)= [ e [ [ Sswtrran| Jrante) + Y- ron(ohanats)| i, %)
\ e =
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where j,k =1,2,--,n, and the initial points 7;x are chosen as follows:

+oo if j=k,
Tik =14 t2 for the case (3.11-i), (j # k), (3.15)
+oo for the case (3.11-ii), (j # k),

where t2 > t; is a suitable large number.

STEP 4: In order to utilize the condition (2.7), namely (3.13), define the “row-wise” successive

approximations as follows:

( qo.x(t) =0,
9p,35(t) = / [ijh(S)qp.hj(8)+ >, Tjh(S)qp—l,hj(S)} ds,
Tii Lh=1 h=j+1
: : i1 (3.16)
| warr= [ e[ or(0)ar| [re(e)+ X rnte)man(s)
Tjk 8 h=1
+ Y Tjh(S)qp-l.hk(S)] ds, G #k),

\ h=j+1

where j,k = 1,2,---,n, p = 1,2,---. Note that gp,jx(t) depends only on gy_1,;x(t), and
gp,ix(t) depends only on gp—1,nk(t) for h > j and gpnk(t) for b < j. Therefore, gp.jk(t) is
obtained in the increasing order of p and, for each p, in the increasing order of j, namely from

the first row down, and thus defined successively.

STEP 5: We will see that g jx(t) defined by (3.16) is uniformly bounded for all p on the
interval [t2,+00) for large enough t2; namely,

|gp.ik(t) | < G, t € [t2, +00), (3.17)

for j,k =1,2,--+, n;p = 1,2,---. In order to do that, we will prove for each fixed p, (p =
1,2,.--), the following

LEMMA 1. Suppose that there exist two positive constants G and tz, (tz: large enough)
such that:

(a) |qP—1-.7'k(t)| <G for tel[tz,+00), 5ik=12,--,mn

+o0o
o~ 8 1
(b) [ s” %2 (2") ds < o

2



ASYMPTOTIC DIAGONALIZATION OF A LINEAR SYSTEM 39

~ _ [ t2 . G 1
— ] <
(c) Tl (tz) + T2 (2n) bl min { 4(1 + nG)Kl b 2nK2 }’

where

K 2"

K, = m and K, = m (3.18)

Then, we have:

lqp,jk(t) | S

([ nG K[ (t2) + Fa(t2)] exp {—e (1 - "‘)" @ — t;-‘*)}

+co
+nG / 5772 (55 ) de, G =),
t

(1+nG)K: {[‘Fl(tz) + 7a(t2)] exp [_ el - a)(t12‘°’ - t;"‘*)]

w1 (2)+R (F2)), G>w,
2(1+nGQ)K, {[Fl(tz) + 72(t2)] exp [—5 (1 ; a)j (G t;_a)]

\ +2 (%)} G < k),

fort € {t2,0), and j,k=1,2, - ,n.

$ (3.19)

As 7(t) is monotonic decreasing, it is clear that inequalities (b), (c) and (3.19) imply
(3.17) for a fixed p. (This fact is to be used repeatedly in the proof of Lemma 1). Thus, by
means of mathematical induction on p in (3.16) and utilize Lemma 1, (3.17) is true for every

p for t € [t2,00) and 5,k =1,2,---,n. Therefore, we will concentrate on proving Lemma 1.

PROOF OF LEMMA 1: We will prove (3.19) in the increasing order of j.

