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Introduction

A map f : X — Y between metric spaces is called a rough isometry if the following two
conditions hold:

(i) the &-neighborhood of f(X) in Y coincides with ¥ for some positive &,

(ii) there exist constants o > 1 and 3 > 0 such that

< dp.g) - B < d(f(p), £(a)) < cd(p,a) + B

for every p, g € X.
In his papers [9] and [10] Kanai showed that rough isometries preserve some asymptotic
properties of Riemannian manifolds; the volume growth rate of geodesic balls, positivity of
isoperimetric constants and so on. On the other hand, for some classes of complete Rieman-
nian manifolds, ideal boundaries are considered for the sake of investigating their asymptotic
behaviour at infinity; for Hadamard manifolds[6], manifolds of asymptotically nonnegative
curvature[11], and open surfaces with finite total curvature[16]. Regarding their ideal bound-
aries Schrider(4] proved a rigidity theorem for Hadamard manifolds of rank > 2, and Ohtsuka
and the author[2] characterized the Euclidean factor of Hadamard manifolds. It is now inter-
esting to study some relationship between properties of ideal boundaries and rough isometries.
In this paper, as a first step of our problem, we consider Hausdorff approximations. Here a
rough isometry is called a Hausdorff approximation if one can take o« = 1 in the second con-
dition. In recent papers, Kubo[12] and Ohtsuka[14] showed that Hausdorff approximations
between Riemannian manifolds in those three classes induce isometries of their ideal bound-
aries. But since Hausdorff approximations do not preserve curvature conditions, it is natural
to consider a more wide class. We therefore introduce the ideal boundary of complete metric
space as the set of equivalence classes of non-wandering quasi-geodesic rays, and define the
Tits metric on this boundary. For the previous three cases of [6],[11] and [16], equivalence
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classes of geodesic rays were taken into consideration respectively. What we do here is, in
some sense, to unify these articles. Our definition is convenient because we need not take
care of the base point: The quantity of geodesic rays depend on the emanating point (see for
example [13]). As a benefit of our definition, we can easily get a generalization of the results
of [12] and [14].

Theorem. A Hausdorff approximation between two metric spaces includes an isom-

etry on their ideal boundaries with respect to the Tits metrices.

We devote section 1 to study an equivalence relation for quasi-geodesic rays. Since the
set of all equivalence classes is too large, we only consider non-wandering quasi-geodesic rays
which are “asymptotically straight”. We define in section 2 the ideal boundary for complete

metric spaces by using them.

1. Egquivalence relation of quasi-geodesic rays

Let (X,d) be a complete metric space. A map 7 : [0,00) — X is called a quasi-geodesic
ray if it satisfies, for some ¢ > 1 and b > 0, that

) %[t—s| ~b < d(y(s),7(t)) < alt —s|+b.

When we can choose a = 1 and b = 0, we call v a geodesic ray. We should note that quasi-
geodesic rays might not be continuous. We start with a lemma on some basic properties of
quasi-geodesic rays which will be used later.

Lemma 1. Let v be a quasi-geodesic ray satisfying (x). The set {d(v(t),v(0))[t > O}
is unbounded and

[r,r + 2b) N {d(v(t),7(0))|t > O} # @

for every positive r.

Proof. Put T =sup {t > 0|d(v(s),(0)) < r for0 < s < t}.
Suppose [r,r + 2b] N {d(v(t), 7(0))|t > 0} = 0. There exists Te (T < Te < T + ¢) for every
positive € such that d(v(0),v(T —¢€)) < r < 7 + 2b < d(v(0),y(T:)). This leads us to a

contradiction:

2b < d(v(0), ¥(Te)) — d(v(0), ¥(T —€)) < d(¥(Te),Y(T —¢€)) < 2ae +b. 0O

Given two quasi-geodesic rays v and o, we set

. d(o(t),7)
d-y(O’) = hmsup m,

t—oo
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which is nonnegative and is not greater than 1. We call they are equivalent if dy(o) =do(y) =

0, and denote v ~ 5. We show that this is an equivalence relation.

