SOME IDENTITIES FOR COMMUTATIVE QUASI-GROUPS

R. C. AGRAWAL & Anju MISHRA

(Received August 24, 1994)

1. Introduction

Let S be a system of elements a, b, c, \ldots closed with respect to a multiplicative operation. For any $a, b, c \in S$, consider the following postulates:

 $(A) \quad (ab) a = b$

(A') a(ba) = b

- (B) a(ab) = b
- (C) (b a) a = b
- (D) c(b(a(ac))) = b

Following Higman and Neumann [2], Padmanabhan [3] and Sholander [4], Agrawal [1] also formulated an identity (D) (single-equational axiom) to characterize a commutative quasi-group. In this paper, we have established some more identities to characterize commutative quasi-groups individually as follows:

- (E) (((ca)a)b)c = b
- $(F) \quad (a(ac))(bc) = b$
- (G) (cb)((ca)a) = b
- (H) (((a b) c) c) a = b
- (I) a(c(c(ba))) = b
- (J) (bc)(a(ac)) = b
- (K) ((ca)a)(cb) = b

2. Some propositions

The following prosositions were proved [1]:

Proposition (2.1) $(A) \iff (A')$

Proposition (2.2) $(A,B)^* \iff (A,C)$

Proposition (2.3) $(B,C) \iff (A,B)$

^{*}Here and onwards, the notation (A, B) will mean the postulates (A) and (B) together.

3. Characterization of commutative quasi-groups

Theorem (3.1) It has been proved that [1], the system S is a commutative quasi-group, if any one of the following is satisfied:

$$(I)$$
 (A,B)

$$(II)$$
 (A,C)

$$(III)$$
 (B,C)

Theorem (3.2) The system S togeher with the identity relation (E) characterizes a commutative quasi-group.

Proof Putting c = ba in (E), we find

$$((((ba)a)a)b)(ba) = b$$

Now, if we replace first b by a and then c by b in (E), we get

$$(((b a) a) a) b = a$$

Thus, (3.1) and (3.2) yield

$$(3.3) a(ba) = b$$

which, in view of the Proposition (2.1), imply

$$(ab) a = b$$

Again, replacing a by bc in (E) and applying (3.3), we find

$$(((c(bc))(bc))b)c = b,$$

or

$$((b(bc))b)c = b$$

which, in view of (3.4), yields

$$(3.5) (bc)c = b$$

Thus, we conclude that (3.4) and (3.5) are the same as the postulates (A) and (C) and therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Theorem (3.3) The system S together with the identity relation (F) characterizes a commutative quasi-group.

Proof Putting b = a in (F), we find

(3.6)
$$(a(ac))(ac) = a$$

Replacing ac by d in (3.6), we obtain

$$(3.7) (ad) d = a$$

Again, replacing a by bc in (F) and applying (3.7), we have

$$((bc)((bc)c))(bc) = b,$$

or

$$((bc)b)(bc) = b$$

Further, replacing bc by a in (3.8), we get

$$(3.9) (ab)a = b$$

Thus, we observe that (3.9) and (3.7) are the same as the postulates (A) and (C) and therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Theorem (3.4) The system S together with the identity relation (G) characterizes a commutative quasi-group.

Proof Putting b = a in (G), we have

(3.10)
$$(ca)((ca)a) = a$$

Replacing ca by b in (3.10), we find

$$(3.11) b(ba) = a$$

Again, replacing a by cb in (G) and applying (3.11), we obtain

$$(cb)((c(cb))cb) = b,$$

or

$$(3.12) (cb) (b (cb)) = b$$

Now, replacing cb by a in (3.12), we get

$$(3.13) a(ba) = b$$

which, in view of the Proposition (2.1), imply

$$(3.14) (ab) a = b$$

Thus, we notice that (3.14) and (3.11) are the same as the postulates (A) and (B) and therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Therorem (3.5) The system S together with the identity relation (H) characterizes a commutative quasi-group.

Proof Replacing a by ca in (H), we find

$$((((ca)b)c)c)(ca) = b$$

Again, replacing b by c in (3.15) and applying (H), we get

$$((((ca)c)c)c)(ca) = c,$$

or

$$(3.16) a(ca) = c$$

which, in view of the Proposition (2.1), imply

$$(3.17) (ac) a = c$$

Now, replacing c by a in (H) and applying (3.17), we obtain

$$(((ab)a)a)a=b,$$

or

$$(3.18) (ba) a = b$$

Thus, we conclude that (3.17) and (3.18) are the same as the postulates (A) and (C) and therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Theorem (3.6) The system S together with the identity relation (I) characterizes a commutative quasi-group.

Proof Replacing a by ac in (I), we find

$$(3.19) (ac) (c(c(b(ac)))) = b$$

Replacing b by c in (3.19) and applying (I), we get

$$(ac)(c(c(c(ac)))) = b,$$

or

$$(3.20) (ac) a = c$$

Again, replacing c by a in (I) and applying (3.20), we obtain

$$a(a(a(ba))) = b$$

or

$$(3.21) a(ab) = b$$

Thus, we observe that (3.20) and (3.21) are the same as the postulates (A) and (B) and therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Theorem (3.7) The system S together with the identity relation (J) characterizes a commutative quasi-group.

Proof. Putting b = a in (J), we find

$$(3.22) (ac)(a(ac)) = a$$

Replacing ac by b in (3.22), we get

$$(3.23) b(ab) = a$$

which, in view of the Proposition (2.1), imply

$$(3.24) (ba) b = a$$

Now, replacing c by a in (J) and applying (3.23), we obtain

$$(ba)(a(aa))=b,$$

or

$$(3.25) (ba) a = b$$

Thus, we notice that (3.24) and (3.25) are the same as the postulates (A) and (C) and therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Theorem (3.8) The system S together with the identity relation (K) characterizes a commutative quasi-group.

Proof Putting b = a in (K), we find

$$(3.26) ((ca)a)(ca) = a$$

Replacing ca by b in (3.26), we get

$$(3.27) (ba)b = a$$

Again, replacing c by a in (K) and applying (3.27), we obtain

$$((a a) a) (a b) = b,$$

or

$$(3.28) a(ab) = b$$

Thus, we conclude that (3.27) and (3.28) are the same as the postulates (A) and (B) and therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

REFERENCES

- 1. Agrawal, R. C.: On some postulates for Quasi-groups; Nep. Math. Sc. Rep.; 7, No. 1 (1982), 19-22.
- Higman, G. & Neumann, B. H.: Groups as groupoids with one law; Publ. Math. Debrecen; 2 (1952), 215-221.
- 3. Padmanabhan, R.: On single-equational axiom systems for abelian groups; Australian Jour. Math.; 9 (1967), 143–152.
- 4. Sholander, M.: Postulates for commutative groups; American Math. Monthly; 66 (1959), 93-95.

Department of Mathematics & Astronomy Lucknow University Lucknow — 226007, INDIA