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1. Introduction

A strictly pseudoconvex pseudo-Hermitian structure on a smooth manifold M is a contact
form w, equipped with a complex structure J on Null w = {X € TM| w(X) = 0}. Null w
is a codimension 1 subbundle of the tangent bundle TM. It is called a contact subbundle.
(Null w,J) is called a CR structure. It is known that every orientable closed 3-manifold M
admits a contact structure (cf. [10],[16],[46),{48],[63]). Since the contact subbundle Null w
is two dimensional, there exists a complex structure. Thus an orientable closed 3-manifold
supports a pseudo-Hermitian structure. If (M, (w,J)) is a strictly pseudoconvex pseudo-
Hermitian manifold, it admits a canonical Riemannian metric g* (resp. Lorentz metric g7).
(See §2.) Making use of the curvatures of these metrics, we can define a smooth function

A on M? and then obtain a pseudo-Hermitian invariant on a compact 3-manifold M3 with
(w, J),

A(M, (w, J)) = % /M Adv

where dv = dvol (M, g*). If (w,J) is a pseudo-Hermitian structure on M3, then by definition
it follows that w A (dw) # 0 for every point of M. Thus there exists a vector field £ dual to
w, i.e., w(f) = 1 and dw(§, X) = O for all X € TM (cf. [10]). The vector field £ is called
a characteristic vector field of M. Let {¢:}s<c be a local one-parameter group of contact
transformations of M induced by the characteristic vector field £&. If for each ¢, ¢: is a CR
automorphism of M (i.e., J 0 ¢ra = s © J), then £ is called a characteristic CR vector field.
A strictly pseudoconvez pseudo-Hermitian manifold with a characteristic CR vector field is

said to be a standard pseudo-Hermitian manifold.
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By definition, it is noted that a standard pseudo-Hermitian manifold used to be a Sasakian
manifold (i.e., possessing normal contact metric structures ). (See (4],[57],[59].)

In this paper we examine the above invariant A(M, (w, J)) for compact standard pseudo-
Hermitian 3-manifolds. We shall see that this invariant characterizes compact standard pseu-
do-Hermitian 3-manifolds whose underlying pseudo-Hermitian structure induces a spherical
CR structure. A spherical CR structure on a (2n + 1)-manifold is locally modelled on the
sphere $2™*! with respect to the group of CR transformations PU(n+1,1). A spherical CR
structure is said to be a (PU(n + 1,1), $?"+!)-structure. More generally, let G be a finite
dimensional Lie group with finitely many components and X an n-dimensional homogeneous
space from G. A (G, X)-structure (simply, geometric structure) on an n-manifold M is a
maximal collection of charts {(¢a, Ux)}aca satisfying that: (cf. [32],[41])

1) M= LélA Ua, ¢a : Us = ¢a(Us) (C X) is a homeomorphism,
@

2) if UsaNUs#®, then the local change of coordinates gas = ¢po ozt
B B s
¢a(Ua NUp) = ¢p(U. NUp) extends to an element of &.

The Thurston uniformization conjecture of compact 3-manifolds ({58],[62]) says that a closed
irreducible 3-manifold decomposes into eight geometric pieces;

(1) an (SO(4), S*)-structure (the spherical geometry),

(2) an (R® x O(3), R®)-structure (the Euclidean geometry),

(3) a (PO(3,1),H?)-structure (the hyperbolic geometry),

(4) a (PO(1,1) x O(3), R* x S?)-structure (the Hopf geometry),

(5) an (R! x PO(2,1),R! x H?)-structure (the nonpositively curved geometry),
(6) an (R! X SLz(R), H"?)-structure (the Lorentz standard geometry),

(7) an (N x U(1),N)-structure (the nilgeometry),

(8) an (S x Z/2,8)-structure (the solvgeometry).

These (G, X)-structures are all Riemannian homogeneous geometries. However, most of
(G, X)-structures naturally arise from non-Riemannian homogeneous spaces. In comparison
to the Riemannian case, it is very difficult for a discrete group to act properly discontinuously
because the stabilizer at each point of X is noncompact. In §5, we collect the current results

which geometric piece admits a conformally flat structure, a spherical CR structure, or an
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affinely flat structure when we take those as a non-Riemannian homogeneous geometry. In
§6, we give an example of closed 3-manifold which does not admit a conformally flat structure

and a spherical CR structure.

2. Pseudo-Hermitian invariant

Let (w,J) be a pseudo-Hermitian structure on a strictly pseudoconvex manifold M of
dimension 2n 4 1. We have the canonical metrics on M by setting J¢ = 0:

g+(Xv Y) = w(X) w(Y) + dw(JXa Y)s 9—(X: Y) = —w(X) 'w(Y) + d“"(JX’ Y)

where X,Y € TM. g% is a Riemannian metric; g~ is a (nondegenerate) Lorentz metric.
In the pseudo-Riemannian geometry, there exists a Levi-Civita connection on the frame
bundle of M (cf. [66]). Thus if g is a pseudo-Riemannian metric then we can define the

sectional curvature
Kp(X,Y,9) = —gp(R(X,Y)X,Y)/9p(X, X)gp(Y,Y) — gp(X,Y)?
where {X,Y} forms a nondegenerate plane section of TpM for eachp € M. Let
KF(X.Y) = Kp(X,Y,g%), K; (X,Y)=Kyp(X,Y,g")

be the sectional curvatures respectively. We define a curvaturelike function A on Null w as

follows. Let (w,.J) be a strictly pseudoconvex pseudo-Hermitian structure on M. Put

Ap(X,Y;(w, ) = {K; (X,Y)+ K, (X,Y)}/2 (1 + 3dw(X,Y)* )

dw(JX, X)dw(JY,Y) — dw(J X, Y )?

for X,Y € Null wp. It is easy to check that the above form is independent of the choice of a
basis which spans a plane section of Null w at each p € M. In particular if {X,JX} forms

an orthonormal basis with respect to g* and g~, then the above formula reduces to

K} X,JX)+ K; (X,JX)

AP(X1JX;(“)7J))= 2.4

Suppose that dim M = 3. Then an orthonormal basis {X, JX } spans Null w at each point
p € M. Thus we have a smooth function A(p) = Ap(X, JX;(w,J)) at every p € M.