Lemma 2. Let 7,0 and p be quasi-geodesic rays. We have

dy(0) < dy(p) + do(0) + dy(p) - dp(0).

Proof. 1f d,(c) = 1, the inequality trivially holds. We suppose do(0) < 1. Given a
positive number &, We choose s¢ > 0 for every ¢, such that d(o(t), p(s:)) < d(o(t),p) + ¢.
Since it holds for every p € X that

d(p(se),p) 2 d(o(t),p) - d(o(t), p(st)) 2 d(o(t), p) - d(o(t), p) — ¢,
dlp(se),p) < d(o(t),p) +d(o(t), plse)) < d(o(t), p) + d(a(t), p) +e,

we have

Hence s¢ goes infinity as ¢ goes infinity. The following inequality

d(o(t),y) _ do(®),p) +e , d(p(st),7(0)) _d(p(st), )
da(£),7(0)) = d(e(t),7(0)) * d(o(®),7(0)) dle(se),¥(0))

leads us to the conclusion.

This lemma guarantees that if v, and 7. are equivalent quasi-geodesic rays then dy, (o) =
dy,(0) and do(m1) = do(y2) for every quasi-geodesic ray o. Hence we get that ~ is an
equivalence relation.

We here check that our equivalence relation coincides with the relation on (unit speed)
geodesic rays given in the previous papers [4],(11] and [16].

Given two quasi-geodesic rays 7,0, positive ¢, and a point p € X, we define
" 1
£e(v,0;p) = limsup ~sup {d(7(s),o(£))ls € De(r; 7, p), t € De(r;0,p)},
r-—00

where Dc(r;,p) denotes the set {t > 0|r < d(v(¢), p) <7 +c}. By lemma 1 we can easily
get that if v and o satisfy (x) then £e(v,0;p) = £u(, o;p) when c,c’ > 2b. Hence we can
define £(v,0;p) = sup .5fc(7, 0;p), which coincides with lims—.co $d(v(¢),o0(t)) when v and
o are (unit speed) geodesics. Since £(, o;p) does not depend on the choice of p, we denote
it by £(v,0). It trivially holds that d,(¢) < £(v,0). We shall give an opposite estimate.

We shall call a quasi-geodesic ray v non-wandering if it satisfies the following asymptotically
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straight conditon;

. L oup 401(0),7(5)) + d((s),v(8) — A (), ¥(®)) _
=) E 20,7 >

Geodesic rays are of course non-wandering.

Lemma 3. We have for every non-wandering quasi-geodesic rays y and o that

dy(0) < £(v,0) < 2d4(0).

In particular, d,(c) = 0 if and only if d;(y) = 0, and v and o are equivalent if and only if
£(v,0)=0.

Proof. We shall show the second inequality which is trivial when d,(c) =1. Suppose
d,(c) < 1. Given a positive ¢ we choose u: for each ¢ such that d(o(t), v(ue)) < d(o(t),v)+e.
Since « is a non-wandering quasi-geodesic ray and u. goes infinity as t goes to infinity, we

have for sufficient large s and ¢ that

d(o(t),v(w)) < (dy(0) +e)-de(t),7(0)),
d(v(us),¥(s)) < 1d(r(s),7(0)) — dly(ue), ¥(0))
+emax {d(v(s),7(0)), d(v(u), ¥(0)) }-

When s € Dc(r;v,7(0)) and t € De(r;0,7(0)) we have for sufficient large r that

d(yv(s),¥(we)) < |d(o(t),7(0)) — d(v(ue),¥(0)) | +1d(¥(s),7(0)) — o (?),7(0) |
+ emax{d(v(s), 7(0)), d(c(t), ¥(0)) + d(v(us), o (2)) }
|d(a(t),7(0)) — d(v(u), Y(0) | + c+&(1 + dy(0) + €)(r + )
d(o(t),7(ue)) + c+&(1+ dy(o) +€)(r +¢)

(dy(0) + €)(r + ) + c+e(1+ dy(o) +€)(r + ).

