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Introduction

Models of the random motion of finitely many reflecting objects were constructed by
Saisho [3] and Saisho and Tanaka [5]. In this paper we consider the random motion of M
molecules in R®. We assume that (i) the k-th molecule consists of nx(> 1) atoms, (i) two
atoms in different molecules reflect when the distance between these two atoms equalstop >0
and that (iii) the distance between any two atoms in the same molecule does not exceed R > 0.
In our model, collisions between atoms belonging to the same molecule are not considered.
In [3], (ii) was not considered and in [5] ng =1 for all k. The same model was discussed in
[4] without proof.
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Here we use the convention E =0. We mean that Ay describes the set of indexes of atoms

i=1
in the k-th molecule. We put m(i) = k if i € Ax. Then our model can be formulated as
follows. For given w = (w1, wz,...,wn) € C([0, c0) — RN?) satisfying

lw:(0) —w;(0)) <R forall i,j with m(i)=m(j),
2p forall i,j with m(i)# m(j),

consider the equation
N )
0.) O =u@+Y [ (66 -Foase, i=12,..N,
i=1v0

(#i)

under the conditions
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(1) €8 = (&, ¢F,...,£R) € O([0,00) = R"?)  with

EF () - ef@WISR forall i) with m(i)=m(j),
>p forall i,j with m(i) #m(j), t=>0,
(2) £& is a continuous function which is nonincreasing or nondecreasing according as
m(i) = m(j) or m(i) # m(j) with £ =¢%, £5(0)=0 and
() = { fot LijeR(a)-&R(a)I=R} (s)defi(s), it m(3) =m(y),
ij - 3 . 0
Js Laereo-ereoi=p) ()85 (), if  m(i) # m(j),

where 14 denotes the indicator function of a set A.
Once we find a unique solution £7(t) = £F(t,w1,wo,...,wn) of (0.1) for given w =
(w1, w2 ..., wn), we can define a stochastic process X(t) = (X1(¢), X2(t),. .- ,Xn~(t)) by

Xi(t) = e8(t, W1, Wa, ..., Wy), Wi(t) = X:(0) + Bi(t),

where B;(t),i = 1,2,...,N, are independent d-dimensional Brownian motions. Then X(t)

satisfies the equation
Xi(t) = Wi(t) + Li(t), i=1,2,...,N,

where Li(t) is a process of bounded variation which varies only when

) R@)= max |X(@)-XO|=R or
jim(3)=m(i)
:(t) = mi Xi(t) - X;()| = p,
p(t) = min C1X() - X)) =p
so that
(ll) R,(t)SR, Pi(t)ZP, t>0, i=12...,N.

We call X(t) the random motion of M molecules mutually reflecting in R?.The first problem
of this paper is to show that the equation (0.1) can be solved uniquely following the idea of
[5]: we consider the (configulation) space

Dr = {z = (21,22,...,ZN) € RN%: |z, — 2] <R for Vi,j with m(i) =m(j)
and >p for Vi,j with m(i) # m(i)}

and show that Dg satisfies Conditions (A) and (B) (§ 2) which assure the existence of the
unique solution of the Skorohod problem (abbreviated SP) (w;Dr) and then we see the
equivalence of the equation (0.1) and the SP (w;Dr) (a precise formulation of Conditions
(A), (B) and the SP are given in § 1).
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Our second problem is to consider the convergence of £€¥ as R tends to 0 and determine
the limiting function £°. Roughly speaking, we show that £° describes the motion of mutually
reflecting M hard balls of diameter p whose ratio of masses is ny : n2 : -+ : nas (88 3, 4).

Next we consider the stochastic differential equation (abbreviated SDE)

dX{(t) = o(XF(t))dBi(t) + b(XE(t))dt
+ f} (XF() — XP(t))deR(t), i=1,2,...,N,

j=1
(#1)

X®(0) € Dg,

under conditions similar to (1) and (2) (§ 5).

§1. Skorohod problem

Let D C R" be a domain and we call a member 7 of the set Ny = Nz(D) = {n :
7] = 1, B(x —rn,r) N D = 0,7 > 0} an inward unit normal vector at = € 8D, where
B(y,r) ={z€ R": |[y—z| <r}. We alsodenote Nz, =N;+(D)={n: |n|=1, Bz —
™m,r)ND =0}, r>0.

Remark 1.1. Let 1 be a unit vector in R®. Then the following two statements are
equivalent:

(1) n e N,

@) y-=n)+5ly-2"20 forall yeD,
where (-, -) denotes the usual inner product in R (see [1], Remark 1.2).

Now we pose the following two conditions on D.

Condition (A). There exists a positive constant rp such that
Ne=Newp #0 for all z € 8D.

Condition (B). There exist constants § > 0 and 8 € [1,00) with the following property;

for any x € 3D there exists a unit vector €, such that

{ez,n) >1/8 forall ne U Ny.

yEB(x,6)N8D

Then we pose the following problem introduced by Lions and Sznitman [1] and Saisho

(2]-
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Skorohod problem(w; D). For given w € C([0,00) — R"™), w(0) € D, find.a pair(§, £) of
functions satisfying the equation

(1.1) &(t) = w(t) + /(; n(s)dé(s)

under the conditions:
(i) ¢ € C([0,00) — D),
(i) £ is a continuous nondecreasing function with £(0) = 0 and

¢
t0) = [ ton(e)atts),
0
(ili) n(s) € Ngs) if &(s) € OD.
We call (1.1) the Skorohod equation (abbreviated SE) for (w; D).

Theorem 1.1([2]). If D satisfies Conditions (A) and (B), for any w € C([0,00) — R")
with w(0) € D, there exists a unique solution (£,£) of the SP (w; D) and £ is continuous in
(t, w).

Suppose that D C R" is a domain written in the form D = (|/_, D; (finite intersection),

i=1
where each D; is a smooth domain in R" satisfying Conditions (A) and (B) with r; = rp;.

Furthermore we assume the following conditions on D.

