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I. Introduction

1. Preliminary reduction. Consider a system of nonlinear equations

d

m2yl =8 z,Y, Z)a "= vt}

(1.1) { ( dz
z2' = W(z,y,2),

where z is a complex variable and S(z,y,2) and W(z,y,z) are analytic function in a neigh-
borhood of (0,0, 0):

(1.2) lz| <o, |yl <&, |z]< 62, (60,61, 62 : positive constants),
satisfying
(1.3) $(0,0,00=0,  W(0,0,0) = 0.

The point z = 0 is called an irregular type singularity of (1.1). There are many studies of (1.1)
at an irregular type singularity when 54(0,0,0) # 0, W.(0,0,0) # 0, (e.g. see P. F. Hsieh
[Hs1, Hs2], M. Hukuhara [Hul] and M. Iwano (I1, 12, 13] and their references). However, the
study of (1.1) at an irregular type singularity when W,(0,0,0) = 0 was virtually not done,
except a formal solution was obtained in P. F. Hsieh and J. J. Przybylski [HP]. This is the
degenerated case of (1.1). In this paper, the analytic solution of (1.1) for the degenerated
case is to be studied by means of a different formal solution.
By (1.3), the system (1.1) can be written as

o0
z2y = A+ uz+vzs+ Z Sijrxty’2*,
i+j+k=2

(1.4) -
zz' = ay+ Bz +yz + Z W/ijkxiyjzk,
i+j+k=2

where the right hand sides are convergent series in (1.2).
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PROPOSITION 1-1.  Under the assumption that

(1.5) A#£0, A—pa=0,
(1.4) can be reduced analytically to

2y =
E1) { v =My + f(z,9,2),

zz = g(=,y, 2).

where f(z,y, 2) and g(z,v, 2) are power series in the form:

f(z,y,2) = Z Fiinz'y’ 25,

i+jtk=2

(==}
gy = D, gms'y'z".

i+j+k=2

(1.6)

with the right hand sides convergent in a neighborhood of (0, 0, 0).

It is clear from (1.6) that

(1.7) £(0,0,0) = g(0,0,0) =0,
and
(1.8) £,(0,0,0) = f2(0,0,0) =0, 94(0,0,0) = g(0,0, 0)=0.

This proposition indicates that the study of a degenerated sytem of two equations with an
irregular type singularity at z = 0 can be done on (E.1) without loss of generality. We will
study (E.1) with (1.6) in this paper.

Proor OF PROPOSITION 1-1:  First put

_H
y 1 3 Y

(1.9)

Then, (1.1) is reduced to

(==}
Y’ =AY +vz+ Z §i,-k:v"YjZk,
i+itk=2
(1.10) e
zZ' =aY +yz+ Z Wi,-ka:’Y’ zZ*.
ipith=2
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Secondly, put
v
(1.11) Y=Y—- <z
A
then, (1.10) is reduced to

Y =X+ Y Sipua'YiZk,

(1.12) k= -
zZ' =aY; + (’y - ga)z + Z ﬁ/ijkziylizk.
i+j+k=2
Finally, put
(1.13) Z= %m + 20+ (y - %)m,

then, (1.9) is reduced to

oo
PV =i+ Y finad'¥iZE,
(1.14) k=2
zZ] = Z gina'Y{ Z5.
itj+h=2
Evidently, the transformations (1.9), (1.11) and (1.13) are analytic and the right hand sides
of (1.14) are convergent in a neighborhood of (0, 0, 0). q.e.d.

2. The Main Reuslts.  In this paper, we will study (E.1) with (1.6) and the following
assumption:

Assumption I. A#0, gooz #0.

We will prove first the following

PROPOSITION 2-1. Under Assumption I, there exists a formal transformation
(=2}
y=u+ Z pijkz uiv®,
i+jrk=2

o0
i+l 7 k
z=v+ E Gijex” W, (gior = 0),
i+i+k=2

(2.1)

such that (E.1) is reduced to

20 = z|u
(E2) {z u' = [A+ do(v) + M (v)a]u,

v’ = vz(b + Em)a (b = 9002):
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where Xo(v) is a convergent series in v, Ao(0) = 0, A1(v) is linear in v and b and b are constants
with b # 0.

The proof of this proposition is to be given in Part II.

In order to state the main theorem, for two small constants, p and ¢, consider

sin(6 + argb) ™
psin(§+argb)’ ) argb< 0 <m—argb—g,
(2.2) r(8;p,€) = ¢ P, —g—argbsosg—argb,
sin(@ + arg b)

P—F —w—argb+e<0<—£—argb.
sin(—% + argb) 2

We assume further the following
Assumption II. fior =0 forall i+k>2.

Using Proposition 2-1, we will prove the following main theorem in this paper.

THEOREM M. Assume that (E.1) with (1.6) satisfies Assumptions I and II. Let

lz] < p1, arg/\—%+el<argx<arg)\+§—el,
(D) lv| < r(argv; p2,€2), —m—argh+ez <argv <w-— argh — €2,
lul < ps3,

be a domain in (z,v,u)-space, where p1, p2 and ps are suitable small constants (p1 < 1) and
€1 and e are preassigned sufficiently small constants. Let (20,0, u0) be an arbitrary point
in (D), and {U(z), V(z)} be the solution of (E.2) such that U(zo) = uo, V(zo) = vo. Then,
(E.1) has an analytic solution {P(z,V(z),U(z)), Q(z, V(z),U(z))} where

P(,V(2),U@)= Y Pz, V(@)

(2.3) k=1 -
Qz, V(=),U@) = Qolz, V(@) +2 Y_ Qu(a V(@)U ()",
k=1
convergent uniformly for U(z) in
(2.4) lu| < ps.

Here Qo(z,v) and Pi(z,v) and Qk(z,v) (k=1,2,---) are analytic in

|z| < p1, arg)‘—%+el<argz<argz\+%—e1
(2.5)
[v] < r(argv; p2, €2), —m—argb+e; <argv < m—argb— ez,
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and admit asymptotic expansions in the form

Pk(x7 U) = Zpkf(v)xea (k = 1) 2: o ')v

£=0

(2.6) o
Qulz,v) =) Que(v)a’,  (k=0,1,2,--),

=0
uniformly in
2.7) [v] < r(argv; p2,€2), —m —argh+es < argv < w — argb — €3,
as z tends to 0 in the sector
(2.8) arg/\—g+el <arga:<arg/\+§—el

with Qoo(v) analytic in a neighborhood of v = 0 and other coefficients Pre(v) and Qye(v)

admitting asymptotic expansions

Pee(v) =Y Puev’,  (k=1,2,3,---;£=0,1,2,-.),
(2.9) =
Qre(v) zZQk,,jvi, (k=0,1,2,---;£=0,1,2,--;£ # 0 when k = 0),
Jj=0
as v tends to 0 in the sector (2.7).
Here Xo(v) = @(0, 0,Qoo(v)) and Ai(v) is the first two terms of the expansion

52 o*f .
Way(o, 0, Qoo(v)) + %(0, 0, Qoo(v))Qo1(v) in the powers of v.