Case I: j=1. For k=1, since
r2(s) <s7° l?fx[sarg(t)] <s ¢ r§1>ax[t°‘1'z(t)] = s"%Fa(s) (3.20)

by (3.16), we have

B D ria(8)gp-1,m(s)ds

t h=2

IA

| gp,11(2) |

(3.21)

IA

(n-1)G /: ” ra(s)ds < (n-1)G /t ~ smaa(s) ds.
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For k= 2,3, -,n, in case of (3.11-ii), for ¢ € [t2,00), by (3.16) and (3.15), we have

lgpak(t)] < / ” Kexp{—e (s — ') } |rix(s) + Z"'lh(s)qP—l,hk(s) ds
t h=2
< [l+(r-1)GK /00 exp {—e (" - tl_")} r2(s)ds (3.22)
< 1+ -0 {mgrlea(el] | = 1+ (= DGR
by (3.18). In case of (3.11-i), for t € [t2,00), by (3.16) and (3.15), we have
@] < [ Kew{-e@@ ==} (o) + 3 rinap-amn(s) do
= / Kexp {—s (e - sl—")} rie(s) + Z"'lh(s)q;:—l,hk(s) ds
itz h=2
+ ,/;‘_4;21 Kexp {—e - sl_"‘)} rie(s) + grlh(s)qp_l,hk(s) ds (3.23)
< [+ (n-1)G] [ir;atazc{s“rg(s)}] / Ks™%exp {—s(tl_" - sl_")} ds
+ 1+ (n-1)G] lenératcz{s“rz(s)}] /ﬁ;ﬂ Ks™%exp {—e(tl"" - sl"")} ds.
Since
Ks™%exp {—e(tl'“ —-s'")} ds
(H‘t N-a
= Kexp {—stl_" ﬁ 1__5-2 e du
< Klexp{—etl_"} . exp {€<t—;tz)1-a}
= Kiexp {—e[tl_" - (¥)1—a]} (3.24)

= Klexp{—s(l—a)u"“[t—t-;tzl}, with ue(t-;tz»t),

IA

K, exp {—e(l —a)-t7*. E:z_t_z}

Ky exp {—e (1 ; a) - t;_a)}

IA
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ast > t2, and

t
Ks™¢% _ l—a _  l-«
/;:+: s™ % exp { e (t s )} ds

“x2 (3.25)

l-o
= Kj exp {—stl""} [exp{etl"‘} — exp {e (t _;tz) }] < Ky,

we have

|9.18(0)] < Kalt + (n = DCJalta)exp { ¢ (252 (¢~ - ™) }

N ) (3.26)
).

+Ki1[1+ (n - 1) G)f2 (

Hence,

( (n— I)G/ s~ %Fa(s) ds, k=1,
t

lapae(®)] < [1+(n~1) G| Ky [fz(tz)exp (=) e=-am) @en
+1=2(“;t2)], k1.

Thus, (3.19) istruefor j=land k=1,2,---,n.
Case II: Assume that (3.19) is true for j < m, (m > 1), we want to show that (3.19) is true

\

for j = m.
Case Ila. For k < m, in case of (3.11-ii), from (3.16) and the assumption (3.19) for this
case, (i.e. (3.17) is ture for j < m), we have

Tmk (s)

| gp,me(t) | < /°° Kexp {—e(sl_"‘ - tl"”)}

n

+ Z_ Tma (8)@p,nk(8) + Z Trah (8)gp—1,%(8)
h=1

h=m-+1

ds

o (3.28)
<+(m-1)G] [rilggc{s_"‘rl (s)}] / Ks *exp {—-s Chmal t'7)} ds

+(n-m)G [r?gfc{s'“rz(s)}] /w Ks™®exp {-—s (st - tl_"‘)} ds
= Kl[l + ('m - 1) G]Fl(t) -+ K](n - m) G’Fz(t)

In case of (3.11-i), from (3.16) and by (3.24) and (3.25), with similar reasons for (3.23),
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we have

rob(5)+ 3 P (8)apuni(5)
h=1

lapomi(®)] < / Kexp {—e (8™ — )}

+Y . Tma(8)gp-1,nk(s)|ds

h=m+1

< {[1 +(m-1)C] [max{ (s)}] +n-m)C [gg{s%z(s)}] }
(t+ta)

Ks™%exp {—E (- sl_°)} ds

t2

+ {[1 +(m-1)G] [ max {s°r1(s)}] +(n-m)G [ max {s""‘rz(s)}:l } (3.29)
82&552 82‘_";2.