Condition (Bo). There exists fo € [1,00) with the following property: for any x € 8D

there exists o unit vector €2 such that
(e2m) >1/Bo forall m € N;.
Condition (C). There exist constants 4. € (—1,1) and 6. > 0 such that
(ni(z),m;(y)) 2 Ye, €DiNGD, y€D;NOD, 1<4,j <p, |z—y| <ée.
Now we put I(z) ={1<i<p: z € D;}, a(z) =f§I(z), and

N(D)=KneR":|n|=1, n= Z cani(z), c¢=>20,, z€dD.
i€l(z)

Then we have the following lemma.

Lemma 1.1. Nz (D)= Ni(D), Vz € 8D.
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Proof. Nz(D) D Nz (D) is clear from the fact
{y—=z,ni(z)) + 5 ly - z*>0, VyeD,icl(z).
For the converse inclusion we note that for any a (0 < a < 1) there exists &, > 0 such that
C(z,ni(z) : @) N B(z, ;) C D; U {z},

where C(z,n:(z) : a) = {y € R": (y — z,n:i(z)) > aly — z|}. Thus, setting & = A &, we
i€l(z)
have
n C(z,ni(z) : @) N B(z,§') c DU {z},
i€l(z)
which implies

(1.2) e-MN(D)C () Y Clani(z):a)

0<a<l i€l(xz)

Here, C (z,m: (z) : @) is the dual cone of C (z,n; () : ) defined by
C(z,ni(z):a) ={z: (z—=z,y—1z) <0, y € C(z,ni(z) : a)}.

(1.2) implies Mz(D) C Nz(D) (see [5], p-736). ]
Proposition 1.1. D satisfies Condition (A) with Nz(D) = NL(D).
The proof is easy from Condition (A) for D;, 1 < i < p, Condition (C) and Lemma 1.1

and so, it is omitted.
Proposition 1.2. 7D satisfies Condition (B).

Proof. We define a unit vector €. in Condition (B) by the following manner. By smooth-
ness of D;, 1 < i < p, we easily see that there exists a constant 6’ > 0 such that for each
z € 9D there exists z € B(z,8') N 8D with I(z) D I(y) for Vy € B(z,§) N dD. Then, we
define e, = €2. By the smoothness of D; again, we see that for any 0 < ¢ < 1, there exists
a constant §” > 0 such that for any z,y € 8D;, |z —y| < §”, 1 < i < p, we have (n.,n,) > ¢
with 1z € Nz(D:), my € Ny(D;). Thus, combining this with Lemma 1.1 and Condition (Bo)
for D, we get Condition (B) for D. 1

Now let (2, F, P) be some probability space with a right continuous filtration (F:). We
assume that 7; contains all P-null sets. Then consider the following SDE of Skorohod type
for D on (9, F, P):

(1.3)

dX(t) = a(X(£))dB(¢) + b(X(t))dt + n(t)de(t),
{ X(0) € D.
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Hereo: D — R*"®R", b:D — R" are bounded Lipschitz continuous functions and X (0)
is an Fo-measurable random variable and {B(t)} is an n-dimensional Brownian motion with
B(0) = 0. A solution (X, £) of (1.3) should be found under the following conditions:

(i) X is a D-valued (F:)-adapted continuous process,

(i) £ is a continuous non-decreasing process with £(0) = 0 and

m=£mw@wa

(iii) m(s) € Nx(s) if X(s) € OD.

Theorem 1.2([2]). If D satisfies Conditions (A) and (B), there ezists a unique (strong)
solution of (1.2) for any initial value X (0) € D.

§2. Existence and uniqueness of a solution of the equation (0.1)

In this section we first prove that the domain Dg satisfies Conditions (A)and (B).
If we set
D;={z€ RN |z —z5) > p},  m(i) = m(j),

DY = {z € R": |z: —xj| < R}, m(i) #m(j),
for 1 <1< j < N, we immediately get
Dr= n Di_-,' n ﬂ Dij.
(i.4):m(i)=m(j) (4,3):m(i)#m(j)
Thus, Proposition 1.1 yields immediately the following proposition.

Proposition 2.1. Dg satisfies Condition (A) with

Ne(Dr)=<n:|n|=1 n= Z cijnij(z), cij =203, z€dDg,
Ged=

where J. = {(i,7) : * € dDij or x € 8DV} and

0,...,0,%2 0,...,0,22L,0,...,0), if m(i) =m(j),

* VR’ T EZR Y
n; (m) — (i—th) (5—th)
17 - P U
0,...,0, 2% 0,...,0,%% 0,...,0), if m(:)#m().
V2p 2p
(i—th) (i—th)

For z € RN¢ and I C A ={1,2,...,N}, we denote =y = {z; : i € I'},

aD =gl = 57 > =

i€l
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and define 2 = (2,2, ...,7%,) € R™? by z¥ = g(Ax, z), where §] is the number of elements
in I. We also denote g; = z5,ipi €A Wenote |g; —zi| <R IfI= UE_, Ax;, we denote
the number p of molecules included in I by 1.

Definition 2.1. Suppose z € RV9,
(1) zr and z; (I,J C A) are said to be 2p-separated if |z —z;|>2pforallic I and jeJ.

(2) When I = Uf=1 Ak, 2 <p < M, x; is called a cluster if for any Ax, An C I there exists

a sequence of indexes io(= k),i1,...,i,(= h) such that Ay C I, A =0,1,...,q and
|zi — 25| < 2p for some i € A;, and j € A, ,,, A=0,1,...,g—1.

For each x € 8Dpg, we classify the index set A into four classes:

Fa=Ta(z)={i€A: |zj—z£|>2p forany je Am(iyr k € Am(s)
and |z; —zx| > R/2 for some j,k € Amy},
Po=To(z)={i €A: |z; —zx| <2p for some j € Amei),k & Amey)
and [zj —zk| > R/2 for some j,k € Apme},
Fe=Te(z)={i€A: |z —zx| <2p for some je Ay b & Ams)
and |z; —xx| < R/2 forany j,k€ Amn},
Fs=Ts(z) =A\ (T UL UT,).