Definition 2.1. Let (M, (w,J)) be a compact pseudo-Hermitian 3-manifold.

A(M, (w, J)) = % /M Adv.
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Here dv = w A dw is the volume element.

Thus we have defined a pseudo-Hermitian invariant on compact pseudo-Hermitian 3-
manifolds. '

3. Almost regular standard pseudo-Hermitian structure

Recall that a contact structure on M is regular (resp. almost regular) if for every point
p of M there ezists a neighborhood U such that the integral curves of the characteristic vector
field & passing through p pass through U ezactly once (resp. finitely many times).
Boothby and Wang (6] (after Thomas [61]) have shown that if M is a compact regular (resp.
almost regular) manifold, then the characteristic vector field £ generates a free circle action
(resp. almost free circle action) on M and they have established the fibration theorem on
compact regular contact manifolds. Here S'-action is almost free if it has no fixed point.
Let (w,J) be a pseudo-Hermitian structure on M. In order to generalize Boothby and
Wang’s result, the following condition is required that £ is a characteristic CR vector field
(cf. §1). Then a regular standard pseudo-Hermitian structure will be defined as a standard
pseudo-Hermitian structure whose underlying contact structure is regular. Then Boothby

and Wang’s result will be generalized as follows:

Theorem 3.1. A compact smooth (2n 4 1)-manifold admits a regular standard pseudo-
Hermitian structure if and only if M is a principal circle bundle w : M — N over a Kéhler
manifold N whose fundamental 2-form Q satisfies the following properties:

(1) The Euler class of the bundle is represented by an integral cocycle (] € H 2(N;2Z).

(2) dn = w*2 where 7 is a connection form of M.

This follows easily from the result of a standard pseudo-Hermitian structure (cf. [33]).
Namely, if (M, (w, J)) is a compact standard pseudo-Hermitian manifold, then M is a Seifert
fiber space S' — M-E - M*-E" for which both g* and g~ induce a Kahler metric § on
the space of principal orbits M*-E*. M*-E* supports a Kahler structure (<2, j) such that
Gpr (X,Y) = Qe (JX,Y) for X,Y € Tp (M*-E*).

We have three types of standard pseudo-Hermitian structures.

3.2.

(I) A spherical standard pseudo-Hermitian structure. (i.e., the underlying standard

pseudo-Hermitian structure (w, J) induces a spherical CR structure.)

(I1) An infraregular standard pseudo-Hermitian structure. (i.e., some finite covering of

M is regular.)
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(III) An almost regular standard pseudo-Hermitian structure.

A compact standard pseudo-Hermitian manifold of constant curvature A is infraregular
by the result of [33]. Moreover compact spherical standard pseudo-Hermitian manifolds M
have been classified in [36],[33]. In fact, M is finitely covered by one of the following principal
bundles:

(1) §* - s+ _, cpm.

(2) S' > N/T — TE.

(3) S' - AV /T — HE/T.

(4) 8! > P(V2P* x §2=m=ly/r —, Hg*! x CP*™ Y T

Here I'* is a torsion free subgroup acting isometrically. In particular, (I) = (II). Obviously,
(II) = (III).
We consider the converse of (I) = (II) = (III) for 3-manifolds. Recall that a manifold is

aspherical if the universal covering is contractible.

Proposition 3.3. Let (M, (w,J)) be a compact standard pseudo-Hermitian 3-manifold.
Then M is either an infraregular standard pseudo-Hermitian aspherical manifold or a standard

pseudo-Hermitian spherical space form.

Proof. Let {¢:}|¢j<co be the one-parameter group generated by the characteristic CR vector
field &. Suppose that T* is a k-toruse which is the closure of {¢t}iti<oo in Autcr(M). When
k 2 2, it follows from the classification of S'-manifolds (e.g., [54],(55),(56]) that M is a lens
space L(p,q) (p > 1) or the sphere S*, otherwise M is finitely covered by S* x $2 or T°.
On the other hand, given a standard pseudo-Hermitian structure (w,J,£), there exists an
almost regular standard pseudo-Hermitian structure (5, J,¢’) on M which is arbitrary close
to (w, J,€) (cf. [33]). Let S* be the circle generated by the characteristic CR vector field £’.
Put M = §' x S® or T%. As S* has no fixed point on M, there is an equivariant Seifert
fibration of M associated with (n, J,¢').

Y/ > T Q
L1
R! y g—

—
®

—

(__E'l(_

Sl

S
3
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If §* is a lift of g* to the universal covering M, then as above there is a Kahler metric §* on
M* such that ¥ is a Riemannian submersion. In particular we note that Q C Iso (M*,§*)
which acts properly discontinuously on M*. Using Riemann’s mapping theorem and Selberg’s
Lemma (or Fuchs’ result in dimension two), there exists a normal subgroup @’ of finite index
in Q which is torsion free. In particular Q' acts freely on M. LetloZ—on>Q —1
be the induced exact sequence. There assigns to it a principal bundle S* — M’ - M for
which M’ is a finite covering space of M. Let (n,J,S") be a lift of the pseudo-Hermitian
structure (7, J,S!) on M’. Obviously it induces a Kahler structure ' on M'* such that
dn’' = V'*. Recall that the Euler class of the above principal bundle S* — M’ L M
coincides with [Q'] € H*(M'*; Z) which is nonzero (cf. [38]). This implies that M = S x §?
or T? never occur. Thus in the case that mltl <oo = T?, M is a lens space L(p,q) (p > 1)
or the sphere S3.