This theorem is to be proved in Part IV and V. The domain (D) is called the stable
domain of (E.2). We will develop it in Part III.
In order to establish Theorem M, we are indeed looking for an analytic transformation

{y = P(z,v,u),

o 2= Q(z,v,u),

such that (E.1) is reduced to (E.2), where P(z,v,u) and Q(z,v,u) are given by (2.3) with
V(z) and U(z) replaced by v and «, respectively. In order to find the stable domain (D) with
non-empty sector in z—plane so that (T) is analytic in (D), we have to impose Assumption II
and find a transformation (T) satisfying P(z,v,0) = 0. To find a more general transformation
(T) which allows wider sectors in z-plane and v-plane for the stable domain than those in (D)
for a more general system of equations is an open problem.
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II. Formal Reduction

3. Finite reductions. In this part, we will prove Proposition 2-1; namely to investigate
the formal transformation of (2.1) to assure that it is possible to reduce (E.1) to (E.2). First,

we consider the following transformation:
y=n+ Y Pua'r¢h,
(N)

z=(+ Z QijkaiH"lek:
(N}

(3.1)

where Z denote the sum of nonnegative intgers , j, k such that ¢ + j + k=N >2. The
(N)
coefficients P;jx and Qijk are to be chosen suitably that the reduced system is as simple as

possible.

Note that the inverse transformation of (3.1) is

n=y— Y Puz'y’z" + (2,9, 2lan-1,
™
(=2- ZQijkmmyjzk + [z, 9, z]2n,

(N)

(3.2)

where [z, ¥, 2]m denotes a convergent power series in (z, ¥y, z) with the sum of powers in (z,9,2)
at least m.

Differentiate (3.2), by (E.1) and (1.6), we have

2,/ ’ L.
2 =2ty = Y Paliz + 120 + k™ }a'y' 2" + [,y 2w,y
(N) y
hnd . .
=Ay+ Z fira'y'2* - zPijk{'i:L‘—*- N4ty 4
(3.3) i+j+h=2 (N)
o
=AMn+ Y Paa'n’C)+ D fura' "+ [ lin
(N) itj+k=2
— ST AiPgat ¢+ gy m v
(N)
Write the equation in 7 as
[= =]
(3.4) .’Bz'r]' = /\17 + Z Aijk:z:‘n’(k,

i j+hk=2
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then,
Aijk = fijr, i+j+k<N,
(3.5) Ak = fise + (L= j)APyk,  i+j+k=N,

In a similar way,

= Y a2 = 3 QG+ 1)+ ettt

itj+k=2 (N)

(3.6) -
= D e’ =Y MQuua ¢t + [, Clvan.
itjth=2 (N)

Write the equation in ¢ as

3.7 o('= Y Bga'n'c,
itj+k=2
then,
Bijk = gijk, i+j+k<N,
(3.8) Bijk = gijk — jAQijk, i+j+k=N,

Thus, we can get
Aije =0 for j#1,
(3.9) Bijr =0 for j#0,
Qijx =0 for j=0,

Aijk = fijr for j=1,
and
Bijk = gijk  for j=0.

Combine the tranformation (3.1) for N =2,3,---, we can get a formal transformation
oo
y=n+ > Puznich,
TR
(3.10) e
z=(+ Z Qiinz '’ ¢*,  Qior =0,
itjth=2

such that (E.1) is transformed to

=%y = n[/\ + Z aikmi(k},

i+k=1

z( = i bixz'C,

i+k=2

(3.11)
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with
(3.12) boz = gooz = b # 0.
4. Simplification of the second equation. The formal reduction of the second equa-

tion of (3.11) was done by M. Hukuhara [Hu2). We will apply his method here. In order to
simplify the second equation of (3.11), put

(a.1) ¢(=V+)Y Qus'V"
(M)

Note that the inverse transformation of (4.1) is

(4.2) V=¢-) Qua'¢" + [ Can-1.

N
Differentiating (4.2), by (3.11), we have
' ' , -'EC, ik
2V’ =a(' =) Qu(i+k=F)a'C" + o, Can
(N)

Z birz'C* — ZiQikz’iCk + [z, ¢lv+1

(4.3) =
k=2 (V)
oo
=Y bua'V* - Y iQua'V + [z, Vina.
k=2 (N)
Write (4.3) as
o0
(44) aV'= "y Baz'V",
itk=2
then,
Bir = bik, i+k<N,
(4.5) Bik = bix — Qi i+k=N,

Thus, if  # 0, we can choose Qik such that B;x = 0. Combine (4.1) for N = 2,3,--, we

have a formal transformation

(4.6) C=V+ Y, Qua'Vh,

it+k=2
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which reduces the second equation of (3.11) to

(o]
(4.7) zV' = Z b VE.

k=2

By Assumption I, (3.12) and (4.5), we have -
(4.8) ba=b#0.

To reduce (4.7) further, consider the transformation

(4.9) V=v+Qnv", (N>2).
Then,
(4.10) v=V - QnVv" + [V]on_,.

Differentiate (4.10), we have
zv' =2V’ — NQnVY"1. 2V’ 4 [V]on

=b0V2 ) BV - NQ (VY 4 ) 4 [Viaw

(4.11) e
= bo® + 26Qnu™NH! + Z bev® — NbQnv™+ + [u]na.
k=3
Hence, if we put
(4.12) o' =0’ + ) " Bk,
k=3

then, we have

Bk = bkr k S N’
(4.13) Bni1 = byt + (2 - N)bQu,

Therefore, if N # 2, we can take Qnw such that Byyy = 0. On the other hand, when N = 2,
bn+1 is unchanged. So we can take Q2 =0. Thus, by combine the transformations (4.9) for

N =2,3,---, we have a transformation

(4.14) =v i
k=3
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which reduces (4.7) to
(4.15) zv' = bo? + b,

where b # 0, but b may vanish.

By combining (4.6) and (4.14), we have a formal transformation
[> ]
(4.16) C=v+ z Qirz'v®,
i+k=2
which reduces the second equation of (3.11) to (4.15).

5. Simplification of the first equation. By (4.16) the first equation of (3.11) can be

written as
o0

(5.1) 22y’ = a(z,v)n = ()\ + Zai(v)x‘) ,
1=0

where a;(v) are expressed by formal power series in v:

oo

(5.2) ai(v) = Zaijv", (i=0,1,2,--).
=0

In particular,

(5.3) ao(0) =0.

Put

(54) M) =ao®),  M(v) = a0 +euv,

where A1(v) is the first two terms of the formal power series expression of ai1(v). We claim
first that

PROPOSITION 5-1. The series Ao(v) = ao(v) given in (5.4) is convergent in a neighborhood of

v=0.

This proposition will be proved at the end of this section.

Using Proposition 5-1, we will find a formal transformation

(5.5) 1 = p(z, v)u
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such that (5.1) is reduced to

(5.6) e 2w = A + Ao(v) + M1 (v)z]u,
where
(5.7) Bz, v) =Y pr(v)z".

k=0

In particular,

(5.8) Po(0) = 1.
From (5.5), we have

(5.9) 220 = 2?p'u 4 pu,

which implies

22p = pla(z,v) — A — Ao(v) — M1 (v)z]

= {Zﬁkxk] [(al (@) = A (v))z + Zak(’U):Bk] )
k=0

k=2

(5.10)

On the other hand,

289 _ N~ a2 v dBe] ki
(5.11) z dw_k_o [kpk+v (b+ o) ol A

Hence the coefficients px(v) in (5.7) must satisfy

o+ 50) 22 = (@1(0) ~ 2100,
s dpr . .
(5.12) v (b+ b")j? = —p1 + [a2(v)Po(v) + (a1(v) — M1 (v))D1(v)],
v’ (b+ i"f')?}:ﬁ = —pr + [ar4+1(v)Po(v) + - -
+(a@) —M@)Ee(),  (k=2,3,-)

Since b # 0 and by the choice of A1(v) given in (5.4), we can find formal solutions of
(5.12)

(5.13) Pre(v) = Zﬁkﬂj,

j=0
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fork=0,1,2,---

Combine (3.10), (4.6), (4.14) and (5.5), where p(z,v) satisfies (5.7) and (5.8) with fx(v)
in formal power series satisfying (5.12), we have a formal reduction (2.1) which reduces (E.1)
to (E.2). Thus Proposition 2-1 is proved.