¢
‘ﬁwt ) Ks = exp{—s G sl_")} ds

<K [{1 +(m — 1) G}u(ta) + (n —m) Grz(tz)] exp {—e ( "‘) (= t;‘*)}

+ K [{1+(m—1)G}T1 (t+2t2) +(n—m) Gz (t-;tz)]

2) =)

< Ka(1+ 6) [ (ta) + Falta)] exp { —¢ (25
o (558 o (559)]

Thus, (3.19) is truefor k< j=m
Case ITb. For k = m, from (3.16), we have

(@)1 < [ w{Dw(s)nqphm(s)H 3 frms(6) gy, ,,m(s)|}ds

h=m+1

(3.30)
Z f | gp,am (s) | ds [max{s“n(s)}] +(n-m)G / 72(s) ds.
= Je s>t +
Since h < m in the first summation, by the assumption (3.19) of this case, we have
- ~ l-«a h l—a l—-a
| (8)] < 201+ nG)Ks |Fra(ta) + FaCellexp § ¢ (152) (87 - 657
(3.31)

(2]
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Hence,

/ 5™ gpuim(s) | ds
t

<2(1 +nG)K, [[Fl(tz) + 72(t2)] /m s™%exp {—e (1 ; a)h ("7 - té‘“)} ds

+ /m s (Qih) ds]. (3-32)

Since

Sl _ h
/ s_°exp{—e(1 a) (sl_a—t;-")} ds
. 2
- h e _ h
=exp{€(1 a) té—“}/ s"”exp{—e(1 a) sl_"}ds
2 . 2
— l-a h 1-a e 1 l1—-a h
_exp{e( > ) ty }‘/t;_al_aexp{—e( 2 ) u}du
1-a\* l—a l—a
<Keexp—e(F52) (-4,

where K3 is given in (3.18), we have

/ 5™ gpm(s) |ds
t

1-—a\”
< 2K1(1 4+ nG) [[ﬁ(tz) + F2(t2)] K2 exp {—e ( 5 ) @ - t;"")} (3.34)

+[ s %7y (2%) ds]

for all A < m. Note here that 71(t) and 72(t) are decreasing functions. Substituting (3.34)
into (3.30), we obtain

|iqp,mm ®)1

- = ~ l-«a h l-a l-a
szmxz(m—1)(1+nG)n(t)[n(tz)+rz(tz)1exp{—s( 7o) -4 )} (3.35)

+ 2K (m — 1)(1 + nG)71(t) /:oo s (2%) ds+ (n —m)G [m r2(s) ds.

By condition (c), we have
2K, (1 +nG)fi(2) < g <G (3.36)
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for t € [t2,00). Hence,

| gp.mm (2) |
< Kalm —~ )Gl () + Ra(lep { ¢ (152) " (17 - 64}
+(m-1)G [ T () dst (- m)G /t Tn@ds g
< Ka(m — 1)G[1(t2) + F2(t2)] exp {—5 (1 — a)m - ti_a)}

2
+nG/ s %y (im) ds.
¢ 2

Thus, (3.19) holds for j = k = m.

Case Ilc. For k > m in case of (3.11-ii), from (3.16), we have

| @p,mk ®]

< /00 exp {—e(sl_" - tl_“)}

t

m=1
Tk (8) + Z Tmh(8)gp,hk(8)

h=1

+ Z Tmh (8)gp—1,nk(8)

ds
h=m+1
m—1 (3.38)
< {[rgggc{S"rz(S)}] +y [rggchS"rmn(S)qp,hk(S)l]
- h=1 -
+(n-m)G [rgggc{sah(s)}] } /°° Ks™exp {—e(s'™* —#'7%)} ds
<K {-rz(t) +(m = D) [ max qu,hk(s)l] +(n- m)sz(t)}-
Since h < m, by the assumption (3.19) of this case, we have
| gp.ni(2) |
~ - 1—a\™!? - l1—-a
<201 +nG)K; [[n (t2) + 72(t2)] exp {—6( ) ) (g > )} (3.39)

m(%)].
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Substituting these into (3.38), we obtain

| gpmr(t) | < [fz(t)

+ 2K1(m — 1)(1 + nG)#1(t) ([ﬁ (t) + 72(t)] exp {—e(l ; "‘)m—l(t‘-‘* - t;-‘*)} (3.40)

+7s (zm—t_r)) +(n- m)G'Fg(t)].