Now, if k = 1, i.e., {¢:g}|tl<°° = 8%, S! has no fixed point on M. Moreover the group
Psh(M) of pseudo-Hermitian transformations of a strictly pseudo-convex pseudo-Hermitian
manifold M of dimension 2n + 1 is a compact Lie group of dimension less than or equal to
(n+1)2 (cf. [64],(65]). In particular, Psh(S?) is conjugate to a subgroup of U(2). It follows
again by the classification that M is an aspherical 3-manifold, or by the above argument M
is finitely covered by $3. M is a spherical space form S®/7 where m# C Psh(S®) Cc U(2) is a
noncyclic subgroup. If M is aspherical, it is well known that some finite covering of M is a

principal circle bundle (with nonzero Euler number). By definition, M is infraregular. ]

Corollary 8.4. Let M be a compact standard pseudo-Hermitian 3-manifold. Then M is
a lens space L(p, q) or the sphere S® such that Autcr(L(p,q))° = T2 (p 2 2) or Autcr(S®) =
PU(2,1), otherwise M is an aspherical manifold or a spherical space form with noncyclic
fundamental group such that Autcr(M)® = S*.

Proof. The only compact connected Lie group that acts nontrivially on a closed aspherical
manifold is a k-torus T* (cf. [12],[13]). If M is aspherical, then Autcr(M)° is compact (cf.
[65],(31]). Thus Autcr(M)°=5S'. O

Recall that compact spherical standard pseudo-Hermitian manifolds are infraregular (cf.

(3.2)).

Proposition 3.5. Let (M, (w,J)) be a closed standard pseudo-Hermitian 3-manifold. Put
A(M) = A(M,(w,J)). Suppose that M is an infraregular pseudo-Hermitian manifold. Then

(i) M is diffeomorphic to a spherical space form if A(M) > 0.

(ii} M is diffeomorphic to an infranilmanifold if A(M) = 0.
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(iii) M is diffeomorphic to a Lorentz standard space form if A(M) < 0.

Proof. By the definition there exists a finite group F of order k for which a k-fold covering
M is a principal bundle:

gl(——"]

Sl

w

—

M
Let @ = 7*w and d0 = @ Ado. Put 7(p) = p, m(X) = X, m(¥Y) = Y. Since
S Ap(X,TX)do = k [, Ap(X, JX)dv, it follows that

A(M)——/ As(R, TR )d5 = KA(M).

On the other hand, for the above bundle S' — M —- N, the orthogonal complement of the
tangent bundle T'S? relative to §* is Null © and v, : Null @ — TN is an isometry for each
p € M. Then O’Neill’s formula (cf. [53]) implies that for X,¥ € Null @

7= (X, JX]",[X, JX]V)
43*(X, X)g*(JX,JX) - g*(X,JX)?’

KX, nJX,§) = K¥(X,TX,55) +3

where Z" is the vertical component of a vector field Z. Since d(X,¥) = —1a([X,Y]) for
X,Y € Null @, it follows that

(X, JX), (X, TX])Y) = xa((X, JX]) - &([X, TX]) = +4d(X, TX)2.
Moreover as (X, X) = 1 and §*(X, JX) = 0, we have that
4K (X, vJX,§) = KX(X,JX,5) + 3da(X, TX)2.
Therefore it follows that
42K X,nY,§) = K*(X,7,5") + K~ (X,7,57).
By the definition (cf. §2), we obtain that

Aﬁ(X JX (w J))— ,,(p)(U‘X JV‘X g)
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Noting do = 1" and do = @ A div, it follows that

A()

1 v T \J=
ﬁ[\?Aﬁ(X:JX)dU

Hence A(M) = %A(M’ )= %x(N ). Thus we conclude that;

A(M) 0 if and only if N = CP" and M ~ S°.

A(M) 0 if and only if N = T and M ~ N/A.

A(M) < 0if and only if N = S, (closed orientable surface of genus g 22) and
M ~ HY?/T.

v

If M is a closed standard pseudo-Hermitian aspherical 3-manifold, then by Proposition
3.3 the characteristic CR vector field generates a circle action S* on M such that there is an

equivariant principal circle bundle:
(Z,R) — (7"7M) - (@, W),

where R/Z = S*, m (M) = = and Q is the quotient group that acts properly discontinuously

on a two dimensional contractible space W.
Lemma 3.6. The center C(x) = Z.

Proof. The uniformization theorem (cf. [66]) says that there is a conformal mapping f: W —
R2 (or f : W — H?) such that fQf~* C E(2)° (or fQf ™" C PSLzR) respectively. Thus
we assume that (Q, W) is either a subgroup of E(2)° acting properly discontinuously on R?
or a subgroup of PSLzR acting properly discontinuously on a hyperbolic plane H2.
Obviously, Z C C(x), so put A = C(x)/Z. Now A is a central subgroup of the discrete
group Q lying in E(2)° or PSLzR. In particular, A is a finitely generated abelian group.
Suppose that A has a torsion subgroup. Let Z/p be a cyclic group of prime order in the
torsion group. Since W is contractible and @ is orientation-preseving, Z/p has a unique
fixed point. As Q centralizes Z/p, Q has a fixed point. Q being infinite, this contradicts
that Q is proper. Hence A is a free abelian subgroup of rank i so that C(m) = Z ® A Note
that rank C(x) = 1+4 £ 3. Ifi =2, put A =C(w). When i =1, choose an element ¢ € 7
of infinite order which does not lie in C(r). Then the group A’ generated by C(r) and c is
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isomorphic to Z%. Since both M/A and M /A’ is homeomorphic to T3, M is covered by a
3-torus T°. Thus T° would be a standard pseudo-Hermitian manifold. As we know that
T2 does not admit a standard pseudo-Hermitian structure by Proposition 3.3, A is trivial or
C(w) = Z. This proves the lemma. [J

As an application, we have the following.