To complete the proof of Proposition 2-1, we have to prove Proposition 5-1. By Assump-
tion II, let the formal solutions of (E.1) be

y= > plzopk,
(5.14) k=t

o0
z = go(z,v) + quk(z,v)uk,
k=1

where v satisfies (4.15) and u satisfies (5.6). Notice that we have formally p;(0,0) = 1.
Differentiating (5.14), we have

oo

2 24Pk & k-1 24U
zy = [ 2uF 4 pr(z, v)ku ]
(5.15) ,Z: dz dx

= p1(0,v)[A + Xo(v)]u + O(z) + O(u?),

zz —a:——}-z [qk(a: v)u* + 2? dq.: u* + gz, v)ku*? 22:]
(5.16) 1

=v (b+bv) > +1(0,0)u+ 1(0,v)[A + Ao(v)]u + O(z) + O(u?).

dv
On the other hand,

f(x; Y, z) = f(ZlJ, 0, qo(:l:,‘v)) + [‘;—:;'(z?o, qo(w’ v))pl(ﬁ’v)

+ %(m, 0, qo(z, v))wa(a;,v)] Ut

o - [g(o, 0,40(0,v))p1(0,v)
o PO,
+ %(o, 0, go(x, v))zq1 (0, v) + O(:z:)] u+ O(u?)
and
o(2,9,2) = 9(0,0,00(0,v)) + [‘—2%(0, 0,40(0,))p1(0,)
(5.18)

+ g_i(og 0, qO(O, 'U))qu (0, ’U) + O(:Z:)] u+ O(uZ).
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Note that, by Assumption II, f (2,0,90(z,v)) =0. Put
(5.19) 20(0,v) =qoo(v),  p1(0,v) = p1o(v).

Then, by comparing (5.15) with (5.17) and (5.16) with (5.18), we have

(5.20) Pro(®)[A + do(v)] = g—;‘m, 0, g00(¥))pro(v),
(5.21) V(b + 50) 2% — (0,0, uo).

From (5.20), we have
(5.22) Yo(0) = 5L.(0,0,a00)) - A

Now, by (1.6), we have

(5.23) v¥(b+ l}u)% = 9(0,0, g00) = Zgookqgo-
k=2

Note that the series in (5.23) is convergent at ggo = 0. Put

(5.24) g00(v) = vQoo(v).
Then,

. d . > _
(5.25) v(b+ bv)% = —(b + bv)Qoo + bQ5o + Z gookv* Q.

k=3

Since b # 0, (5.25) has a regular type singularity at v = 0 and it has a formal solution

(5.26) Qouo(v) ~ 1+ Y exo*.

k=1
By Briot-Bouquet theory (e.g. see H. Poincaré [P], P. F. Hsieh [Hsl] and M. IwanolI1, 12}),
the formal solution Qoo(v) given by (5.26) is convergent in a neighborhood of v = 0. Thus
qo0(v) given by (5.24) is analytic at » = 0. Therefore Jo(v) given by (5.22) is analytic at
v = 0 with its unique power series expansion (5.4). q.e.d.



74 P.-F. Hsieh

III. The Stable Domain

6. The z- and v-domains. In order to study the analytic meaning of the formal reduction
(2.1), we will study the domain in (z,v, u)-space by studying the solutions of (E.2) when «

moves on a straight line from an arbitrary point zo in a sector
™ ™
(6.1) |z] < pa, arg)\—§+el <argz<arg)\+§——el, (p1 < 1),

where p; and €; are suitable small constants. The reasons of choosing these small constants

will be apparent later. Rewrite the system (E.2) as

(6.2) 2w’ = A+ do(v) + M (v)zly,
and
(6.3) ' = b+ bv), (b#0).

Here, Mo(v) is a convergent power series in v given by (5.22) and (5.4) satisfying Xo(0) = 0
and Xy (v) is linear in v given by (5.4). We will study the domain in v—plane first, in two
cases, then base on it to study that in u—plane in the next section.

Case 1: b=0. In this case, (6.3) becomes
(6.4) zv’ = b,

or, equivalently

2d:z: _ 1
(6.5) Vo=
Then the general solution of (6.5) is
(6.6) z(v) = Cexp { - %},

where C is an arbitrary constant. Consider the sector
(6.7) lv| < p2, —m—argb+e <argv <m—argb— ez,

where §2 and €2 are suitable small constants. Let 2o and vo be arbitrary points in the sectors

(6.1) and (6.7), respectively. The constant C is chosen such that z{vo) = zo; namely

(6.8) z(v) = zoexp {b%o - %}
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We will study the behavior of z(v) as z moves from z = 0 to 2o along the line segment 0zo in
the sector (6.1). Let

(6.9) T = xo8, z € Dzo.

Then, s is a real number and (6.8) is equivalent to

1 1
(6.10) s—exp{%—%}.

Note that, for a complex quantity A, S(e?) = 0 if, and only if, 34 = 0, (mod 7). Since s is
real, by (6.10), we have :

1 1
(6.11) 9(%) =S‘(E)‘),

for z on 0zo and v and vp in (6.7) . Put
8o

(6'12) v = 'rew, Vg = ’I‘oei

Then, (6.11) implies

(6.13) sin(6 + arg b) _ sin(fo + arg b)’
T T0
or equivalently

= sin(6 + arg b)

6.14 —_—
(6.14) 0 sin{fo + arg b)

Moreover, by (6.4),

Ldpl _gf1do) _pf1dvde) _pof, 1) 1
(6.15) [v] ds ER{v ds} _m{vdz ds} —m{bv;} - s?ﬁ‘,{bv}.

T_
™ ™ 2
8 < —5 —arg b and 5 ~ 8 b<@<mw—argb Also, by (6.12),

Thus, r = |v] is increasing for —g —argb< < arg b, and decreasing for —w — arg b <

(6.16) & _ Qf{ld—v} = éﬁ{im} _ b sin(6 + arg b).

ds vds s

Thus 8 = arg v is increasing for —arg b < 8 < m — arg b and decreasing for —7 —arg b < 8 <
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—argb. Let
' sin(@ + arg b)
P2 sin(% +arg b)’
(6.17) (0, p2; €2) = < p2, _12_r —argb<8< % — arg b,

sin(f + arg b)
Pz sin(—% +arg b)’

g—argb<9<7r—argb—ez,

—7r—argb+ez<9<—g—a.rgb,

where ps is a suitable small constant. Then we can define the stable domain in v—plane by
(6.18) {fv=re?:r<r(dp2e), —T—argb+e <0< m—argb—e}

and v stays in (6.18) if zo is in (6.1), vo is in (6.18) and z is on Oxo. It is noteworthy that argv
is not monotonic when z moves on Ozo while v is in a sector containing the ray § —arg b = £
in its interior. Thus, we have to confine the stable domain in v—plane to the sector given by

(6.18). Hence, the sector (6.18) is the stable domain in v—plane with central angle as wide

as possible.

Case 2: b #0. In this case, consider a function
(6.19) v = P(w),
where

(6.20) zw' = buw?.

Then, by (6.3), (6.19) and (6.20), P(w) satisfy

(6.21) buw? % = (b+bP)P?.
Put
(6.22) P(w) = w[l + Q(w)].

Substituting (6.22) into (6.21), we have
(6.23) bl1+Q+ w%%] = b+ buw(1 + Q)1 + Q)%

or,

b b b
(6.24) w%% =Q+ %’w +Q*+ 3—:wQ(1 +Q)+ E“’Qa'
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Thus, w = 0 is a regular type singularity, by Briot-Bouquet theory (e.g. see H. Poincaré [P},
P. F. Hsieh [Hs1] and M. Iwano [I1, 12]), there exists a solution

(6.25) Q=C+ Y gpw'c

J+k=2

convergent in a neighborhood of (0, 0), where ¢ is a solution of

@ b
(6.26) wor = ¢+ P
Namely,
(6.27) ((w)y=w [c + % log w] ,

where c is an arbitrary constant. In particular, we can choose ¢ = 0,i.e. {(1) =0, thus,

(6.28) {(w) = g'w log w.