Remark 2.1. For z € O9Dr we can write

14
(2.1) {z1,22,...,28} = Ua:z,‘U:cr‘,Ua:p,,
k=1
where z1, ,k =1,2,...,p, are mutually 2p-separated clusters and the convention U:=1 =0Qis

used. For i € I'y U T there exists a unique k(1 < k < p) such that i € I; and we say that

z1, is the mazimal cluster including ;.
Hereafter, we fix £ € 8Dg throughout this section.

Remark2.2. Suppose that z; is a cluster and i € I. Then Definition 2.1 yields |lzi—g(I)| <
(DR +2(41 ~ 1)p.
Now we define u = (u1,u2,...,un) € RV by
Gi» if 71el,,
ui = § 2¢g; — g(I(5)), if ieTuUl,,
;, if €T,
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where zy(;), I(Z) C A, is the maximal cluster including ;. Then we have the following lemma.
Lemma 2.1. We have |u —z| < {(M +2)R+2(M — 1)p}VN.

Proof. Suppose i € Ty UT. and that z; is the maximal cluster including z;. Then, by
Remark 2.2, we have

|us — 2| = [2g: — g(I) — @il < 2R+ (W)R + 2(41 — 1)p.
For i € Ta(z), we have |u; — z:| = |g; — =] < R, and for i € Ts(z), lui — zi} = 0. Thus, by

(2.1) we have

P
l—af? < D M {Gl +2)R+ 200 — 1)p}” + (iTa) R

k=1

{(M +2)R+2(M — 1)p}*(§1) + () R®
{(M +2)R+2(M —1)p}°N. 1

A A

Now we define

I(z)={(,7): 1<i<j<N, |z:—=z;|=R, m(i) =m())

or |z — x| =p, m(i) #m()}

and €2 = (u — z)/|u — z|. Here we remark that the i-th component (€3): of €2 is given by

(9i — x:)/|u — =), if i€T,,
(€2)i =< (2g: — g(I(3)) — z:)/fu — 2, if ieThUL,,
0, if 1els.

Then we have the following lemma.

Lemma 2.2. If (3,7) € I(z) and p > 4R, we have (eg,‘n,-j(a:)) > 1/Bo,where fo =
VIN{(M + 2)R+2(M — 1)p}/{RA (p — 4R)}.

Proof. Suppose m(i) = m(j). Then, 3,5 € Ta(x) or I's(z) and in both cases we have
(2:2) (€2,m45(z)) = {@: — ;5,7 — 25) [V2ZRIu — z| = R/V2lu — 2.
Next, we assume m(i) # m(j). Then we have ,j € [, UT: and

(2.3) (€8, m:5(2)) (2g: — 295 — Ti + €5, % — ;) [V2p|u — 3|

{0 +2(g: — 95 — 3 + 5,2 — 25)}/ V2 u— 2
(p —4R)/V2lu - al.

v
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By (2.2), (2.3) and Lemma 2.1, we have

(e2,nis(z)) = {RA(o—4R)}/V2|u—a]
{RA(p—4R)}
V2N

1/,

> {(M +2)R+2(M —1)p}*

which complets the proof of Lemma 2.2. 1

By Lemma 2.2 and Proposition 2.1, we see that Dr satisfies Condition (Bo) with fo.
Thus, Proposition 1.2 yields the following proposition.

Proposition 2.2. If p > 4R, Dg satisfies Condition (B).
Theorem 2.1. The equation (0.1) has a unique solution.

Proof. Consider the SP (w; Dg):

(2.4) £() = w(t) + / n(s)dt(s),

where 72(s) € N¢(s)(Dr) can be written in the form

ns)= T csls)ni(s), eyls) 2 0.

If we put FEiIsn
e - v / “calo)dels), i mli) = m(s)
o /0 ci)dels), i mE) £ m),
and
es(t) = {Cﬁ(t), if (7,%) € Jeqy,
, if (4,4, (G,9) € Jeqry, &(t) € ODp,

it is easy to see that (2.4) yields (0.1).
For the converse, we see that (0.1) also implies (2.4) with

n(t) = a(t)/la(®)l, de(t) = v2|a(t)|d (@),

where

at) = D pdis(t)ng(E(s) - Y Rdij(t)ni;(£(s),

1<i<j<N 1<i<jEN

m(i)#m(j) m(i)=m(j)
e = Y - Y &),

1<i<j<N 1<i<j<N

m(i)#m(j) m(i)=m(j)
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and d;;(t) = d¢i;(t)/d¢ (t) (Radon-Nikodym derivative). g
We now define

Doo =. {&=(21,72,...,2n) € RV : |3 — z5] > p, m(i) # m(j)},
0 = {m:(:m,:cz,...,:l:M)GRMd: |a:,~—a:,-|>p,i;éj},

and remark the following for the latter use.

Remark 2.3. (1) ([3]) Do satisfies Conditions (A) and (B) with res = rp,, = p{8(N —
1)2}" and

Ne(Do)={m: |n|=1,n= Z cijnij(z), ¢i; 20, z€ 0D,
Gedy

where J° = {(3,7) : 1 i< j <N, |z: — z;] = p, m(3) # m(j)}.

(2) ([3),[5)) © satisfies Conditions (A) and (B) with ro = p{8(M — 1)%}‘1 and

N(O)=<n:|n|=1,n= Z cknMin(z), cn 202, €90,
wmed?

where J2 = {(k,h): 1<k <h < M, |zx — za| = p} and

x — —
men(z) = (0,...,0,"‘\/__2:",0,...,0, xhﬁ:k,o,...,ﬂ).
(k—th) (h—th)

§3. Convergence of (% as R tends to 0

Let £R(t) = w(t) + f; n(s)deR(s) be a SE for (w; Dr). Then by Proposition 2.1, we can

write

(3.1) €7 (t) = w(t) + 97 (@) + 27(),

where

= [ 3 esamulate),
0 1<i<isN
m(i)=m(j)

FO= [ esmalar.
0 1<ici<N
m(i)#m{3)
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Thus, setting
m(s) = 3 c(s)n;(s),
1Si<i<N
m(i)#Em(j)
cij(s)

3 cia)My;(s)
1<i<iEN
m(i)#Em(s5)

deR(s) = ’ Y. cii(s)ni(s)
1<i<j<N
m()#m()

Céj (s) =

deR(s),

we have p®(t) = j: m(s)dﬁ‘(s), ™M(s) € N¢r(5)(Doo), and we see the following remark.
Remark 3.1. (3.1) is regarded as a SE for (w + 9%; Dy,).