Corollary 3.7. A(M) is a topological invariant among all closed standard pseudo-Hermitian
aspherical 3-manifolds.

Proof.  Given two homotopic (homeomorphic) closed aspherical manifolds M, M; with
pseudo-Hermitian structure {(w:, J;)}i=1,2 respectively, let k : 71 — 72 be an isomorphism
between fundamental groups. There is an equivariant principal circle bundle: (Z,R) —
(mi, M) — (Q:i, Ws). Since h(Z) = Z by the above lemma, h induces an isomorphism A :
Q1 — Q2. Let Q] be a torsion free normal subgroup of Q; of finite index. Put Q} = (@),
The above group extension induces a group extension: 1 —»Z—m — Q) — 1 respectively.
Put M] = M;/!. Then we have a principal circle bundle: S! — M; - W;/Q; (i = 1,2).
In particular M; is an infraregular pseudo-Hermitian manifold. M is a k-fold covering of
M; where |Q; : Qi| = k for some k. As in the argument of Proposition 3.3 and noting that
Q1 =~ @3, it follows that

AM) = XV /@4) = Tx(Wa/Qh) = A(My).

Therefore A(M) is a homotopy invariant for closed standard aspherical pseudo-Hermitian
3-manifolds. ]

We have shown in [33] that A > 0 is an invariant for a pseudo-Hermitian spherical
space form $?**/F which induces a spherical CR structure. However, A(M, (w, J)) is not
a topological invariant for a spherical space form M admitting a standard pseudo-Hermitian
structure. In fact, Proposition 3.5 fails if we relax infraregular to be almost regular for

pseudo-Hermitian spherical 3-manifolds. Namely,

Theorem 3.8. There exists an almost regular standard pseudo-Hermitian structure (m J)
on the sphere S* whose curvature A(S?,(n,J')) < 0.

Proof. Such a pseudo-Hermitian structure is constructed as follows: Let M3 be a closed
Seifert fiber space over a hyperbolic orbifold with nonzero Euler number. Then there exists

a standard almost regular pseudo-Hermitian structure (w, J) on M3 whose curvature A =
Ap(X,Y; (w, ) = —1.
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Let us take a Brieskorn manifold M (p, q,r) as M, where 11-) + % + % —1<0. (See[50].)
Then there is the following Seifert fibration:

s —— M(p,q,7r) —— S?

o]

st — s3 — 52

Let v : M(p,q,7) — S be an r-fold branched covering with branched locus L*(p, q), which is
a torus knot in S3. The contact structure w on M(p, g,r) is invariant under the S*-action.

Let E = {x € M|S: = Z/r} and N(E) be the tubular neighborhood of E in M. Then
we have the commutative diagram of the branched covering:

NE) —1 stxD?

r/l r/l
N(L*(p,q)) —— S x D*.

Here f (resp. f) is an equivariant diffeomorphism such that w|nx(p) = f*(C(r,1)) where
C(r,1) is the canonical contact form on S* x D? for a pair of integers (r,1). (See [36] for
details.) Now the contact form w induces a contact form 7 on S§% — N(L*(p, q)) because the
projection M(p,q,7) — S° is a regular r-fold covering outside N'(L*(p,g)). It is noted that
nldN (L (p,q)) = f*(C(1,1)|S* x S) by the above diagram. We choose a contact form on
N(L*(p,q)) to be f*(C(1,1)). Put

TI={T, on S — N(L'(p,q))
f1(C(1,1)) on N(L'(p,q))-

Then we obtain a contact form # on S3. Similarly the complex structure J induces a complex
structure J' on Null  over S — N(L'(p,¢)). Since £ is transverse to Null 5, it is easy to
extend this complex structure (i.e., a rotation) to the entire S°. As M(p,q,7) — N(E) =
5% — N(L'(p,q)) is a regular covering, we have

A-’E(Xv},; (w: J)) = AE(V‘(X)v V‘(Y); (ﬂ, JI)) =-1
for v(%) =z € §° — N(L'(p,q)). It implies that A(S®) <0. O

4. Deformation of standard CR structure

It is known that there exists no nontrivial deformation of a contact structure on a compact
manifold (cf. [24],[17]). We consider a nontrivial deformation of a CR structure on M. (See

[4],(5),(13].)
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Proposition 4.1. Let (M, (w,J)) be a closed standard pseudo-Hermitian aspherical 3-
manifold. There exists a family {(w:, Ji)}o<,<, of standard pseudo-Hermitian structures at
(wo, Jo) = (w, J) for which a smooth map A_(l; is constant in curvatures A of (we, Ji). In
particular, (Null wy, J1) is spherical.

Proof. There exists a finite covering M of M such that M is a regular standard pseudo-
Hermitian 3-manifold and

§' - (F,M) 5 (F',N)
is an equivariant principal bundle where v is equivariant with respect to finite groups F, F'.
Let (@, J) be a lift of (w, J) to M. @ is invariant under F. It follows from Theorem 3.1 that
(1) (N, (82, J), §) is a Kahler manifold.
(2) do = v™Q where [Q2] € H?(N; Z) represents the Euler class of the bundle.

