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1. Introduction

Let S be a system of elements a, b, c,......... closed with respect to a multiplicative

operation. For any a, b, c € S, consider the following postulates:

A (ab)a=0b (A) a(ba)=">b
B af(ab)=0bd
© (aja=b

DO c(b(a(aq)) =b

Following Higman and Neumann [2], Padmanabhan [3] and Sholander [4], Agrawal [1] also
formulated an identity (D) (single-equational axiom) to characterize a commutative quasi-
group. In this paper, we have established some more identities to characterize commutative

quasi-groups individually as follows:

®  (((ca)a)b)c=b
F) (a(ac))(bc)=b
G (cb)((ca)a)=b
® (((eb)c)c)a=b
(D) afclc(ba)) =b
() (be)a(ac)) =b
® ((ca)a)(cb)=b

2. Some propositions
The following prosositions were proved [1]:
Proposition (2.1) (A) < (4")

Proposition (2.2) (A,B)" < (4,0)
Proposition (2.3) (B,C) <= (A,B)

*Here and onwards, the notation (A, B) will mean the postulates (A) and (B) together.
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3. Characterization of commutative quasi-groups

Theorem (3.1) It has been proved that [1], the system S is a commutative quasi-group, if
any one of the following is satisfied:
O 4B @ 4C) @ (B,C)

Theorem (3.2) The system S togeher with the identity relation (E) characterizes a com-

mutative quasi-group.

Proof Putting ¢ = ba in (E), we find

(3.1) ((((ba)a)a)b) (ba) = b

Now, if we replace first b by a and then ¢ by b in (E), we get

(3.2) (((ba)a)a)b=1¢a

Thus, (3.1) and (3.2) yield

(3.3) a(ba)=b

which, in view of the Proposition (2.1), imply

(3.4) (ab)a=1b

Again, replacing a by be in (E) and applying (3.3), we find
(((c(be))(be))b)c=1b,

or
(b (be))b)c=b

which, in view of (3.4), yields
(3.5) (bc)e=1b

Thus, we conclude that (3.4) and (3.5) are the same as the postulates (A) and (C) and

therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Theorem (3.3) The system S together with the identity relation (F) characterizes a com-

mutative QUasi-group.
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Proof Putting b=a in (F), we find

(3.6) (a(ac)) (ac)=a

Replacing ac by d in (3.6), we obtain

(3.7 (ad)yd=a

Again, replacing a by bc in (F) and applying (3.7), we have
((bc) ((bc)c)) (be) = b,

or

(3.8) ((bc)b) (be) =0

Further, replacing bc by a in (3.8), we get

(3.9) (ab)a=b

Thus, we observe that (3.9) and (3.7) are the same as the postulates (A) and (C) and

therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Theorem (3.4) The system S together with the identity relation (G) characterizes a com-

mutative quasi-group.

Proof Putting b =a in (G), we have

(3.10) (ca) ((ca)a)=a

Replacing ca by b in (3.10), we find

(3.11) b(ba)=a

Again, replacing e by cb in (G) and applying (3.11), we obtain
(cb) ((c(cb))cb) =b,

or

(3.12) (cb) (b(cb)) = b
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Now, replacing cb by a in (3.12), we get

(3.13) a(ba)=1b

which, in view of the Proposition (2.1), imply

(3.14) (ab)a=b

Thus, we notice that (3.14) and (3.11) are the same as the postulates (A) and (B) and

therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Therorem (3.5) The system S together with the identity relation (H) characterizes a com-

mutative quasi-group.

Proof Replacing a by ca in (H), we find

(3.15) ((((ca)b)c)c) (ca) = b

Again, replacing b by ¢ in (3.15) and applying (H), we get
((((ca)e)c)e) (ca) =,

or

(3.16) a(ca)=c

which, in view of the Proposition (2.1), imply

(3.17) (ac)a=c

Now, replacing ¢ by a in (H) and applying (3.17), we obtain

(((ab)a)a)a =1,
or
(3.18) (ba)a=1b

Thus, we conclude that (3.17) and (3.18) are the same as the postulates (A) and (C) and

therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Theorem (3.6) The system S together with the identity relation (I) characterizes a com-

mutative quasi-group.
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Proof Replacing a by ac in (I), we find
(3.19) (ac)(c(c(b(ac)))) =b
Replacing b by ¢ in (3.19) and applying (I), we get

(ac) (c(e(c(aq))) =b,

or

(3.20) (ac)a=c

Again, replacing ¢ by a in (I) and applying (3.20), we obtain
a(a(a(ba))) =0

or

(3:21) a(ab)="b

Thus, we observe that (3.20) and (3.21) are the same as the postulates (A) and (B) and

therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Theorem (3.7) The system S together with the identity relation (J) characterizes a com-

mutative quasi-group.

Proof. Putting b = a in (J), we find

(3.22) (ac)(a(ac))=a

Replacing ac by b in (3.22), we get

(3.23) b(ab)=a

which, in view of the Proposition (2.1), imply

(3.24) (ba)b=a

Now, replacing ¢ by e in (J) and applying (3.23), we obtain
(ba) (a(aa)) = b,

or

(3.25) (ba)a=1b
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Thus, we notice that (3.24) and (3.25) are the same as the postulates (A) and (C) and

therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.

Theorem (3.8) The system S together with the identity relation (K) characterizes a com-

mutative quasi-group.

Proof Putting b = a in (K), we find

(3.26) ((ca)a) (ca)=a

Replacing ca by b in (3.26), we get

(3:27) (ba)b=oa

Again, replacing ¢ by a in (K) and applying (3.27), we obtain
((aa)a) (ab) = b,

or

(3.28) a(ab)=b

Thus, we conclude that (3.27) and (3.28) are the same as the postulates (A) and (B) and

therefore, in view of the Theorem (3.1), the system S forms a commutative quasi-group.
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