Substituting (6.28) into (6.25), we have

o a k
i b
§ ‘ a2
wlogw + kW (bwlogw)
Jtk=2

| O

(6.29) Q=
and, consequently
i) oo 5 k
(6.30) P=w{1+zwlogw+ Z gjrw’ (l—)wlogw) },
F+k=2

which is convergent in a neighborhood of w = 0.

To see the correspondence between v—domain and w—domain, note that
b - b *
(6.31) v= 'w{l + Ewlogw + Z girw’ (Ewlogw) }
j+k=2
Hence

N oo ~ k
logv =logw +log< 1+ I-’w]ogw + E girw’ éwlogw

b b
(6-32) F+k=2

=logw + [w, wlogw),,
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and

(6.33) vlogv = wlogw + [w, wlog w]a.
Thus,

(6.34) v =w+ [w,wlog w]2.

By implicit function theorem,
(6.35) w = v+ [v,vlogv]z, wlogw = vlogv + [v, vlogv]a.

Hence, there is an one-to-one correspondence between v and w in a neighborhhod of v = 0

and that of w = 0. Therefore, if pz and e are sufficiently small, (6.18) is included in
(6.36) {w= e 1 7 < r(B; p2, &), —m—argb+é < 6 <7 —arg b—é&}.

On the other hand, if 52 and & are chosen to be small, then (6.36) is included in (6.18).
Thus, we can take a domain of the form (6.18) as the stable domain in v—plane. We will

use (6.18) as the generic stable domain in v—plane for both cases b =0 and b # 0.

Remark. The domains (6.18) (or (6.36)) is in the domain (6.7), and vice versa, if the con-

stants po and p2 (or p2) are chosen suitably. Namely these domains are equivalent.

7. The u-domain. To find the stable domain in u—plane from (6.2), we will discuss in two
cases.

Case 1.  Consider first the case Ao(v) + M1 (v)z =0. Namely, (6.2) is in the form
(7.1) 22 =du, A#O.

For o in the sector (6.1) and z is on the line segment 0zo, by (6.9), we have

d(logu) _ d(loglul) , .d(argu)
(72) ds  ds T ds
where
(7.3) x = sexp{iargzo}.
Thus,

1du| _ ,|ldu
(74) Tl ds *“[u ds]
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and
d(argu) ldu
- oz _o10]

For g in the sector (6.1)

1 dly| 2 dudr 1 1 1 A
g ]

= A cos | arg A > Ll sine; > 0
s2|zo| Zo 52|zo| )

Thus, when o is in the sector (6.1) and = moves on the segment 0zg from 0 to Zo, |y is

(7.6)

increasing. Hence, in order to assure the monotonicity on the behavior of |u| as z moves on
the segment 0z from 0 to Zo, we have to confine the stable domain on z—plane to (6.1).

For ug in
(77) Iul < P3,

where p3 is a small constant, and o in (6.1), the solution of (7.1) satisfying u(zo) = uo is

given by

(7.8) u(x) = ug exp {)\(% - %) }

Hence, when o is in the sector (6.1) and uy is in (7.7), when z moves on the segment 0z from
0 to xo, the function u(x) stays in (7.7). Therefore we can take (6.1) for the stable domain
in z—plane and (7.7) for the stable domain in u—plane.

Remark. It is noteworthy that

w52 303 Ayl (2)]

ds s2 | zo 52|zo| Zo

Thus, when = moves on the segment 0zo from 0 to To, argu is increasing when z is in the
half sector of (6.1)
argA — g +e <argz <argl,

and it is decreasing when zo is in the other half sector of (6.1)

argA < argz < arg A + g — €.
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Case 2. When Xo(v) + A1 (v)z # 0, we can choose py and p2 such that

(7.9) Po(®) + (vl < RIS
for (z,v) in the sectors (6.1) and (6.18). Then

1 dlu| _ z?du 1 dz| _ 1 dx
[u| ds -R[u dz 22 ds =¥ {A+/\o(v)+)\1(v)w}x2 ds

=% [{/\ +do(v) + M (U)W}M]

|=|?
(7.10) > %{?R[exp{i(arg)\ —argz)] - [Ao(v) "*;‘r\l(’v)xl }
_ A [Mo(v) + As(v)e|
_W{cos(a.rg)\—argx)— 0 B }

Al
> 22 sine; > 0,

since arg = arg To for = on Ozo. Thus, if we choose p1, and pz small enough, then, u(z,v)
satisfying w(xo,v(z0)) = o has |u(z,v)| monotonic increasing and staying in (7.7) as £ moves

on the segment Ozo from 0 to zo while v is in (6.18).

IV. Asymptotic Coefficients

8. Recurrence Formulae. In order to find the solution of (E.1) in the form of (2.3),
put
(8.1) y = P(z,v,u) = ZPk(z,v)uk,
k=1
and
(8.2) z = Q(z,v,u) = Qo(z,v) + wZQk(x, v)u*,
k=1

where u and v satisfy (E.2). Differentiate (8.1) and (8.2), by (E.2), we have

o0
dP, z? du
.’Bzy’ = Z {wzgz—li + kpkzaz}uk
k=1

(8.3)

- {mz% + kPo[A + Jo(v) + A1 (v)z] }uk,
k=1
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and

I Z {wzdfk + Qkx—%}uk
(8.4)

=w%+z{ 2dQk +ka[,\+,\o(v)+)\1(v)a:]}

On the other hand, by (E.2),

(85) 2y = A{ > A, v)uk} + (@, P(@,0,1), Q(z,v, ),
k=1
(8.6) zz’' = g(z, P(z,v,u), Q(z,v,u)).
Put
(8.7) g—‘;-(z, 0, Qo(z, ) = H(z,v), %(m, 0, Qolz,v)) = J(z, ),
and
dg - g s
(8.8) a—y(z, 0, Qo(z,v)) = H(z,v), g(a:, 0, Qo(z,v)) = J(=,v).
Then,

f(wv P(.’L‘, v, u)yQ(mi'U’u)) = f(l', 07 Qo(xy ’U))

8.9 had
(®.9) +> [H(a:, ) Pr(z,v) + 2J(z,v)Qk(z, v) + Gi(z, v)] u*,
k=1
and
g(m? P(x7 v? u)?Q(z’ ’U, u)) = g(x$ 0? Qo(m7 v))
(8.10)

k=1

where G (z,v) and Gi(z, v) are functions depending on Py,Q1,--, Pe—1, Qr—1.

lar,

(8.11) Gi(z,v) =0, Gi(z,v)=0.

+ Z I:fl(:c, v)Pe(z,v) + 2J(z,v)Qx(z, v) + Gk (z,v)

81

]uk’

In particu-
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Note that, by Assumption II, f(z,0,Qo(x,v)) = 0. Comparing the coefficients in (8.3) and
(8.5) with (8.9) as well as (8.4) and (8.6) with (8.10), we have

612 2920 _ 4(2,0,Q0),
and

zz% = {X = k[A + do(v) + M (v)z] + H(z,v)} P + zJ (z,v)Qx + Gi(z,v),
(8.13) zz% = {—kA + do(v) + M (v)z] + 27(2,0)}Qx + H(z, v) P + Gi(z,v),

(k=1,2,3,---).