For any z € RM? we define T = (T1,%2,...,Tn) € R¥ by B = =% if m(i) = k, and for a
function f : [0,00) — R we define 7 : [0, o0) = RV by F(t) = m, t € [0,00). We denote
n? = (£R)9, R = (¥®)9. Clearly, n7 describes the motion of the center of gravity of each
molecule. Using this notation, (3.1) yields n7(t) = w?(t) + ®%(¢).

Remark 3.2. For each z € 8Dy, we can represent uniquely as

4
{(L’l,a:z, Tt ,IEN} = U I, Ux{i:m(i)eKo}’
k=1
where 0 < p < [M/2],
K,=K,(z)={1<k<M: |zi—z;|>2p forany i € Ay and 7€ An, h#k},
and x5, k=1,2,...,p, are mutually 2p-separated clusters. We also define
K.=Kc(z)={1<k<M: |z; —z;| <2 for some i € Ax and j € An, h # k}.

Then, if |z; — z;] < 2p for some i € Ax and j ¢ Ay, we have Ax C I for some unique
h(1 <h <p). Wedenote this h by a(k) = a(k,z). Clearly, |: —z;| < 2p implies a(m(i)) =
a(m(j)).
We define v = (v1(z), v2(z),...,vn(z)) € RV, z € 8Dy by
0, if m()e K,,
vi(a:) = {
Ty — G(m(i); z), if m(s) e K,

where G(k; z) = Y zl,k=1,2,...,M. Then put &, = Vz/|Vz|, T € Do
h:a(h)=a(k)

Hereafter, we assume R < p/8 and prepare some lemmas.

1
Mo (k)
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Lemma 3.1. Assume that |y? —2°| < E, 0<6< p/3V2, and z,y € DrN8Doo. Then
if lyi — il = p, we have (Ew,nij(y)> >1/V/N.

Proof. Set k =m(s), h =m(j). Noting G(k;z) = G(h;z), we have

{29 — G(k: ), LY 9 _c(h: ). B—Y
<mk g(k7 )s \/ﬁp > + <$h G(h, ic), \/2-p >
= (2} —Th, % —¥5) /V2p.

(3.2) (V2,15 (y))

Since |y — vil, |v5 — ;] < R, we have

(zf — =8, 9 — ¥3)
> |ef — zif? — |zf — zf| - (1§ — 2§ + lvh — =R} — 2Rla} — =}
> |22 — 2l|? — (V26 + 2R)|zf — =}
= {|xg — 28| - (V25 + 2R)/z}2 - {(ﬁ'5+ 21{)/2}2 .

Thus, using |z — z,| > 2p — 2R, we easily get
(3.3) (@) — ehiyi — ) 2 20"

On the other hand, we have

N 1/2
|ve| < (Z Ty ~ g(k;x)r) < (p+2R)VN.

i=1

Hence, combining this with (3.2) and (3.3), we have

& s vap L
<e”n”(y)>2¢N‘(p+2R)>JN' X

We use the following notation; for a continuous function u defined on {0, o0), we set

Dsp(u) = sup{lu(ts) —u(te)]: s St <t2 <t}

Do sn(t) = sup{|u(tr) —ulte)| : s St <t2 <t |t2 —t2| <R} R >0,
llelle = sup{lu(s)| : 0 < s <t}

| % | ¢ = the total variation of = on [0,

luli=tlul¢— lul,, 0<s<t
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Remark 3.3. For any u € C([0,00) — R™?), we have
(1) [2(t) —F(s)I/VN < |u(t) —u(s)| < [@(t) - F(s)], s, ¢ > 0.
(2) 24,e(W)/VN < Dsp(u) < D, (T), 0< s < .

Remark 3.4. By the definition of Q_H, we see

o I U R ETEY

Lemma 3.2. Suppose that £% and §H' solve the SE’s

R () = w(t) + ¥R () + " (1),
€% () = w(t) + ¥7 () + o7 (1),

for (w+ 9™, Do) and (w+ p®; Do), respectively in the sence of (3.1). Then,

6o [Fo-7of < Z [[Fo-Fo @[], +a]e])

107

+2(R+R’){\/N+ %(R+R’)N}( [ |+ [ | ) t20,

- — 2 — 8
@) [ 7| < 82.@) + 2{80e@ + 2RCERN VD) |07
2 [ R,
+— | [Fo-w| ¢ 16|, stz
Proof. For (3.4), we have

@o) [ () -7 0).d8%s)

- IESD (T (=& (), )}
O k=1 " jeAx ‘ieA,
/ Z Z{ na(€'(s) ~ € (o)), dofi(e))
0 JEAk

+
N

D (€ (s) - & () - m (€1 () — €7 (o)), dso?(s)>}

i€EA,
- / t <sR<s) — €% (s),dp"(s))

/ < n—l,, D (€ (0) — 68 () - (6(s) — £ (8)), m(s)
k=1 jEA,

1€EA,

Similarly,

[ (Fo-Fo.a7e)

>de7i(s).
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- [ (e -¢¥ @0 )
0
t M —
+ f DD <,% 3 (€F(s) - 6F () - (€1 (o) —s?’(s)),m,’-"(s)>m'(s).
0 k=1jcA, €A
Thus,
6 [Fo-Tof =2 [ (T -7 6,d% e -7 )

< 2 [ (- €080 - 26" )

t N t
+(R+R)] [ Y [mf(s)|deR(s) + EN:
0 o
J=1 j

j=1

my (s)

der’ (s)}
t ' 2
< 2 [ (") - €% (@, p™(0) - 2™ ()
0
+(R+R')\/17(I¢R|,+ |<pR' |£)

By the assumption, Remark 1.1 and Condition (A) for De, we have

t 7 1
69 [ (€0 -€¥ 0)de") - do™ (0))

1]

<o [ e -e¥ @

~ 2re

2(d|¢R|s+d|¢R'|s).

