A REMARK ON AN ABELIANNESS OF INVARIANT STATES ON C*-DYNAMICS

Yukimasa Oka

(Received Octorber 25, 1993)

1. Introduction.

In [2], we considered a subspace \mathcal{H}'_{φ} to get a characterization of the ergodicity of an invariant state φ on a C*-dynamics (A, G, α) , which makes the same role as $L^2(\varphi)$ in the case the C*-algebra A is abelian. And, by the use of the subspace \mathcal{H}'_{φ} , we gave a characterization of an abelianness of invariant states on C*-dynamics.

In this note we will give another characterization of an abelianness of invariant states on C^* -dynamics to claim that it is important to consider the subspace \mathcal{H}'_{φ} .

Let A be a C^* -algebra with unit element and α an action of a group G on A. We say that (A,G,α) is a C^* -dynamics. A state φ on A is said to be invariant if $\varphi(\alpha_g(x)) = \varphi(x)$ for $x \in A$ and $g \in G$. By S_G , we denote the set of all invariant states on the C^* -dynamics (A,G,α) . Let $(\pi_{\varphi},\mathcal{H}_{\varphi},\xi_{\varphi})$ be the cyclic representation of A induced by a state φ on A. If φ is an invariant state on (A,G,α) , then it induces a unitary representation u^{φ} (or simply u) of G on the Hilbert space \mathcal{H}_{φ} such that $u_g\pi_{\varphi}(x)u_g^*=\pi_{\varphi}\circ\alpha(x)$ for $x\in A$ and $g\in G$ and $u_g\xi_{\varphi}=\xi_{\varphi}$ for $g\in G$. In fact, it is defined by $u_g^{\varphi}\pi_{\varphi}(x)\xi_{\varphi}=\pi_{\varphi}(\alpha_g(x))\xi_{\varphi}$. By \mathcal{H}'_{φ} , we denote the closed subspace $[\pi_{\varphi}(A)'\xi_{\varphi}]$ of \mathcal{H}_{φ} which is the closed linear span of the subset $\pi_{\varphi}(A)'\xi_{\varphi}$ and by e_{φ} , the projection onto \mathcal{H}'_{φ} . For $\varphi\in \mathcal{S}_G$, we denote p_{φ} and q_{φ} be the projections onto the subspaces $\{\xi\in\mathcal{H}_{\varphi}:u_g\xi=\xi\ (g\in G)\}$ and $\{\eta\in\mathcal{H}'_{\varphi}:u_g\eta=\eta\ (g\in G)\}$, respectively. The pair (A,φ) is defined to be G-abelian if

$$\inf\{|(\pi_{\omega}([a',b])\xi|\xi)|: a' \in Co(\alpha_{G}(a))\} = 0$$

for all $a, b \in A$ and all $\xi \in p_{\varphi}\mathcal{H}_{\varphi}$, where $Co(\alpha_G(a))$ is the convex hull of $\{\alpha_g(a) : g \in G\}$ ([1]). Moreover, we say that (A, φ) is wG-abelian (weakly G-abelian) if

$$\inf\{|(\langle \pi_{\varphi}(a'), \pi_{\varphi}(b)\rangle \eta|\eta)| : a' \in Co(\alpha_{G}(a))\} = 0$$

for all $a, b \in A$ and all $\eta \in q_{\varphi}\mathcal{H}_{\varphi}$, where $\langle x, y \rangle = xe_{\varphi}y - ye_{\varphi}x$. Then we will show that the following conditions are equivalent: (1) the pair (A, φ) is wG-abelian; (2) $q_{\varphi}\pi_{\varphi}(A)q_{\varphi}$ is

68 Y. OKA

abelian; (3) $\{\pi_{\varphi}(A), u_G\}'$ is abelian (Theorem 2).

2. wG-abelian systems.

By a slight modification of the proof of the equivalence of the conditions (1) and (2) in Proposition 4.3.7.([1]), we can prove the following

PROPOSITION 1. Let φ be an invariant state on a C^* -dynamics (A, G, α) . Then (A, φ) is wG-abelian if and only if $q_{\varphi}\pi_{\varphi}(A)q_{\varphi}$ is abelian, in the sense that the operators in $q_{\varphi}\pi_{\varphi}(A)q_{\varphi}$ commute mutually.