9. The formal expansion of Qo(z,v).  To find the formal expansion of the leading term
Qo(z,v), put

(9.1) Qo(z,9) = Qoo(v) + Y _ Que(v)z’.

=1

Differentiate (9.1) formally and substitute into (8.12), by (E.2), we have

d . > (d .
(9.2) 220 = dg—v""u2(b+bo) +l§=; {%vz(b-i-bv) +£Qoe}z‘

On the other hand,

(9.3) m@ = g(0,0, Qoo) + Z [Jo (v)Qoe(v) + Goc('v)] z,
=1

where

(949 Jo(w) = 20,0, Qo (0)),

and Goe(v) (£ = 1,2,--) is a polynomial in Qon(v) (h = 0,1,-++, £ — 1). Comparing the
coefficients in (9.2) and (9.3), we have

9.5) 03(b + by 290 dQ°°

= ¢(0,0, Qoo),
and

(9.6) V(b + l}v)d—g:l = [—£+ Jo(v)]Qoe + Goe(v), (£=1,2,---).
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To find Qoo(v), note from (1.6) that

(9.7) 9(0,0,Quo) = 3 B;Q3,,

i=2

and (9.5) becomes

9.8) V(b + im)% =Y B,Qi.
=2

Put

(9.9) Qoo(v) = vQ(v).

Then (9.8) becomes

(9.10) v2 (b + bv) [Q +U%J = Zz Bv' 7,
=
or,
ivla ., d@ ez A
(9.11) (b+ bv) [Q-i-v%} =§Bju 209,

Since b # 0, v = 0 is a regular type singularity of (9.11) and, similar to (5.25), by Briot-
Bouquet theory, there exists a series solution Q(v) convergent at v = 0. Hence, there exists
a solution Qoo(v) of (9.5) in convergent power series of v at v = 0.

Suppose that we have Qox(v) (h = 0,1, - - ,€ — 1) admitting asymptotic expansions in
power series of v in the sector (6.18). To find Qoz(v) from (9.6), note that (9.6) can be written
as
(9.12) vz%:’f") = [- lf; + Jo,(v)J Qoe(v) + Koe(v),
where Jo¢(v) and Koe(v) are functions of v admitting asymptotic expansions in power series
of v in the sector (6.18), and furthermore Joe(0) = 0, by (1.8), (9.4) and (9.9). Note that
v = 0 is an irregular singular point of (9.12). Since £ > 0, (9.12) has a formal power series

solution

(9.13) Qoe(v) ~ ) Qoejv’.

j=0
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By the result of M. Hukuhara [Hu3], (see also M. Iwamo [11]), there exists a solution Qoe ()
analytic in (6.18) and admits (9.13) as an asymptotic expansion in the sector (6.18).

In this way, we obtain a formal series solution (9.1) for (8.12). The asymptotic meaning
of this formal series (9.1) will be studied in Sections 11, 13 and 14. ‘

10. The expansions of Pi(z,v) and Qk(z,v).  To find the formal solutions Py (z,v)
and Qi (z,v) of (8.13) for k=1,2,.--, put

(10.1) Pu(z,v) ~ Y Pee(®)z’,
=0

and

(10.2) Qr(z,v) ~ Z Qre(v)z’.
£=0

Differentiate (10.1) and (10.2) formally and by (E.2), we have

(10.3) xz% => {d%uz (b+bv) + esz}m”“,
and
dQr  ~= [ dQ .
(10.4) z? Tf = g {_&gzﬁ(b +bv) + lZth}a:“".
Let
H(z,v)= Y H(v)z,  Ji@v)= Y Je(v)’,
£=0 £=0
(10.5) A@v) =) Hlv)s', J(z,v) = Jew)s",
=0 £=0
Gi(z,v) = Z Gre(v)z', Gr(z,v) = Z Gre (v)a;e.
=0 £=0
Note that
Ho(o) = 2£0,0,0m),  Jo(0) = 3200, Q0¥
(10.6) y

Ho(w) = g—z(O, 0, Qoo(v)).
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By (9.9), (1.8), (9.4) and (10.6), we have
(10.7) Ho(0) = Jo(0) = Ho(0) = Jo(0) = 0.
On the other hand, by (8.13), (10.1), (10.2) and (10.5),

24P

= {/\ — kX = kXo(v) + Ho(v) — [kA1(v) — Hi(v)]z

+ i He(v):ce} f: sz(v).'cl
=2 £=0

(10.8) oo oo oo
+z [Z Jg('u)a:l] [Z ka(v)mt] + Z Gre(v)z®
¢=0 £=0 £=0
= Z { [A— kX = kXo(v) + Ho(v)] Pee(v) + sz(u)}x‘,
£=0
xz% = { — [FA+Edo(v) + Mi(v)e] +2) jg(v):z:e} D Que(v)at
£=0 =0
(10.9) + [Z ﬁe(v)m‘] [Z P,,,(v)x‘} + ) Gre(v)at

£=0 =0 =0

= { [—kX — kAo (v)] Qre(v) + Ho(v)Pre(v) + Kie (v)}z‘,
=0

where Fi¢(v) and Kie(v) are polynomials in Py;(v) and Qg;(v) G=01,---,£~1). In
particular, by (8.11),

(10.10) Flo('v) = Klo(’v) =0.
Thus, by (10.3), (10.4), (10.8) and (10.9), we have

(10.11) [A = kX = kXo(v) + Ho(v)] Pro(v) + Fro(v) =0,
(10.12) —k{A 4 2o (v)]Qro(v) + Ho(v) Pro(v) + Kio(v) = 0,

013) [A = kA — kXo(v) + Ho(0)]Pee(v) + Fre(v) — v3(b + Bv)f‘”’(’;%

= (€= 1)Pye-1(v) =0, (€=1,2,---;k=1,2,--),
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and

[—kX — kXo(v)]Qxe(v) + Ho(v) Pee(v) + Kie(v)

10.14
( ) 2(b+b’v)ko£ 1

For k = 1, comparing (5.1), (3.11), (3.5), (E.1) and (1.6), we see that

=]

(10.15) Z ai(v)z' = ‘%yi(m, 0, Qo(z,v)),
(10.186) Xo(v) = Ho(v), Xi(v) = first two terms of Ha(v).

Thus, from (10.3) and (10.8), by (8.11), we have

oo

{[Hl(v) M (V)] + Z Hu(v)x‘-l} > Pu(v)a’

£=2 =0

(10.17) + [Z Jz(v).'z‘] [Z Qu(v)m‘]
£=0

£=0

Z {dPl! 2(b+ b’U) +£P12('U)}

£=0

Thus, by (10.17) and (10.12), and due to (8.11),

(10.18) Db+ 5) 210 = [H(3) ~ M(0)]Pro(o) + o) Quo(e),
(10.19) —[A+ 20(®)]Qi0(v) + Ho(v)Pro(v) =0,

and

(10.20) (b bo) 22 = [Hi (o) = Ma(@) — P1e(®) + Jo(v)Que(v) + Fae(v)
From (10.19), we have

(10.21) Quo(v) = —I{M—Pm(v)

X+ Ao(v)

Substitute (10.21) into (10.18), we have

(10.22) v (b+ bv )dfw - {ﬁO(U)Jo(v)

(f - I)Qk,l-l (‘U) = Oa (e = 1) 27

A+ do(v) +[Hi(v) — )‘1(”)]}1310(1)).