We may assume that [{2] is the generator of H?(N;Z). Let Y stand for R? or H
endowed with the canonical Kahler metric g. for ¢ = 0, 1 respectively. By Riemann'’s mapping
theorem (cf. [66]) there exist a Kahler manifold Y/T' of constant holomorphic curvature and
an equivariant holomorphic map & : (F',N,3) — (G',Y/TI, §.) such that A(p) - §p(X,Y) =
(9e)n(p) (he X, hsY) for some positive function A : N — R and that G’ C Iso (Y/T). As
UX,Y) = §(X,JY), Q(X,Y) = §e(X, J:Y) and hu 0 J = J. 0 ha, it follows that A - Q =
h*Qc. In particular, Ko(X, JX, A-§) = Kn(gy(heX, hadX,dc) = c. On the other hand, since
[A - 9] = ~*[Q] is the generator of H?(N;Z), it follows that [A- ] = [Q2]. There is a 1-form
6 on N such that A-Q =Q+df. For o € F/, A(ap) = A(p) because Q is F'-invariant. We
can take 6 as an F'-invariant 1-form. In fact, we may put 8'(X) = Y 6(a.X)/|F’|. Then

acF/
d¢’ =df. Put
Ae(p) =tA(p)+1-t (0Zt<£1).
Then A¢ >0 and A - Q isa Kahler form on N. We obtain a family of 1-forms {#:} on M by

setting 7: = © +tv*0. Since @ and v*6 are both F-invariant, 7, is also F-invariant. Thus it
induces a 1-form 7 on M. If £ is the characteristic CR vector field for (w, J), it is easy to
see 7¢(§) = 1. Now, dff: = v*(); - ), which implies that 7; A dn # 0. Thus 7, is a contact
form on M. Since v, : Null ; — T'N is an isomorphism, there is a complex structure J; on
Null 7, defined by v, 0 J; = Jowv.. Note that 7o = w and J, = J by the definition. We
obtain a family of infraregular pseudo-Hermitian structures {(#:, Jt)}05t§1 starting at (w, J),
each of which has the characteristic CR vector field £. As ¢ generates;, one-parameter group
{#6}16<o0, it follows that

S = {¢o}161<c0 C Autcr(M, (ne, Ji))°.

Let s =@+ v"6 as above. As df = v*(\-Q), 7 induces the metric A-§. Noting the proof
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of Theorem 3.3, for v.«(X) = X and each p = v(§) € M, we have that
A(l)(p) = Ai()—(’ Jl)_{; (771) Jl)) = f{P(Xv jX, A g) =c

]

Corollary 4.2. If the curvature A = A(o) is not constant, then the deformation of CR

structures {(Null we, J¢)}o<,<, is nontrivial.

Proof. Suppose that there is a CR diffeomorphism f : (M, (Null w, J)) — (M, (Null 7, J1)).
Put ¢ = f71(€). Then it follows that A-w = f*n where A(p) = 1/wp(£;). Note that £’ is the
characteristic C'R vector field for f*71. So we have two standard pseudo-Hermitian structures
(w, J,€) and (f*m, J,£') representing the same CR structure. Then it follows from the result
of [33] that Ap(X,JX;(w,J)) = AP) - Ap(X,JX; (f*m,J)). As Ap(X,JX;(f*m,J)) =
Aoy (fxX, J1 £ X5 (m, 1)) = Aq)(p) = ¢, we obtain that A(p) = Ap(X, JX; (w, J)) = A(p)-c.
On the other hand, if {¢§}js|<co is a one-parameter group induced by &', then it follows
that f o ¢4(z) = ¢e o f(z). Thus ¢} is a CR diffeomorphism preserving (Null w, J), i.e.,
{$s}161<00 C Autcr(M, (w,J))°. If we note from Corollary 3.4 that Autcr(M, (w, J)° =
S = {¢8}}6|<cor then we have that £ = af for some contant number a. As A = 1/w({’) =
1/a, A(p) = A(p) - ¢ = c¢/a for all p € M. This contradicts the hypothesis that A is not

constant. 1]

5. Geometric structure modelled on non-Riemannian homogeneous spaces

We collect the results concerning which piece in the geometric decomposition of a 3-
manifold admits a conformally flat structure (PO(n + 1,1),S™), a spherical CR structure
(PU(n +1,1),S?"*1) or an affinely flat structure (A(n), R™) (cf. [22}.[32],[58],[62]).

5.1. Conformally flat structure. First recall that a Riemannian manifold of constant
curvature is a conformally flat manifold. From this, (1) a compact spherical space form, (2) a
compact euclidean space form, (3) a compact hyperbolic space form admit a conformally flat
structure. Moreover it is known that (4) a Hopf manifold, (5) S* xS, admits a conformally flat
structure. Here S is a closed surface of genus g 2 2. Note the following (cf. [18],[21],[51]).

Theorem 5.1.1. If the holonomy group of a compact conformally flat manifold is virtually
solvable, then M is finitely covered by the sphere, a torus or a Hopf manifold.

From this, (7) an infranilmanifold, (8) an infrasolvmanifold do not admit a conformally
flat structure. It is known that (6) a circle bundle over a closed surface Sy with nonzero Euler
number e admit a conformally flat structure, but it is unknown whether g and e are chosen
arbitrarily (cf. [25),[37),[40],[45]). See [1],{2},[3],[23],[29],(30},[42],[49] for related topics.
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5.2. Spherical CR structure. We have shown that a standard pseudo-Hermitian mani-
fold of constant A is a spherical CR manifold. Thus, (1) a compact spherical space form, (7)
an infranilmanifold, (6) a circle bundle over a closed surface S, with nonzero Euler number e
admit a spherical CR structure. It follows from [51] that

Theorem 5.2.1. If the holonomy group of a compact spherical CR manifold is virtu-
ally solvable, then M is finitely covered by the sphere, a Heisenberg nilmanifold, or a Hopf
manifold.

From this, (4) a Hopf manifold admits a spherical CR structure. (2) a compact euclidean
space form, (8) an infrasolvmanifold do not admit a spherical CR structure. It is unknown
whether (3) a compact hyperbolic space form or (5) S x S, admits a spherical CR structure.