On the other hand, we get
.2
(39) HORXC]
N —
<Y { [P -7
i=1

< 2[(e) =™ (5

+|6F(e) ~ nfs)| + |eF (0 —F(s)l}z

2
+2(R+ R')’N.

Hence, combining this with (3.7) and (3.8), we have
v N IS G il IO NG R R
[Fo-7o| <= [ |Fe-e| (a1, +4 |7 ])
o Jo s
+R+RWE (|67] + |7 ],)

_— — 2 y)
n%(s) =" (S)I (d | %], +d | " |8)

t

<2

Tooo
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+2{(R+R’)x/ﬁ+ %(R+R')2N} ( [e® 1.+ [« t)’

which proves (3.4).
Next we prove (3.5). By the similar calculation to (3.6), we have

[ t <n—R'(u) - n'_R(s), dg#(“))
- / (67 ) - €500, d" )

t M -
[T (Y €0 -eo) - (w ~€F) m) ) )

S k=1 JEA i€AL

t
< [ (€ - €76), 40" ) + 2RV [ 67 ]2
By the assumption, Remark 1.1 and Condition (A) for Dy,
t t
[ e -ewarmw) + o2 [ @ - a o], 0
Thus, we have
t — —— —
(3.10) [ (T -7, w)
t
<o [ RO Rl | oR | +28VF |67
By the similar calculation to (3.9), we have
(511 I€%() - €@ < 2[F(e) - (|| + 8N,
Hence, (3.10) and (3.11) yield
! — -— —
612) [ () -7, w)
| — -— 2 s

< %/ InR(S)—nR(u), d|e®| u+2R(%RN+\/JV) e

Thus, by (3.12) and Remark 3.4, we have

() — 7 (s)

"= - Pl +2 [ (7w - T, w)
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t — — o—
+2 / <w9(t) — (), d@R(u)>
< A2,(w)+2 {A.;,:(F) +2R (%RN + \/IV)} %],

2 L | — — 2 R
+2 [ [P -] ¢ o],
Too s

The proof is finished. ]
Now we define
TR = inf{t>0: £7(t) € 0D},
= int o> T [0 - 7 (Tn)| 282}
TR = inf{t>t.: €8(t) €D}, n=1,2,3,....

Hereafter we omit the superscript ‘R’ if there is no possibility of confusion.

Lemma 3.3. We have

Lo 13 <N (B0e+ B0s@) s 5, € [T, Tl

Proof. Let Ta_y < s <t < tn and set € = €¢(r,,_,). Then, since (€,%(t) —¥(s)) =0,
Lemma 3.1 implies

@BED —£6) = Euld)—w(s) + @ 0(t) - ¢(s)
> @ult)-we)+ leli/VN,

(3.13) o2 < VN{I(E,£@) - &(s))] + (€, w(t) — w(s)}-

If we put £ = £(Tn-1), ¥ = Vg(,, _,) and A¢ = £(t) — £(s), etc., we get

€08 = |D. D (=1 —G(ka), A&)/Iv]

kEKc i€A
= | Y nulal - G(ks), Ame) /0]

k€K

2|9 . 2 % %
S nklwk _ g(k? w)‘ ) ( |A |2)
3

< ]/_Tﬂv ( > et - G(k;x)F) ||

k€EKc
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= VN|An| < VNAL(n).
Similarly, |(€, Aw)| < VNA, ¢(w?).Thus, by (3.13), we have
[o1f <N(Dae(n) + Dot (w?)), s,t € [Taoi, tal].
Since ¢(t) = constant, t € (tn,Ts], by Remark 3.2 we consequently have
lel: < N(Qst(n)+ Dse(w?))
< N (Aa,t(ﬁ) + Aa‘t(ﬁ)) y S8 € [Thor, Tl 1
Lemma 3.4. Let T be any finite fized time. Then for any € > 0 we have
(3.14) Dap(@) < [(1 +eh {Aa,t(ﬁ) +2NR (1 + g)} +elol ;‘]
xexp( el f/’rw) , 8,t€[0,T).

Proof. By (3.5) we have
- - 2 2 [ 2 2R s
7))~ F(e)° < A%, (@) + 2{A,,t<w9) +2NR (1+ r)} lel:

+2 [ o) - Tl Lol

Using Gronwall’s lemma, we have

0 =7 < [42,)-+2{ 8. + v (14 2) | 11
xexp (2 | @2 /7e0)
< [{As,,@s’) +2NR (14 %)}: 2{A,,,(F) +2NR (14 %)} lol :]
xexp (2 [ 17 /re)
< [(1 +e‘2){A,,c(F) +2NR (1 + g)}2 +( el :)2]
e (2 011 Jr),
which yields (3.14). .

Lemma 3.5. For any finite T > 0, there exist positive constants K 1, K5 such that

(3.15) Doy () < KL Dua(@P) + KLR (1 + Tﬁ) , 5t € [Tucs, Thl,
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provided that Tn < T. Here K1, K; depend only on N,p, T, "F"T and are independent of
R, |wllr.

Proof. By Lemmas 3.3 and 3.4, we have

2R

Too

De () < [(1 + e‘l){A,,:(ﬁ) +2NR (1 + )} + Ne (As,z(ﬂ) + As,t(;-g.))]
Xexp {N (Aa.t(ﬁ) + Aa,t(ﬁ)) /roo} , 8t € [Tn-1,Tn].