A CIN A

Hence we get

do®),7() < d(o(),v(ue)) + dlv(ue),7(s))
< 2dy(0) +E)(r+ ) +c+e(l +dy(0) +E)r +0).

We can therefore conclude that £(v,0) = £(v,0;7(0)) < 2d,(0).
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2. Ideal boundary

If X is negatively curved space in the sense of Gromov, it is known that for every quasi-
geodesic ray one can find a geodesic ray in a neighborhood of it ([3]). But in general the
situation is not the same. Even if X is a Hadamard manifold there exists an equivalence

class of quasi-geodesic rays containing no geodesic ray.

Example. Let v and o are half lines on R2 with ~(0) = o(0) and the angle 6 of ¥(0)
and (0) is smaller than 7/2. We inductively choose s, and t. so that

n-1
51 = 1, sn=mu(z—;'s;;,2tj), n 22,
j=1
s n-1 ’
tn = max(é-oﬁ,th), n>1.

=1

Then the broken line
7(0) = ¥(s1) = o(t1) — ¥(s2) = o(t2) = -+ = ¥(82) = T(tn) — -+~

is a quasi-geodesic ray, whose equivalence class does not contain geodesic rays.

In this reason we restrict ourselves to non-wandering quasi-geodesic rays. We define
the ideal boundary X (oo) of X as the set of all equivalence classes of non-wandering quasi-
geodesic rays. The fundamental neighborhood system for each z € X(o0) can be given as
follows. Let y be a non-wandering quasi-geodesic ray which satisfies the inequality (%) and
7(o0) = z, where y(co0) denotes the equivalence class of non-wandering quasi-geodesic rays
containing y. Take positive numbers R and ¢, and put Ca5(7, R, €) = |J,, o([0, 00))U {5(c0)},

where o runs over all non-wandering quasi-geodesic rays which satisfy (x) and

sup max
0<t<R

( d(o(t), ) d(’r(t);a)) e
4o, (0))’ &x(e), 50N
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This gives a topology on X = X U X (oc0), which is compatible with the topology on X, and
is called the cone topology.

We now show that our definition of the ideal boundary coincides with the notion of the
ideal boundary in case of Hadamard manifolds.

Proposition 1. If X is a Hadamard manifold, then every equivalence class of non-
wandering quasi-geodesic rays contains a (unit speed) geodesic ray, and is unique up to the

emanating point.

Proof. If there exist two equivalent geodesic rays 71 and <2, Lemma 3 assures that
t!lvnolo 1d((t),o(t)) = 0. By the comparison theorem we get 1 =72 if ;1 (0) = v2(0).

We show the existence. Let o be a non-wandering quasi-geodesic ray. We set p =
o(0),7. = d(c(t),p) and choose unit tangent vectors v, € UpX so that o(t) = exp,(re ve).
Let voo € UpX be an accumulation point of {vt}¢>0. We denote by : the unit speed geodesic
ray joining o(0) and o(t), and by < the geodesic ray satisfying ¥(0) = veo. Since o is non-

wandering, for positive ¢, if we take sufficient large s then we have
sup{rs + d(a(s),o(t)) — 7} < ers.
t>s

Let p:,s € 7:([0,00), t > s, be a point satisfying d(o(s),pt,s) = d(o(s), ). If the geodesic
triangle A(p, o(s), o(t)) is Euclidean, we have

V12 — d(0(s), Pr.s)? + 1/ d(a(s), o ()2 — d(o(s), Pr,s)?
vV rZ— d(g(s)rpt.a)z + d(a(s)» a'(t)),

hence by use of the above inequality it is clear that d(a(s),pt,s) < v2er,. Thus com-

Tt

IA

paring associated Euclidean triangle we have for general case that d(o(s),pt,s) < V2ers,.
Since d(p,v:(rs)) = s and |d(p,pe,s) — d(p,0(s))| < d(o(s),pe,s) < V2ers, we get that
d(o(s),1:(rs)) < d(o(s),pe,s) + d(Pe,s,72(7s)) < 2v/2er;. Therefore for sufficient large s we
have

d(o(s),7(rs)) = lim d(o(s),7e;(rs)) < 2v/2er,

and d,(0) < 2v/2¢, hence dy(0) =0. Therefore v and ¢ are equivalent by Lemma 3, and we

get the assertion.