Proposition 5.2.2. Let M be a closed hyperbolic manifold or the product S* x S, (g 2 2).
If M admits a spherical CR structure, then the holonomy group is Zariski dense in PU(2,1).

Proof. We can assume that the holonmy group is neither finite nor stabilizes a finite number
of points. Moreover, if the holonomy group leaves a totally geodesic subspace HL in HZ,
then by the result of [23], M is finitely covered by a circle bundle over a closed surface S,
with nonzero Euler number. 0

Concerning the existence of conformally flat structure or spherical CR structure of the
above geometric pieces, we remark that the developing maps are not surjective (and so covering
maps onto its image. cf. [30]) It is known that the developing map is necessarily a covering map
if the holonomy group is virtually solvable (cf. [29],{51]). It is unknown that other geometric
piece (i.e., (3) a hyperbolic space form, (5) S* x S, , or (6) a Lorentz standard space form
H"“?/T') admits a surjective developin map. Note that there is a one dimensional complex
projective (conformal) structure on a closed surface S, (9 = 2) whose developing map is
surjective (cf. [22], [20]). We notice that there is an example of a surjective developing map
on a connected sum of geometric pieces.

Let M; be S* x Sy (g 2 2) or a principal circle bundle over S, with nonzero Euler number
for ¢ = 1,2 respectively. There is a canonical conformally flat (resp. spherical CR) structure
on M, (resp. Mz). In this case the holonomy group I lies in PO(2,1) x S? (resp. U(1, 1)),
where PO(2,1)° ~ PU(1,1) ~ PSL2(R) and S* — U(1,1) —» PU(1,1) is the exact sequence.
Let C(T') be the central subgroup of I'. Then the intersection of S with C(T') is an infinite
group if and only if the holonomy group I' is indiscrete. So we choose a conformally flat

structure (spherical CR strucure) on M; whose holonomy group is indiscrete.

Proposition 5.2.3. Let M; be a conformally flat manifold (spherical CR manifold) whose

holonomy group is indiscrete as above.
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(1) The developing map of a conformally flat structure on a connected sum Mi§N for

any closed conformally flat manifold N except for S® is surjective.

(2) The developing map of a spherical CR structure on a connected sum Ma}L for any

closed spherical CR manifold L except for S3 is surjective.

Proof. First note from [8],[41] that there is a canonical conformally flat structure or spherical
CR structure on the connected sum MjN, M2fiL respectively for which the holonomy of the
fundamental group of M; is a subgroup of the holonomy group G; of M1} N, MafiL respectively.
Thus in our case the holonomy group G; of MyiN, M.jL is indiscete in PO(4,1), PU(2,1)
respectively. Now suppose that the developing map of M:ifiN, or M2fiL is not surjective.
Then it follows from [30] that the holonomy group G; is discrete, or the developing map is a
covering map onto S3-S'. In the latter case, this follows since the limit set A(G:) = A(G?) =
S! = ddev (X) # 0. Here X is the universal covering space of MiiN or M2§L. See [23],{30].
Then it follows from the classification of [30],[36] that M1fN or M2flL is finitely covered by
S x S, (g Z 2) or a principal circle bundle over S; with nonzero Euler number respectivly.
Then each fundamental group has a normal subgroup isomorphic to Z. But the fundamental
group of MyifiN or MafL has no nontrivial normal subgroup. Hence this contradiction shows

that the developing map of M14§N or MzfL is surjective. ]

We refer to [20],[28],[64] for related topics.

5.3. Affinely flat structure. It is shown in [19] that

Theorem 5.3.1. The fundamental group of a compact complete affinely flat 3-manifold is
virtually solvable.

Moreover there exists a simply transitive affine action of a connected simply connected,
solvable Lie group on R3. We have that (2) a compact euclidean space form, (7) an infranil-
manifold, (8) an infrasolvmanifold admit a complete affinely flat structure. On the other
hand, both (4) a Hopf manifold and (5) S* x S, admit an incomplete affinely flat structure.
In fact, the universal cover of them are realized as a domain of R®. Obviously (1) a spherical
space form does not admit an affinely flat structure. It is unknown whether (3) a compact
hyperbolic space form, or (6) a circle bundle over a closed surface S, with nonzero Euler
number e admits an affinely flat structure. See [12],[26],[27},[42],[47],[60] for related works.

6. Holonomy groups of PO(n+1,1), PU(n+1,1)

Let G be a connected subgroup of PO(n + 1,1) = Conf (S™). Denote G° the identity
component of the closure of G in PO(n + 1,1). If @ is compact, then up to conjugacy [ex
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is contained in O(n +1). If G’ hasa noncompact radical, it can be shown that G’ fixes a
point {00} or exactly two points {0, 00} in S (cf. [30]). Then it follows that G° C Sim(R")
where R™ = 8™ — {oo}.

Lemma 6.1. Suppose G is noncompact but has compact radical. Then G = H - K where
K is a compact Lie group and H is a Lie subgroup that acts simply transitively on a totally
geodesic subspace Hf, in Hyt! where 2 < kS n+1.

Proof. Tt suffices to check that G does not have a fixed point and the limit set L(G) contains
more than two points; the lemma then follows from Lemma 4.4.5 of [9). If G has a fixed
point, then G is conjugate to a subgroup of Sim(R"). Since Sim(R™) is amenable (and so
is any closed connected subgroup), G’ is an amenable Lie subgroup of Sim(R") and thus an
extension of a solvable Lie group by a compact Lie group. Since @ has compact radical,
G° is itself compact, contradicting fex being noncompact. If L(G) consists of less than three
points, then either L(G) = 0 or G fixes a point. Since L(G) = L(G), L(G) = @ implies that
G is compact. 0

The similar result holds for spherical CR case; namely

Lemma 6.1'. Let G be a connected subgroup of PU(n+1,1) (= Autcr(S**1)). Suppose
that G is noncompact but has compact radical. Then G = H - K where K is a compact Lie

group and H is a Lie subgroup that acts simply transitively on a totally geodesic subspace
HE in HEY where 1Sk Sn+1.