By (3.36), we have

(ms()] < s 120 + (= DI 0 + e { e (252) e - 7oy |

+ (m — 1)GF (ZML_I) +(n— m)Gf'z(t)]

< Ki(m — 1)G[F1(t) + 72(t)] exp {—e( 1 ; a)m_l(tl“* - t;‘a)} (3.41)

t
+ Ka(1+1G)a 5oy )

< 2K (1 +nG){[7"1(t) + 72(t)] exp {-5(1 ; ")mnl(t“" - té“")} +f2(2im) }

Thus, (3.19) holds for this case.

In case of (3.11-i), from (3.16) and the assumption (3.19) of this case, since A < m < k,
we have

| gpmi(8) | < /t t Kexp{—e(tl—a _ sl_a)}

rmk(s) + Z Tmh(s)‘b,hk(s)
h=1

+ D rmn()p-1,mn(s)| ds

h=m+1

< { [rsgagc{frz(s)}] +(m-1)G [gg;c{san (s)}]

(3.42)

(t+t2)

+(n—-m)G [El;f:{sa'fz(s)}] }/ ’ Ks™%exp {—e(tl"’ - sl_")} ds

+{[ ma {s“m(s)}] +(m—1)[ mesx |qp,hk(s)|} [max {s"n(s)}]
3272 a>—§-3 32—22

ls-hs'rn—l
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+ (n-m)G [ m;a.:l{s Tz(s)}] } /Qi;zl Ks~* exp{—s(tl-a _31-a)}ds

< Kl{'i‘g(tz) + (m — 1)GFi(t) + (n — m)GFz(tz)} exp {—@(tl‘“ — t;-°)}

*;tz) 71 (82) + Fa(t2)] (3.42)

onf (352" [(H52) -]}

+2K3(m — 1)(1 +nG)fa (- 2z, (-2%) + (= m)Gra (- J;tz)] .

+ K, [7"2 (t ';tz) +2K1(m — 1)(1 + nG)f (t

By (3.36) and the fact that 72(t) is monotonic decreasing, we have

| gp,mk(2) |

<K [fz(tz) + (m — 1)GF1(t2) + (n — m)G72 (tZ)] exp {—M(tl—" - ti'“)}

+ Ky [ (22) + (m — 16T (ea) + Falte)

exp{—e( —a) (t _"‘—-tl-“)}

+ (m — 1)Gr2( )+(n m)Grz( )]

<K [Tz(tz) + nGF1(t2) + nGa(te) (3.43)

+ nG[F1(t2) + F2("42)]] exp {—5(1 > a)m(tl—a tl_a)}

() -0 1) -2

< 2K1(1 + nG)[f1(t2) + F2(t2)] exp {—6( ) - _°)}

=)@ ()|

Thus, by (3.29), (3.37) and (3.43), we have for j =m,

+ Ki(1+nG)fz (i)

< 2Ki1(1+nG) [[1‘1 (t2) + F2(t2)] exp {—5(
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| gpmi(t)| <
( KonG[fi(tz2) + 72(t2)] exp {—e( 1 ; a)"‘(tl_,, - t;_“)}
+nG /+°° 87 %7 (Zi;"-) ds, (k =m),

K(1+nG) [['Fl(tz) + 72(t2)] exp {—e( 1- a) - té_“)}

2
‘ #n(52) +a(E2)), G<m, o
2K:1(1 + nG) [[Fl(tg) + Fa(t2)] exp {—e( 1 - “)m(tl-“ _ t;-“)}
\ + e (2%)] , (k> m).