"‘;k=1,2,"'
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By (10.7) and (10.16), the coefficient on the right hand side is of O(v®) and v = 0 is an

ordinary point of (10.22). Thus there is a solution of Pio(v) in a convergent power series of v

with P1o(0) # 0, and consequently, Q10(v) is a convergent power series of v given by (10.21).
For k=1 and ¢ > 1, from (10.14), we have

_ _Ho(w) 5
(1023) ng('u) = mPR(v) + Klg('v),
where K1¢(v) is a polynomial in P1j(v),@ii(v) (5 = 0,1,---,£ — 1) and their derivatives
analytic in (6.18) and admits an asymptotic expansion in power series of v as v tends to 0 in
(6.18). Substituting (10.23) into (10.20), we have

(10.24) V2 (b+ bv % = {—Z+H1(v) - Ai(v) + %}Hc(v) + Fie(v),

where I:’u(v) is analytic in (6.18) and admits an asymptotic expansion in power series of v as v
tends to 0 in (6.18). Since £ > 1, there exists a formal power series solution Py¢ of (10.24) for
each £. Since v = 0 is an irregular singular point of (10.24), similar to that for (9.12), there
exists a solution Pi¢(v) for (10.24) admitting the formal solution as an asymptotic expansion
in the sector (6.18). Furthermore, Qy¢(v) is obtained from (10:23), analytic in (6.18) and
admits an asymptotic expansion in power series of v as v tends to 0.in (6.18).

For k = 2,8,.-., Pro(v) is uniquely determined from (10.11) and Qko(v) is uniquely de-
termined from (10.12) each as an analytic function of v admitting an asymptotic expansion in
power series of v as v tends to 0 in (6.18). For ¢ > 1, Pre(v) is determined from (10.13) as an
analytic function depending on Pi;(v) and Qrj(v) (7 =0,1,---,£—1) and their derivatives
admitting an asymptotic expansion in power series of v as v tends to 0 in (6.18). Conse-
quently, Qe(v) is determined from (10.14) analytic in (6.18) and admitting an asymptotic
expansion in power series of v as v tends to 0 in the sector (6.18).

Thus we obtain the following

PROPOSITION 10-1.  The system (E.1) has a formal solution (8.1) and (8.2) where

(i) Qo(z,v) is given by a formal series (9.1) with Qoo(v) a convergent power series of v
and Qoe(v) (¢ = 1,2,---) analytic in (6.18) admitting the asymptotic expansion (9.13) as v
tends to 0 in (6.18);

(ii) Pe(z,v) and Qi (z,v) (k= 1,2, -) are given by the formal sereis (10.1) and (10.2),
respectively, with coefficients Pre(v) and Que(v) (€ = 1,2, -+) analytic in (6.18) admitting

asymptotic expansions in power series of v as v tends to 0 in (6.18).

The asymptotic meanings of (10.1) and (10.2) will be studied in Sections 11, 13 and 14
while that of (8.1) and (8.2) will be done in Sections 12, 15 and 16.
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V. General Solutions

11. Asymptotic solutions Pi(z, v) and Qx(z,v). We will investigate first the asymp-
totic meaning of the formal solutions Qo(, v) of (8.12) obtained in Section 9 and Py (z,v) and
Qx(z,v) (k= 1,2,--) of (8.13) obtained in Section 10. We will establish the following two

Propositions.

ProOPOSITION 11-1. Let (o, v0) be an arbitrary point in

lz| < p1, arg/\—£+€1<argw<arg)\+1—el,
(11..1) 2 2
|v] < r(argv; p2,€2), — 7 —argh+ ez < argv <7 —argb— €2,

where p1,p2,€1,€2 (p1 < 1) are suitable small constants. Let V(z) be the solution of (6.3)
such that V(xo) = vo. Then, (8.12) has the asymptotic solution Qo(z,V (z)) where

(11.2) Qo(,v) = Qoo(v) + Y _ Qoe(v)a’,

=1

uniformly in (6.18) as z tends to 0 in the sector (6.1). Here the coefficients Qoe(v) €=
0,1, --) are given in Proposition 10-1.

PROPOSITION 11-2. Let (xo,v0) be an arbitrary point in (11.1) and V(z) be the solution
of (6.3) such that V(zo) = vo. Then, for k =1,2,---, (813) has the asymptotic solutions
{Pe(=, V(z)), Qx(z, V(z))} where

Pi(z,v) = Pro(v) + Z Pre(v)’,
(11.3) “
Qu(z,v) ~ Qro(v) + Z Qre(v)at,

=1

uniformly in (6.18) as z tends to 0 in the sector (6.1). Here the coefficients Pre(v) and Qre(v)
(€=0,1,--+; k=1,2,---) are given in Proposition 10-1.

The proof of Proposition 11-1 is similar to that of Proposition 11-2. Thus, we provide

only the proof of Proposition 11-2 in Sections 13 and 14.

12. Analytic solutions P(z,v,u) and Q(z, v, u). Utilizing the results of Propositions
11-1 and 11-2, we will establish



DEGENERATED SYSTEM OF TWO NONLINEAR EQUATIONS 89

PROPOSITION 12-1. Let (zo, vo, u0) be an arbitrary point in

lz] < p1, al’g/\—g+€1<arga:<a.rg)\+g—el,
(12.1) |v] < r(argv; p2,€2), — 7 —argb+ex < argv < m— argb — €2,
lul < ps,

where p1, p2, €1, €2 are small constants given in Proposition 11-1 and p3 is a suitable small con-
stant. Let V(z) be the solution of (6.3) such that V (zo) = vp and U(zx) be the solution of (6.2)
such that U(zo) = uo. Then, (E.1) has the analytic solution {P(z,U(z), V(z)), Q{(z, U(z),
V(z))} where

P(z,v,u) = ZPk(:v,v)uk,
(12.2) k=t -
Q(z,v,u) = Qo(z,v) +z Y _ Qulz, v)u*,
k=1
converge uniformly in (7.7). Here the coefficients Qo(z,v), Px(z,v) and Qi(z,v) (k = 1,2,---)
are given in (11.2) and (11.3) satisfying the properties described in Propositions 11-1 and 11-2.

This proposition is to be proved in Sections 15 and 16.

Combining Propositions 11-1, 11-2 and 12-1, Theorem M is proved.

13. Proof of Proposition 11-2. As the situations for k = 1 and k > 1 of Proposition
11-2 are different, we have to deal with them separately. Moreover, the proof for the case
k > 1 can be obtained by minor adjustment from that for the case k = 1, we will prove only
the case of kK = 1 here.

Note that when & = 1, by (8.1), (8.13) becomes

x% = {[H]('U) - A1(“’)] + (EiI(iE,‘U)}Pl + J(.’B,'U)Ql,
(13.1)

””2% = {=+20(v) + M (v)z] + 2/ (z,0)}Q1 + H(z,v) P,

where H(z,v) = 2™ 2[H(z,v) — Hy(v) — Hi(v)z]. We obtained the formal solution (10.1)
and (10.2) with Pio(v) and Qio(v) analytic at v = 0 while Pis(v) and Que(v) (£ = 1,2,--+)
admitting asymptotic expansions in power series of v as v tends to 0 in {(6.18).

Let (xo,v0) be an arbitrary point in (11.1). Let V(z) be the solution of (6.3) such
that V(zo) = vo. To show that there exists a solution {P1(z, V(z)), Q1 (z, (V(x))} of (13.1)
satisfying Proposition 11-2, let €1, €2 and «a be fixed small positive constants such that

[Alsine;
a="—

(13.2) |[Alsine; < 1, T
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and N be a positive integer satisfying

(13.3) N 2 |\|sine;.
Pick p1 and p2 so small that

|Hi(v) = M)l + [2H(z,v)| S, [J(z,0)| L,

(13.4) ) .
|H(z, )| S, o)+ [M(v)z] + |z (z,v)]| < o,

are satisfied for (z,v) is (11.1). Note that (7.9) follows from (13.4). Let

N-1 N-1
(13.5) PM(@)= Y Pu@at, QM (z,0) = Quelv)s’,

£=0 £=0

and make a change of variables
(13.6) Pr=PM(z, V(@) +nv, Q1= (z,V(2))+Cn.