Corollary 6.2. IfG is a connected subgroup of PO(n+1, 1), then G satisfles either one of
the following:

(1) G is conjugate to a subgroup of Sim(R™) and @ is noncompact.

(2) G has a unique fixed point in Hgt', or a conjugate of G leaves fixed S* where
0SkSn-2.

(3) G acts transitively on S* where 1 < k < n.

Corollary 6.3. IfG is a connected subgroup of PU(n+ 1,1), then G satisfies either one of
the following:

(1) G is conjugate to a subgroup of Sim(N) and G is noncompact.

(2) G has a unique fixed point in H5'!, or a conjugate of G leaves S***! fixed where
0SkSn-1.
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(3) G acts transitively on S***! where 0 Sk < n.

We shall study elliptic elements in PO(n + 1,1) = Conf (S").

Proposition 6.4. Let T be a subgroup of PO(n + 1, 1)°. Suppose that every element in
T is elliptic. Then the closure I' does not contain a loxodromic element.

Proof. If an element v is loxodromic then it is conjugate to an element that fixes two points
{0,00}. So we assume that -y fixes {0,00}. Then 7 has the form;

A 0 O
y=[0 X' o0},
0 0 A

where z € Rt, A € SO(n). Since every element of SO(n) is conjugate to a matrix;

( cos® sinf \

—~sin@® cos8

0 cosf’ sind’
—sin@’ cosé’
\ 1) )
it follows that for all B € SO(n), |tr B| £ n+2.
By our hypothesis A # 1. Choosing some power if necessary, we may assume that A >

2n+5. Therefore tr y = A+ A"!4+tr A>n+3. On the other hand if § € PO(n+1, 1)°is
elliptic it is conjugate to an element of SO(n+1). Hence |tr §] £ n+3. Choosing a sequence

{7} in T such that v = lim ;. Since each -; is elliptic, it follows that tr v = lim tr () £
n + 3, being a contradiction. O

Lemma 6.5. Let I’ be a subgroup of Sim(R")° for which E(n)° = R"x SO(n) is the
euclidean subgroup. If+ € T is elliptic then v € E(n)°. Moreover, v = (a, A) satisfies either
one of the following:

(1) v = A € {0} x SO(n).

(2) Both a # 0 and det (A —I) #0 (i.e., A does not have 1 as an eigenvalue.)

Proof. Let < v > be a subgroup generated by 7. Let <% > be the closure of Sim(R™)° and
p : Sim(R™)° — R* x SO(n) be the holonomy map. Since v is elliptic, < ¥ > is compact and
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s0 p(< ¥ >) is also compact. If y = (a,AA) then p(< ¥ >) =< AA> =< A > x< A>. It
must be that A =1, or v = (a, A) € E(n)°. Now let p be a fixed point of the elliptic element
7¥- There exists a geodesic a passing through p such that a(oo0) = {oo} on the boundary
S™. Since 7 stabilizes o pointwisely, we have ¥(o(—00)) = a(—o0). Put a(—o0) =y € R
(=5" — {c0}.) It follows that Ay + @ = y, or it implies that either ¢ = 0 or a # 0 and
det (A—I)#0. [

Theorem 6.6. Let I’ be a subgroup of PO(n +1,1)° consisting of elliptic elements. Then

passing to a subgroup of finite index if necessary, one of the following is true;
(i) T is conjugate to a subgroup of E(n)°.

(ii) T is compact.

Proof. Let T be the closure of PO(n + 1,1). If the connected component I'° = {1} ,ie,T
being discrete, then I' must be finite by the theorem of Tits. Suppose that I'® is nontrivial.
Let R be the radical of I'°.

Step 1. R is nontrivial. Since R is solvable, there are following possibilities;
(1) T'° contains a simply connected normal abelian subgroup V.
(2) T contains a normal subgroup T isomorphic to some k-torus.

For (1), the group V stabilizes the unique point {co}. Since V is normal in T, T leaves {0}
fixed and so I' C Sim(R")° by passing to a subgroup of finite index. It then follows from
Lemma 6.5 that I' ¢ E(n)°.
For (2), Fix (T,Hgt') is either a point {pt} or isomorphic to some HEF! The first case
implies that I fixes the point {pt} or L(T') = 0. The closure I’ is compact. The latter case
shows that since I leaves S™ — §* (=HE! x O(n — k)), ' € PO(k + 1,1) x O(n — k) where
0 £ kS n. Therefore we have I'° = HxT for some H C PO(k+1,1). It follows that L([°) =
L(H). We may assume that L(H) contains more than two points, otherwise it reduces to the
previous cases. Then it follows by Lemma 6.1 that H = PO(¢,1) - K in PO(k + 1, 1). In
particular I' contains a loxodromic element (inside PO(¢,1)). It is impossible by Proposition
6.4 so that H C O(¢) x K being compact. And thus I'° is compact.

At this stage, we consider

Step 2. I'° has no radical. Then I is a simple Lie subgroup of PO(n +1,1), it follows
that I'® = PO(¢,1) - K up to conjugation. By the same argument as above it concludes that
I'® is a compact subgroup.
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Now, let Fix ([°, HE') = HR*!. As above, we have I' C PO(m + 1,1) x O(n — m) and

I® c O(n —m). Consider the exact sequence;

O(n-m) — POm+1,1)x0(n-m) £ PO(m+1,1)
T T T

On-m)nT — r — p(D).

It suffices to check that p(T) is discrete. Since O(n —m) NT/T° is discrete and compact, it
is finite. In view of the exact sequence 1 — O(n —m)NT/T® — T/T° — p(T) — 1, we see
that p(T') is discrete. In particular p(T') is discrete in PO(m +1,1).