Since A, () < Sfors,te [Tn-1,tx], we have
-1 — 2R -1
Dox(®) < 4 (1+67" + Ne)Ayo(w%) + 2NR (1 + r—) (1+e7Y)

+Nelas (T])}exp {2N (E+ ||F||T) /rm} , 8,t € [Tac1,Tal.

Thus, for 0 < e < exp{—ZN(g+ ||‘u7||T)/r°°}/N,
e ) 3 2R
(3.16) Dot() < KEDoo(w®) + K5R (1 " r—) , 8, € [Ta1,tnl,

where

(1+¢&7! + Neexp{2N(® + |[wlr) /7o }

Kf = = —
1 — Neexp{2N (6 + ||w* ||'1")/1‘oo}
e 2N(Q+e?) .
Kz 1+s‘1+NEK1'

On the other hand, if t, < T}, we have
[7(t) — ()| = [P (£) — w¥(s)], ¢ € [tn, Tn]-

Thus, As () = A e(w®) for s,t € [tn, Tn]. Combining this with (3.16), we get

— 2R
D) < (KE +1)A0s(@?) + KSR (1 + —) , 8, € [Tac1, To)-

Too

Therefore we have (3.15) with

Ki =inf{Kf +1: 0 <e < exp{-2N@ + [w’ll7) /re}/N},
K;=inf{K;:0<e< exp{—2N (5 + llmllr)/roo}/N} ]
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Proposition 3.1. Let T > 0 be any finite time. Then Sor sufficiently small R > 0,
there exist positive constants Ky, Ky such that ‘

(3.17) lol! <Kbn@) +KR(1+ ), 0<act<T,

where K1, K2 depend only on N, p, T, ||m||7- and the modulus of uniform continuity of ws.

Proof. By Lemma 3.5 we have

5/2 = [(tn) = F(Ta-1)| < KiAT,_, 00 (0P) + K4 (1 + ,,ﬁ) ;

pe— !
(3.18) A<Ar_, .0+ %2p (1 + £) ,
K Too

where A = g/ 2K]. On the other hand, if we take R sufficiently small so that

K} R
K’R (1 + E) < A/2,

by the continuity of w? in i, there exists a positive constant h such that AOI,T,;‘ (F) < A/f2,
where h depends only on the modulus of uniform continuity of ﬁ, Tand A. Thus,if T, <T
we have T, — T,—1 > h. Indeed, if we suppose Ty, — Tu_1 < h, we have

A1,y 2 (w%) < Doa(w) < A2,

which contradicts (3.18). So, we have T, > T for n > T/h. On the other hand, by Lemmas
3.3 and 3.5, we have

le |2 < N(K]+1)A,:(w®) + NK4R (1 + rﬁ) y &t € [Tno1,Tn].

Therefore, we consequently have

lol? SKIA,,,(EHIQR(HTE), 0<s<t<T,
where
T ! T 4
The proof of Proposition 3.1 is finished. ]

Remark 3. 5 For sufficiently small R > 0, Proposition 3.1 and Remark 3.4 imply that
I @ I o I <I>R I are uniformly bounded in R for any finite t > 0.
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Remark 3.6. We easily see that the constants K1, K2 in (3.17) are continuous in ||E?||T

and the modulus of uniform continuity of .

Theorem 3.1. LetT > 0 be any finite time. Thenn™ converges uniformly int € [0, T
as R tends to 0.

Proof. Let 0 < R1 < Rz < R and suppose that R is sufficiently small. We denote a
upper bound of | ot l r by C. Then, Lemma 3.2 implies

|F(t) - ?‘7(t)|2 < 8CR(VN +2RN/re)
% | —— 2
+Z [ -7 (@ o+ e 1)
® Jo
By Gronwall’s lemma,

— —— 2
[T ) 70| < 8OR(VN +2RN/r )t/

Thus,
——— —|]2
(3.19) ||nR1 _ 7% < 8CR(VN +2RN/re)e™/"= — 0 as RIO0.
¢
The proof is finished. (]

The following theorem is immediate from Theorem 3.1 and the fact
R, 1<i<N.

eR(t) — ni()| <

Theorem 3.2. For any finite T > 0, £R converges uniformly int € [0, T} as R tends to

Hereafter we denote the limit functions of n* and & as R | 0 by £° and E)?, respectively.

§4. Characterization of the limiting function

In this section we prove that the limiting function £° solves the SP (F; D). To show

this, we prepare the following lemma.

Lemma 4.1. Let T > 0 be a finite fized time. Then for any ¢ € C([0,00) — Doo) we
have

/, t (¢w) — (), 47 (w)) + - [ t Jotw) - n_”(u)rd | "1,

+{(C@+RVN+NR [re} | 6®|, 20, 0<s<t<T,
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where "(t) = sup sup |G — ¢F|, .
1<kSM €A,
Proof. By Remarks 1.1, 2.3 and 3.1, we have

0 < (¢ ~ £ (), m(w)) + 57— [¢(w) ~ €% ()

355> {(6) P, miw) + () - ), mtw) )}

k=1i€A,

+ii{]a(u)—?(u)| + [ - f )}

33> {{ce ) ~ 7wy, mi(u)) + (o) - 2w, matun) }

k=1i€A,

N 2
+ 30 Rlmi(w)] + —— o) 77| + VB /reo

i=1

E mi(u) N

M .
<3 m{ctw) -, )+ )
k=1 i=1
+RVN + ri ,((u) - n_R(u)lz + NR?Jree
M Z mi(u) 1 —_— 2
<33 (6t - nb, e )+ o few - 7|
k=1j€A;

+(¢*(v) + R)WN + NR?/ros, d | of l W2
Thus, we have

2. mi(u)

t M ] 3
[T <<f<u> — (), 2 >deR(u)
® k=1j€Ay
o f o) =T d[0R |+ {@ @ + RVE+ NRra} | 07| 20
Since
M 2 miw), _
2,5 <Cj(u) ~ e ), 'EAknk >deR(u) - <C(u) - ﬂR(u),dQR(u)>,
k=1 jEA,
we have

[ (e~ T, a7 )+ - [ e -l ¢ o],

115
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+{(C@+RVN+NR [r} | 7|, 20.