Then {nn,(n~} satisfies the system of equations

"’(ig_;v = {[Hi(V(z)) - M(V(z))] + zH(z, V() }nn

(13.7) + (2, V(2))n + FM (2, V (2)),
2 % = {=[A + 2 (V(@)) + M (V(2))a] + 23 (=, V (@) }Cn

+H(z,V(@)ny + GV (2, V()),
and (13.7) possesses a formal solution

o~ Y Pe(V(z)s,

(13.8) =N

v~ Y Que(V(z))a’.

=N

Moreover, FI(N)(:::, v) and GgN) (z,v) are analytic in (11.1), and there exists a positive constant
Bn such that

(13.9) |[F™M(z,9)| < BulelV,  1G{V(z,v)| < BnlzlV,

for (z,v) in (11.1). Then, Proposition 11-2 is proved if we prove the following
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PROPOSITION 13-1. Let N be an integer satisfying (13.3). Then, (13.7) has a unique solution
{nn(z,V(z)), (n(z,V(z))} such that

(13.10) I (2, V@)l < Knlzl™, K2, V()| < Knlz|™
for a suitable positive constant Ky whenever (z,V (z)) is in 2 domain of the form

(|3 N) lzl <€N, arg/\——+51 <argz< Gl
.11 2 arg X + - —€
Ivl < 7(algu)6N,62)) T — atgb+62 < argv <7 ar e

Here0 <ény < p1<1and0 <6y < pa.

Proposition 11-2 follows from Proposition 13-1 in the following manner. By the trans-
formation (13.6), (13.7) has a solution

N-1 N-1
(13.12) Do Pe(V@)a' +an (@ VE), Y QuelV()at +in(e, Vi),
£=0 £=0

provided that (z,V(z)) is in (13.11-N). Let N’ be an integer greater than N. Then

N'—1 N'-1
(13.13) Y Pe(V@Ne' +aw (2, V(2), Y Qu(V(@)e® + (i, V),
=N =N

is a solution of (13.7). This solution satisfies the condition (13.10) if (x, V(z)) is in the com-
mon part of (13.11-N) and (13.11-N’). Hence, by the uniqueness of the solution of (13.7), as
assured by Proposition 13-1, (13.13) must coincide with {nn(z,V(z)),¢(n(z, V(z))}. Thus
the solution expressed by (13.12) is independent of N, provided that N satisfies (13.3). De-
note this solution by {/j(z, V(z)),{(x, V(z))}. Then, by means of analytic continuation, the

function #j(z,v) and ¢ (z,v) are defined in the domain

[z] < &, arg/\—§+el <arga:<arg)\+g—e1,

[vl < r(argv;bo,€2), —m—argb+ez <argv < m — argh — ea.

(13.14)

Here £o = sup&n and 8o = supén. Thus, Proposition 11-2 is proved.

14. Proof of Proposition 13-1. To show Proposition 13-1, let (z1,v1) be an arbitrary
point of (13.11-N) and V/(z) be the solution of (6.3) such that V(1) = v;. Note that {n~n,¢n}
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are given by the integral equations

T

v (21, 1) =/ E {[Hl(V(w)) - M(V(2)) + zH(z, V(z))nn

+ J(z, V(@))n + FN ) (a, V(w»}dw,

(14.1) . S

(N (z1,v1) =exp [A] / L exp [—7] {[—Ao(V(w)) - V()=
0

z1

+ e J@, V(@)lew + Al V() + 6P, V(z»}dm,

where the integral is taken on the segment 0z;. Consider the successive approximations:

1Q@,0) =0, (P(z1,m)=0,

7 (21, 01) = f E {[HI V(@) = V(@) + 28 (@, V(@)nfy’

0

+J(@ V@) + FM(, V(z))}dz

(14.2)
(8 (g, 0) = exp [—j—] [ Hew {—;—*] {20 -20Es
+2J(@, V@)W + Az, V(@) + 6V (z, V(m))}dz,
(h=0,1,2,--").
Note that

d -
E‘;Im'N = leIN 17 (3 = Izl)’

(14.3) %|x|N exp [?R( - 2)] = |x|N{|1;r_‘ + % cos(arg A — arg m)} exp [ER( - %)]
> |z|V 2| | sin €1 exp [?R(— 2)]

_ 2BN
- |A| Sin€1 )

Let
(14.4) Kn
Then, by (13.2), we have

(14.5) Kn > 2Bn.
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Now, we can show that

- Kn
™ (21,01) = g (@1, 1) < 2_;.|5'31|N,

In® (@1, v1))| < K (% T R 2l,,)|z1|”,
(14.6). 1C® (z1,01) = P D2y, m1)| < %lml”,
I (@1, 01))| < KN(% + zlz +ot zi,,) 22|,
(h=1,2,--),

for (x1,v1) in (13.11-N).

By means of (14.6), {n®(z1,v1)} and {¢(" (21, v1)} converge absolutely and uniformly
to 7w (z1,v1) and {n(z1,v1), respectively, in (13.11-N) satisfying Proposition 13-1.

To see (14.6), by (14.2), (13.9), (14.3) and (14.5), we have

o= | [ LA Vi
0

T
/ l<|¥ ~ds
0

exp [ﬁ] /0 -7 ©XP [— 2] GgN) (z,V(x))ds

< Bexp [%(%)] /:l o[V =2 exp [m( - %)]ds

By N_Kn, N
= |/\|sinellz1| =lell )

B K
< B =yl < SFm Y,

(14.7) ICI(\})(-TI,’UI)I =

Thus (14.6) is true for h = 1.
Now assume that (14.6) is true for h = j— 1. Then, by (14.2), the assumption on (14.6),
(14.3), (13.2), (13.3), (13.4) and (13.9), we have N > 4« and

InG (@1, 01) — ™ (@1, v1))|

E
KN / |:z:|N_lds
0

< a5y
(14.8) 168 (@1, 01) = €87 (@1, 01))

Ky A
5L

Kn @ ~N _ Kn N
= 2i-1|)\|sine |1 ™

aKn
2-1N

K,
|V < S |z |V,
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Thus (14.6) is true for h = j. Hence, by the principle of mathematical induction, (14.6) is

true for all positive integers h.

15. Proof of Proposition 12-1.  Let (o, vo,%0) be an arbitrary point in (12.1). Let
V(z) be the solution of (6.3) such that V(zo) = v and U(z) be the solution of (6.2) such
that U(zo) = uo. To show that there exists a solution {P(z, V(z), U(z)), Q(=, (V(z),U (=N}
of (E.1) satisfying Proposition 12-1, let €1, €2, p1, p2 and a be fixed small positive constants
such that (13.2) and (13.4) are satisfied. Let N be a positive integer satisfying

8 .
(15.1) N > max {m, 1Al smel}
Let
N-1

PM(z,V(2),U(=)) = Y Pula V(@)U ()",
(15.2) k=1 N

Q™ (z,V(2),U(z)) = Qo(z: V(@) +2 Y Qile, V(@)U ()",

k=1

and make a change of variables
(153)  P=PM(z,V(@),U@)+én, Q=QM(2,V(2),U()+¥n.
Then {¢n,®¥n} satisfies the system of equations

2B _ \gn + Fu(z, V(2), U(x); on, ¥n),
(15.4) d‘f
:Bd—:' = GN(xy V(:E), U(z)w ¢N1 "/)N),

and (15.4) possesses a formal solution

oN ~ Z Pi(z, V (2))U ()",

k=N

¥y ~z Y Qula, V(@)U(z)"

k=N

(15.5)
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Moreover, Fn(z,v,u; ¢n,¥n~) and Gn(z,v,u; o~,¥n) are analytic in