Since T nomalizes T'°, T' leaves HZ?+! invariant while O(n — m) fixes HR *' pointwisely. If
~ € T is elliptic then p(y) is also elliptic in HE*!. Hence p(I') consists of elliptic elements.
As we have shown that p(T") is discrete, p(T) is finite. And so p(T') is still finite. The above

exact sequence shows that T is compact. This completes the proof. ad

Remark 6.7. The similar results to Proposition 6.4, Lemma 6.5 and Theorem 6.6 hold for
spherical CR structures.

Suppose that a (G, X)-structure is either conformally flat structure or spherical CR struc-
ture. A homomorphism ¢ of a group T into G is said to be a parabolic representation if a
subgroup of finite index in ¢(T") stabilizes the unique point {co} in X. In other words, ¢(I')
is conjugate to a subgroup in Sim(R") or Sim(N) respectively. It is known that a closed
(G, X)-manifold whose holonomy representation is parabolic is finitely covered by a sphere, a
Hopf manifold, a 3-torus or a nilmanifold.

Problem. Find a closed 3-manifold with (nontrivial) nonsolvable fundamental group such
that any representaion into G is parabolic.

If a compact manifold with such parabolic representations exists, then of course it does not
admit the above (G, X)-structure. We give an example of such a compact 3-manifold M.
The manifold M obtained here has a torus-decomposition which decomposes into two Seifert
pairs. This construction has been shown by Motegi [52]. See also [37].

Let N be a 3-sphere removed with the interor of the tubular neighborhood of a torus knot of
type (p,q) where p, g are relatively prime integers greater than 1. Choose two such N1, N2
and glue them together along their torus boundaries by a certain homeomorphism. Let M
be a resulting closed 3-manifold. The following is a generalization of Motegi when we view
PSL (2,C) =~ PO(3,1)°.

Theorem 6.8. Put T’ = m (M) for the above 3-manifold M. Then any representation of '
into PO(n +1,1) or PU(n +1,1) (n 2 1) is parabolic or sits in the maximal compact group
O(n+1) (resp. U(n + 1)) up to conjugacy.
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Corollary 6.9. The above 3-manifold M admits neither a conformally flat structure nor a
spherical CR struture.

Recall the construction: Let $° = {(z1,22) € C? ||z1] + |22|* = 1}. Put L(p,q) =
{(21,22) € §% |2} + 2§ = 0}. Then L(p,q) is the torus knot of type (p,q). The complement
N = % - N(L(p, g)) is a Seifert fiber space over a two ball with 2 distinguished points. The
fundamental group () is isomorphic to

)
{tia1,a2 | [t, 1] = [t,02) = 1,0f = t”',ag =7},

where (p,p') =1, (¢,¢') = 1. Note that ¢ is a central element of m; (N ) which represents a
regular fiber of N.

Let N; = $° — N(L(p;, g:)) be such a Seifert manifold for i = 1,2. Let (m1,41), (m2, £2)
be the meridian-longitude pair of 9N; (i = 1, 2) respectively. If ¢; represents a central element
of m1(N:) as above, it follows that t; = mP*%¢; respectively. So instead of the basis (m;, &),
we can choose the pair (m;,t:) (i = 1,2). Let h : 9Ny — ON» be an orientation-reversing
diffeomorphism whose induced homomorphism satisfies that h,(t1) = mz, he(m1) = t;. Now
glue Ny and N together along their boundary by h and let M be the resulting 3-manifold.

w1 (M) is generated by the elements of 71 (N:) (i = 1,2) under the appropriate identifica-
tion between (mi,t1) and (ma, t2).

PutI' = m(M) and G = PO(n+1,1) or PU(n +1,1).

Proof of Theorem 6.8. Let p be a representation of I' into G. First suppose that p(t;) = 1.
Then by the definition of k, p(m2) = 1. Recall that the fundamental group m;(N;) is the
normal closure of the meridian m; (i = 1,2), i.e., every element of m1(N2) is generated by
the elements of the form gmg~'. Thus we have that p(mi(N2)) = 1. Since he(m1) =1, it
follows that p(m1) = 1. Similary p(m1(N1)) = 1, or p is trivial. If p(t2) = 1, then the similar
argument shows that p is trivial.

So we suppose that both p(t1) and p(t;) are nontrivial. Suppose that p(t1) and p(t2)
are elliptic. Then p(¢1) has a unique fixed point = inside the hyperbolic space HE! (resp.
HZ''). Since some powers of a1, az are generated by t1, both p(a;) and p(az) are also
elliptic. Moreover they fix z. Thus every element of p(m1 (V1)) fixes = and so p(m1(N1))
consists of elliptic elements. Similary p(m1(Nz)) consits of elliptic elements because p(2) is a
nontrivial elliptic element. Hence p(T") consists of elliptic elements. It follows from Theorem
6.6 that either p(I') C E(n) up to conjugacy (resp. p(I') C E(N) = N x U(n)), or the closure
of p(T') is compact. Thus in this case, p is a parabolic representaion or p(T") is contained in
the maximal compact group of G.
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Suppose that p(t1) is nonelliptic. p(¢1) stabilizes the unique point {co} or exactly two

points {0,00}. Noting that p(t1) is a central element of p(m1(V1)), every element stabilizes

{00} or {0,00}. Since h.(m1) = t2 and p(t2) is a central element of p(m1(N2)), every element

of p(m1(N2)) stabilizes {oo} or {0,00}. As a consequence, every element of p(T") stabilizes
{oo} or {0,00}. Therefore we obtain that p(I') C E(n), or p(I') C O(n) x R*respectively.
(Similary, p(T') C EW), or p(T) CU(n) xR*.) 0O
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