This guarantees that our notion of the ideal boundary coincides with the previous defi-
nition given in [4]. We can apply the similar argument for complete Riemann surfaces with
finite total curvature, since a non-wandering quasi-geodesic ray is contained in an end (see
[12]). We therefore get the following.
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Proposition 2. Let X be a Riemann surface with finite total curvature.

(1) Every equivalence class of non-wandering quasi-geodesic rays contains a (unit speed)

geodesic ray.

(2) If v and o are (unit speed) geodesic rays in a same equivalence class, then they are
equivalent in the sense of [16].

Next we introduce the Tits metric on X(c0). By Lemma 1 we have that dy,(o1) =
dyy(02) if 1 ~ 72 and 1 ~ 02, We set doo(7(00), 7(c0)) = max (d, (), de (7)), which is well
defined and gives a distance function on X (co), though it does not give the same topology
as the induced topology. The Tits metric Td is defined as the interior distance function of
this distance. This metric measures somewhat expansiveness at infinity. We here point out
that this metric is equivalent to the Tits metric due to Gromov[4] in the case that X is a
Hadamard manifold. He define the Tits metric as the inner metric of the distance function £
on X(oo), which is defined by

te) = i 20010)

where v and o are (unit speed) geodesic rays with y(co) = z, o(c0) = y and v(0) = o(0). By
the Lemma 3 we have

Proposition 3. If X is a Hadamard manifold, the distance function deo on X (o0) is
equivalent to £: 3£ < doo < £.

3. Hausdorff approximations

We now show that a Hausdorff approximation between complete metric spaces induces
an isometry on their ideal boundaries. Let f: X — Y be a map between complete metric

spaces satisfying the second condition of rough isometries;

+4(p,) — 6 < d(f(2), £(2)) < od(p,) + B, p, g € X.

It is clear that if -y and o are quasi-geodesic rays then so are f o~y and foo,and a~2%d,(0) <
dfoy(f © @) < a®dy(c), which guarantees that ¥ ~ o if and only if foy ~ foo. When
one can take @ = 1,it preserves the non-wandering property (#%) of quasi-geodesic rays, hence
induces an injective distance preserving map 8f : X(0o0) — Y (co) with respect to the distance
functions d.

We shall show that 8f is surjective when f is a Hausdorff approximation. Let A be a
non-wandering quasi-geodesic ray. Since Bs(f(X)) = Y by the first condition, we can find
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v(t) € X with d(A(t), f o v(t)) < 6 for each t > 0. Then

d(v(s),7(t)) < d(fo(s), fon(t)+8
d(A(s),A(®)) + B+ 26 < alt — s| + (b+ B + 26)

IA

Similarly we find d(v(s),Y(t)) > L[t — s| — (b+ 8+ 26) and

| d((s), ¥(®) — d(¥(0),¥(#)) | . [dA(s),¥(2) — d(M(0), A(¥)) | + 25 + 46
d((0),7(s)) - d(A(0), M(s)) — B — 26

Therefore « is a non-wandering quasi-geodesic ray, and so is f oy. We now get 8f (v(c0)) =

(f 0 7)(0) = A(c0) and Of is surjective.

Since 8f preserves the topology on the ideal boundaries which are induced by the cone
topologies, we get that 8f : X (c0) — Y(00) is an isometry with respect to the Tits metrices,
and get our theorem.

As was shown in [14], Hausdorff approximations do not necessarily exist between mani-
folds with isometric ideal boundaries. Of course, a continuous extension of a rough isometry
to the ideal boundary is usually impossible. But our consideration in this paper suggests us
that ideal boundaries of two manifolds are equivalent in some sense if and only if these are of

same dimension and rough isometric.
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