The proof is finished. 1

Theorem 4.1. ¢° solves the SP (;07; Do), that is, £°(t) = w(t) +3°-(t) is a Skorohod

equation.

Proof. By Theorem 3.1, we have 'n_R — ?, gﬁ — .‘IT(T uniformly in ¢ € [0,7] as R tends
to 0 for each finite T > 0. Thus, all we have to show is the following (1) and (2).

1)  dB(u) = Au)d |F| , Ti(u) € Npogwy(Doo) if €°(1) € ODeo.
@) / ) |$5| =3(t).

For the proof we adopt the similar procedure to that of [1: Theorem 4.1]. Let ¢ be any
function in C([0, c0) — Do) and put

t _— —

= [ (o) -7, dw W),
St -
L= / I¢(w) —nR@w)?d | "], 0<s<t<T.
By Remark 3.5, there exists a constant C > 0 which is independent of R with
R SRl < |..R
R PR i R T PR
|2°|, < |$"| <lim Eﬁ| <C.
T~ RIO T

If we put E: ¢ —€°, we have

L= f t (), d2%w) + / ' GOETROEZON

It is easy to see that

JRGERECEC)

g”g"-?"“ .C—0 as R]O.
T T

Let s=1to <t < --- < t, =t be an equi partition of [s,t] and define & by C™(u) = C(tx)
for tx < u < te41, £=0,1,2,...,n — 1. For any fixed € > 0 we take n so that "Z" —E“ <e
holds. Then we have ¢

[ (e -2, d5%w)

<eC,
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<eC.

[ (@ -ew.dw)

Thus,
<2C+o0(1), R]|O.

|/ (e d5) - [ (G, i)

Therefore we have

I —»/ <C(u) —§°(u),d@(u)> uniformly in t € [s,T) as B | 0.

Next, let da. be any weak limit on [0,T] of I " I . 3 R | 0 via some subsequence
(Rk) R >Ry >--- 0. Then,

} [ e -Fwra o] - [ ke - ewraa,
0 0

< |[e@-Twraen], - [kor-ewraloty|

+ ] / o) ~ €@ | 7| - / IC(w) — €%(u) P das

It is clear that the second term of the right-hand side of the above inequality tends to 0 as
R | 0 via (Ri) by the definition of da.. Setting (R = ¢ — n®, we have

( / ) -7 @)l | o® |, - f |<(u)—5°(u)|2d|so”|u(
0| - kor

< .C—0 as R]O.

T

Hence, we have I, — j:: |¢(u) — €°(w)|?day as R | O via (Rx). Since d |<17| < day
(absolutely continuous), there exists a bounded measurable function k : [0,7] — é”d such
that d®%(u) = h(u)da,. By Lemma 4.1, for any ¢' € C([0,00) — Deg) with ¢! = ¢ m(s) =
m(j), we have

/ (¢'(u) — €°(w), h(s)daw ) + % / |¢'(w) - €w)|*daw >0, 0<s<t<T,

(4.1) (¢'(w) — °(u), h(u)) + é [¢'(w) — °(u)| 2 0, dau—ae.
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On the other hand, for a function x € C(R"* — [0,1]) with

{ 1 on a compact set included in  Deo,
X =

0 on RN\ Do,

we have
[ eyt~ [x@wle,
0 0
< Ix(€O) =x(@*)|l,-¢ —0, Rlo.
Moreover, since |£f(t) - Ef(t)‘ = p , m(¢) # m(j) implies
p—2R < [ = 7| = |nfio () iy (] < o+ 2R,

we easily have

0 = l,igfg/o x(Fw)d ||,
= i [ () | ¢" ],
(4]
- [ x€w)da,

where ‘lim’ means the limit in R | 0 via (Ri). Letting x increase to 1p_,, we have &u) €
8Doo, day—a.e. Thus, by (4.1), Remarks 1.1 and 2.3, there exist A(u) > 0 and n(u) €
j\7€°(u) (Do) such that h(u) = A(u)n(u), dau—a.e., where

Hence, if £°(u) € 8Dwo, we have

d | ¥ | = |h(w)|dav = Mx)daw,

d®%(u) = h(u)day
= Aw)i(u)daw
= 7(u)d I 53' L n(u) € Ne/(ny(Doo)s

and f(: Ti(u)d l 0 | F(t). This complets the proof of the theorem. ]

u
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Remark 4.1. 71 e Kf;c-(Doo), x € 80 can be written in the form

N
‘ﬁi = za;(-a?z _Ej)a El] 2 0) 1= 1a2y"',Na
=1
(#4)
where we note that T = (Z1,%2,...,Tn) € 0Dw and T: = T; if m(:) = m(j).

We now define n° = (n0,73,...,1%) € RM?! by 90 = €2 for i with m(3) = k, k

1,2,...,M. Then, it is easy to see that 7° = £°.

By Theorem 4.1 and Remark 4.1, if we put k = m(), we can write

t ——
/ Fi(s)d | 30 |
0 8

/:ZN:Z‘J‘(")(E(S)—F,-(S))d |g|s, 1=1,2,...,N.

(#1)

(2

Setting E“:’;(t) = [, Gij(s)d I g I and then

B =8,(1) if k=m() and h=m(j),

we easily have the following theorem.
Theorem 4.2. {n°(t)} satisfies the following equation:
M t
(42) () = wk(t) + D _na / (mi(s) — mR(9))dBu(s), k=1,2,..., M,
0

h=1
(#K)

under the conditions

1) 7°= (R, 73,...,m%) € C([0,00) » RM®) and |nd(t) —u(t)| = p if k#h,

(2) € is a continuous nondecreasing function with Bn =, 63,(0)=0, and

t
fgh(t)=/o 1{|ng(s)_ng(s)|=p}(S)degh(s)-

In particular, if n1 =ng = --- = npy, {n°(t)} solves the SP (w?; ©).