Consequently, (3.19) is true for j,k=1,2,---,n, and Lemma 1 is proved.

STEP 6: In this step, we will show that, for large enough £z, the sequence {g jx(t) |p =
1,2,---} converges uniformly to functions g;(t) on [t2,00) satisfying the expressions (3.14),
for 5,k =1,2,.--,n. In order to do that, let

g — gp-1lle = max |gp,;x(s) = gp-1,5%(s) |- (3.45)
1<5,k<n

Note that, from (3.16),
p+1,3k(t) — gp,ix(t) =

' / {Zr,-h(s)[qm,h,-(s)—qp.hj(s)1+ > rjh(s)[qp,hj(s)—qp_l,ms)l} ds,
© \ h=1 h=j+1
G =k),
t '3 J-1
f o U Al d”] {erh(s)[qm,ms) — gpurs(9)] (349)
Tik s h=1
+ Y rjh(s>[qp,hj(s>—qp-x,hj(s)l}ds, G # ).
L h=j+1

We will establish

LEMMA 2. If t; is large enough such that

P an [t 1
(a) [ s rz(z—n)ds<4—n

and
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i ra(12) < min{ 1 1)
(®) ’"‘(”)“2(2" ST\ ERK,’ K )
then we have
| gp+1,5%(t) — @p,5x(2) | <

[nKzlﬁ (t2) + 72(t2)] exp {_6(1 ; a)n(tl-“ - té"“)}

+co
tn [Con(m) | le-gl, G=5)
t

nK, [[ﬁ(tz) + 72(t2)] exp {_5(1 '2' a)(tl—-a _ té_a)} + Fl(t .;,52)

{ (3.47)

. ft+1 X
+1‘2( 22)] "qp_‘h—l"tz, (3 > k),

2nK, [[Fl(tz) + 'Fz(tz)] exp {—8(1 ;a)j(tlﬂa - té_a)}

([t ,
+T2(§)] | gp = gp-1llt2s (7 < k),

\
fort >tz andj, k=1,2,---,n;p=1,2,---.

In fact, for t; satisfying Lemma 2, we have

1
| gp+1,6(t) — @p,56 (D) | < 5llgp — go—1 22 (3.48)

fort >ty and j,k=1,2,---,n;p=1,2,---. Hence,

1
lgp+1 = gp llea < Sl 90 — gp-1 lle2 (3.49)
and
1 1

lgprr —gpllez < 55l a1 — o lles = 557G (3.50)
for p=1,2,---. Therefore, the sequence {gp,jk(t)|p = 1,2, -} converges uniformly to func-

tion g;x(t) on [t2,00), for j,k = 1,2,---,7n, and furthermore, they satisfy the expressions
(3-.14).

Lemma 2 can be proved in a fashion similar to that for Lemma 1 with slight modifications.

STEP 7: In order to see that
lim g;x(t) =0, Jk=1,2,---,n, (3.51)

note from Lemma 1, we have
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lgin(t)| = lim |gpzx(t)| <
p—+00

[ KanGlfi(t2) + 72(t2)] exp {—e(1 5 “)n(t“" - té“")}
#n6 [oen( L) as G=H,
Ki(1+nG) [[1’1 (t2) + Falta)]exp { —(252) (= - 4~}
| on(55) +5(55)] oon.
2K (14 nG) [[ﬁ(tz) +Fa(ta)] exp {—e(1 72) -]
\ +Fz(§)], G <),
for t € [t2,00), and j,k=1,2,---,n. By (2.5), we have
Jlim 75(t) =0, (G=12). (353)

Thus, by (2.7) and (3.53), (3.51) follows.
This completes the proof of Theorem 2.1.

Acknowledgement. The authors are grateful to Prof. Y. Sibuya for valuable discussions
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