I$|<§Ny al‘gA—-g+€1<a.rgx<arg)\+72_r_el,
(15.6-N) [v| < r(argv;bn,€2), — 7 —argb+ e <argv < 7 —argh — ez,
Iul <IN,
[¢n] < By,  In| < Bn.
Here 0 < {n < p1 < 1,0 < 6§ < p2 and vy~ and Bn are small constants. Furthermore, there

exists a positive constant A, independent of N, and a positive constant Kn such that

|Fw (2, v, u; v, 9n)| < Al + [0]) + B ul”,

(15.7) S
|Gn(z,v,u; N, 9n)| < A(l9| + [9]) + Knul”,

and

(15.) |Fn (2, v,4; 6N, %N) — Fn(z,v,u; 43N,$N)| < Aoy — dn| + on — ),

|G (2, v, %68, 9N8) — G (z,v,u;0n,9n)| < A(ldN — dN| + [¥n — dn]),

for (x,v,u; ¢n,9¥n) and (z,v,u; $N,1/3N) in (15.6-N). Then, Proposition 12-1 is proved if we
prove the following

PROPOSITION 15-1. Let N be an integer satisfying

16A 8 4
[Msiner’ |A|sine;’ sine

(15.9) N> max{ , |)\|sinel}.

Then, (15.4) has a unique solution {¢n(z,V(z),U(z)), ¥n(z,V(z),U(z))} such that
(15.10) lon (2, V(2), U))l < EnlU@)IY,  [n(z,V(2),U@)| < RnlU()™

whenever (z,V (x),U(x)) is in a domain of the form (15.6-N).

Proposition 12.1 follows from Proposition 15-1 in the following manner. By the trans-
formation (15.3), (E.1) has a solution

N-1
Pi(z, V(2))U(z)* + ¢n(z, V(z), U(x)),
(15.11)

-

k=
N—

Qo(z,V(z)) +z )  Qi(z,V(@))U(z)* +¥n(z,V(z),U(z)),
k=1
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provided that (z,V(z),U(z)) is in (15.6-N). Let N’ be an integer greater than N. Then

N'—1
> Pila, V(@)U ()" + éni (2, V (2), U(2)),

k=N

N'-1
z Z Qk(xv V(:l:))U(:t)k + ¥ (11, V{(z), U((B)),

k=N

(15.12)

is a solution of (15.4). This solution satisfies the condition (15.10) if (z,V(z),U(z)) is
in the common part of (15.6-N) and (15.6-N’). Hence, by the uniqueness of the solution
of (15.4), as assured by Proposotion 15-1, (15.12) must coincide with {¢n(z,V(z),U(z)),
¥n(z,V(z),U(z))}. Thus the solution expressed by (15.11) is independent of N, provided
that N satisfies (15.1). Denote this solution by {d(z, V(z), U(z)),¥(z,V(z),U(z))}. Then,
by means of analytic continuation, the function é(z,v,u) and 'J:(m,v, u) are defined in the

domain

T s
|z] < &o, aIg)\—§+61<a.rgcc<argA+§—el,

(15.13) |v| < r(argv; b0, €2), — m—argb+ex <argv < —argb— ez,

lu| < 0,
lpn] < Bo,  |¥N]| < fo.

Here £o = sup&n, 6o = supén, Yo = supyn and fo = supfBn. Thus, Proposition 12.1 is

proved.

16. Proof of Proposition 15-1.  To show Proposition 15-1, let (z1,v1, u1) be an arbi-
trary point of (15.6-N), V() be the solution of (6.3) such that V(z1) = v1 and U(z) be the
solution of (6.2) such that U(z1) = u1. Note that a positive integer N satisfying (15.10) also
satisfies (15.1). Furthermore, {¢, ¥~} are given by the integral equations

¢N(zlsv1$ul) = €xp [ - zi] / l % €xp [%] FN(Ia V(m)v U(w); ¢N’ U’N)dl‘a
(16.1) 11 Jo

wwtenomu) = [ 2on(e Vi), UE);dm vw)i,
]
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where the integral is taken on the segment 0z;. Consider the successive approximations:

¢$3)($1)vlyul)=01 ¢§3)($1,01,U1)=0,

¢§\’;+1)(mlyvl,ul) = €exXp [_ -mA—:I / a:1_2 €xp [;] FN(m’ V(.’L'), U(w); ¢$\';) (h))dz
0

1

(16.2) -
¢§\;‘+”(m1,v1,m)=/ %GN(z,V(m),U(f)W%‘) ¥y )de,
0

(h=0,1,2,---).
Note that, by (7.10) and (6.1), since p; < 1,

_1d N|\|sine N|A|sine
N1M> || 1||N> Ill 1|u|N~

d, '~ _
(16.3) dslul = Nlul ds = 2|z]? 2|z}

Also, by (7.10) and (15.10),

L fuf? exp [m(g)] —exp [m(g)]|ul”{%%+— ( )}
o) e ) e o

Now, we can show that

(16.4)

_ K
|¢(h)(1‘1,‘01,’u,1) —¢(h l)(ml,vlyul)l S 2_IllvlullN

1

- 1 1
|¢(h)(m1,vl,u1))| < Kn (-2- + = 2 +oend = oh )lullN

(16:5) B 21, 01,00) = 6D @, 00,0)] < il

(h) - 1 1 1
|¢ (mlavlwul))lSKN(§+2_2+'“+2}:>|U'1|

(h=1v25"')’

for (z1,v1,u1) in (15.6-N).

From these inequalities, {¢® (z1,v1,21)} and {4 (z1,v1,u1)} converge absolutely and
uniformly to ¢n (1, v1,u1) and Y (z1,v1,u1), respectively, in (15.6-N) satisfying Proposition
15-1.
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To see (16.5), by (15.8), (16.3), (16.4) and (15.10), we have
|¢S)(-'Bl,”1,u1)|
[ M| A
=exp |R| — = —exp = )| Fn(z, V(z),U(z);0,0)dz
I 1/ JlJo z
(16.6) r 1.
< exp ?R(—mi) KN exp[ ( )]Iul”ds
1
[ A\ by Ky, '~
< -2 2 =N
= exp §R( m1>_ N|A[smel [ (ml)]lull < 2 Y,
1§ (21,01, u1)] = / -Gi"(z,V(z),U(z);0,0)ds
(16.7) o i P
. 2Kn N N N
< N LN < &N
< Kn /0 |z ||u| ds N|)\|sme ual™ < 2 fal

Thus (16.5) is true for h = 1.
Now assume that (16.5) is true for h = j—1. Then, by (16.2), the assumption on (16.5),

(16.3), (16.4) and (15.10), we have
|¢%)(w1,v1,U1) - ¢53_1)(w1,vl,u1)|
A SO | A
= exp [§R( - E)] /0 m—zexp [ER(;)]

{FN(m,V(x),U(m>;¢$3'” $3) = Fn (2, V(2), U(x); 652, 53'2’)}dm

(16.8)
<o (- 2)| 52 [ e [2(3) e
< exp [3%( - :—1)] %m@cp [ﬂ?(%)] | < %\'-IMIN,
W (@1, 01,01) — 9§ ) (@1, 01,w)]
- / - I{GN(-'L" V(@) U@y %, 98
o
(16:2) - Gn(z, V(2), U(z);¢%‘2’,¢53*"’)dm}

ZRNA

T )
1, ~ 2KNA 4 N _ Kn, '~
etk — < < —
< TR [ s fual < KV

= 2i-1 N|A|sine; v
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Thus (16.5) is true for h = j. Hence, by the principle of mathematical induction, (16.5) is

true for all positive integers h.
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