119

Remark 4.2. The existence of the unique solution of (4.2) is easily derived from Theorem

3.1in [3].



120 Y.SAISHO
§5. SDE representing the motion of mutually reflecting molecules

Let (2, F, P) be a probability space with a filtration (F;). We assume that F; contains
all P-null sets and F; = | Fise. We also assume that there exist independent d-dimensional

e>0
Brownian motions {B;(t)}, 1 <i < N, with B;(0) = 0.
For given o : R* — R*® R? and b: R® — R®, we consider the SDE

(5.1) dXE(t) = o(XF(t))dBi(t) + b(XF(t))dt

N

+ ) (X - XFO)E®), i=1,2,..., N,
j=1
)

under the conditions

(i) {X£} is an (F¢)-adapted R“-valued continuous process satisfying
IXF) - X7 @) <R for ¥j with m(j) =mf(i),
>p for Vj with m(j) #m(), t 20,

(ii) {¢} is an (F:)-adapted continuous nonincreasing or nondecreasing process

according as m(i) = m(j) or m(i) # m(j), with £;; = £3, £:;(0) =0 and

L re x| p) (2R (), i m(E) = m(5),
S A
Jo | xpe-xpio|=o} G239, i m(i) # m(j).

Here we always assume that the initial values XPO)=X;:, i =1,2,...,N, are R%-valued

Fo-measurable random variables satisfying

(5.2) IX;—X;| <R if m()=m(),

2p if m(i) #m(j).

The following theorem is the immediate consequence of Theorem 1.2 and [5: Theorem
5.1].

Theorem 5.1. Assume that o and b are bounded and Lipschitz continuous functions.
Then for any Fo-measurable initial values satisfying (5.2), there exists a unique strong solution
of the SDE (5.1).
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Indeed, setting

o(z1) 0
0'((32) b(xl)

a(w): . ’ b(m)= ,:B:(a;l,._.,xN)ERNd,

0 o(zn) ben)
and

LRty = / t n(s)de"(s),
(5.3) W) = X(0) + / t o(X®(s))dB(s) + / t b(X *(s))ds,
[ 0

we see that the equation (5.1) is equivalent to the Skorohod SDE X ®(t) = W#(t) + LB (%) for
(W, Dg), where {B(¢)} is an Nd-dimensional F;-Brownian motion with B(0) = 0.

Finally we consider the convergence problem as R | 0. Let 7 > 0 be any fixed time and
PR the probability measure on C([0,T) — RN x R™%) introduced by {(B@®),WRt):0<
t < T} Then we get the following lemma. The proof is essentially the same as that of [2:

Lemma 5.1] and so, is omitted.
Lemma 5.1. The family {P®, R > 0} is tight.

Remark 5.1. Lemma 5.1 yields that there exists R; > Ra > - - - such that P%» converges
weakly as n — oco. If we put P* = P®» Skorohod’s realization theorem of almost sure
convergence implies that we can find, on a suitable probability space (5, F , ﬁ), a sequence of

processes (Bn, Wy}, n > 1, with the following conditions:

(1°) For each n, {(Ba(t), Wa(t)), 0 < t < T} is equivalent in law to {(B@), WB(®t),0<t <
T}

(2°) Bn and Wi, converge uniformly in ¢ € [0, T](a.s.) as n — co to some processes B and

W, respectively.

Remark 5.2. Let Xn(t) = Wa(t) + La(t) be the SP for (W,,; Dg, ). Then Remark 5.1
(1°) and (5.3) imply

Wa(t) = Xn(0) + / 0(Xn(s))dBa(s) + / b(Xn(s))ds.
o] (1]



122 Y.SAISHO

Now, we prepare some Skorohod equations. Let
X'(t) = Wo(8) + L'(2),
XR(8) = Wa(®) + La (8),
X3() = WaP () + La(®),
be SP’s for ('ll-V?; Doo), (Wa; Dr) and (Wn?; Dwo), respectively. We denote Yo = X% and
Y.R = (XF)?. Then we have the following lemma.

Lemma 5.2. For any € > 0, there exist Ry = Ro(w) and ng = no(w) such that
||7n—— Y.R|lr <& for VR < Ro, ¥n > no,

almost surely.

Proof. We write Xn = Wi + %¥n + ¢n and X2 = W, + ¢ + ¢y in the sense of (3.1).
Then we easily see that Remark 5.1 (2°), Proposition 3.1 and Remark 3.6 imply | ¢n | 7 and

I ol I r 8re uniformly bounded in n. Hence, by Lemma 3.2 and Gronwall’s lemma, we have
177 - Y217 < (R+ Ra)C,
with some C’ = C’(w) depending only on N, p, T, ”Wg-" , the modulus of uniform continuity
T

of W® and w. 1

The following lemma is immediate from Proposition 3.1, Remark 3.6, (3.19) and Theorem
4.1.

Lemma 5.3. For any € > 0, there exist Ry = Ro(w) and ng = no(w) such that
IVF - X3lr <e for VR < Rp,Vn(>np),

almost surely, where Rl can be taken uniformly in n > ng.

By Remark 5.1 (2°) and the result on continuity in Theorem 1.1, we have the following

lemma.

Lemma 5.4. For any e > 0, there exists ng = ng(w) > 0 such that
1X3 - X'|lz <e for Vn>ng,

almost surely.

Lemmas 5.2, 5.3 and 5.4 yield the following proposition.
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Proposition 5.1. For any e > 0, there ezists ny’ = nf'(w) > 0 such that
IYn - X'Ilr <& for Va>nl,

almost surely.
Thus, noting Remark 5.1 (1°) and Remark 5.2, we get the following theorem.

Theorem 5.2. (X', L') solves the Skorohod equation

X'(t) = X'(0) + / o(X'(5))dB(s) + / b(X'(s))ds + L' ()

Jor Doo.

The proof is done by the same procedure as that of Lemma 5.2 in [2] .
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