PROOF. Suppose that (A, φ) is wG-abelian. Given $\epsilon > 0, a = a^*$ and $\eta \in q_{\varphi}\mathcal{H}_{\varphi}$, there exists a convex combination $\sum_{i=1}^n \lambda_i u_{g_i}$ of u^{φ} such that

$$\|(\sum_{i=1}^{n}\lambda_{i}u_{g_{i}}-q_{\varphi})e_{\varphi}\pi_{\varphi}(a)\eta\|<\epsilon$$

([1] Proposition 4.3.4.). For any other convex combination $\sum_{j=1}^{m} \mu_j u_{h_j}$ of u^{φ} , we have

$$\|q_{\varphi}\pi_{\varphi}(a)\eta - e_{\varphi}\pi_{\varphi}(\sum_{i=1}^{m}\mu_{j}\alpha_{h_{j}}(\sum_{i=1}^{n}\lambda_{i}\alpha_{g_{i}}(a)))\eta\| = \|\sum_{i=1}^{m}\mu_{j}u_{h_{j}}[(q_{\varphi} - \sum_{i=1}^{n}\lambda_{i}u_{g_{i}})e_{\varphi}\pi_{\varphi}(a)\eta]\| < \epsilon.$$

Thus for any $b \in A$, we have

$$\begin{aligned} |(\pi_{\varphi}(a)q_{\varphi}\pi_{\varphi}(b)\eta|\eta) - (\pi_{\varphi}(b)q_{\varphi}\pi_{\varphi}(a)\eta|\eta)| \\ &\leq 2\epsilon ||b|||\eta|| + |(\langle \pi_{\varphi}(\sum_{j=1}^{m} \mu_{j}\alpha_{h_{j}}(\sum_{i=1}^{n} \lambda_{i}\alpha_{g_{i}}(a))), \pi_{\varphi}(b)\rangle\eta|\eta)|. \end{aligned}$$

Since the convex combination $\sum_{j=1}^{m} \mu_j u_{h_j}$ is arbitrary, by the assumption we have

$$([q_{\omega}\pi_{\omega}(a)q_{\omega},q_{\omega}\pi_{\omega}(b)q_{\omega}]\eta|\eta) = 0.$$

As this is hold for all $\eta \in q_{\varphi}\mathcal{H}_{\varphi}$, it follows that $q_{\varphi}\pi_{\varphi}(A)q_{\varphi}$ is abelian.

Conversely, suppose that $q_{\varphi}\pi_{\varphi}(A)q_{\varphi}$ is abelian. Then for the above convex combination $\sum_{i=1}^{n} \lambda_{i}\alpha_{g_{i}}(a)$, we have

$$\begin{aligned} &|(\langle \pi_{\varphi}(\sum_{i=1}^{n} \lambda_{i} \alpha_{g_{i}}(a)), \pi_{\varphi}(b) \rangle \eta | \eta)| \\ &\leq \|b\| \|\eta\| \|(\sum_{i=1}^{n} \lambda_{i} u_{g_{i}} - q_{\varphi}) e_{\varphi} \pi_{\varphi}(a^{*}) \eta \| + \|(q_{\varphi} - \sum_{i=1}^{n} \lambda_{i} u_{g_{i}}) e_{\varphi} \pi_{\varphi}(a) \eta \| \|b\| \|\eta\|. \end{aligned}$$

Hence it follows from Proposition 4.3.4([1]) that (A, φ) is wG-abelian.

This completes the proof.

Thus we can state the following

Theorem 2. For $\varphi \in \mathcal{S}_G$, the following conditions are equivalent :

- (1) (A, φ) is wG-abelian;
- (2) $q_{\varphi}\pi_{\varphi}(A)q_{\varphi}$ is abelian;
- (3) $\{\pi_{\varphi}(A), u_G\}'$ is abelian;
- (4) there exists a unique maximal probability measure on S_G with barycenter φ .

PROOF. (1) \Leftrightarrow (2): By Proposition 1.

- (2) \Leftrightarrow (3): By Theorem 2 of [2].
- $(3) \Leftrightarrow (4)$: By Proposition 4.3.7.(3) \Leftrightarrow (4) of [1].

As an immediate consequence, we obtain the following

COROLLARY. For $\varphi \in S_G$, if ξ_{φ} is separating for $\pi_{\varphi}(A)''$, then the following conditions are equivalent:

- (1) (A, φ) is G-abelian;
- (2) $p_{\varphi}\pi(A)p_{\varphi}$ is abelian;
- (3) $\{\pi_{\varphi}(A), u_G\}'$ is abelian;
- (4) there exists a unique maximal probability measure on S_G with barycenter φ . (cf.[1] Proposition 4.3.7.)

References

- Bratteli, O. and Robinson, D.W., Operator algebras and quantum statistical mechanics I, 2nd.ed., Springer Verlag, New York, 1987.
- [2] Oka, Y., A note on ergodic states on C*-dynamics, Kumamoto J. Math., 4(1991), 1-4.
- [3] Sakai, S., C*-algebras and W*-algebras, Springer Verlag, Berlin-Heidelberg-New York, 1971.

Department of Mathematics Faculty of Science Kumamoto University