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Abstract: In this paper we consider the set of fixed points of an isometry
mapping of a bounded Riemannian complex manifold M into itself.
‘We prove that the set of all fixed points of f is a complex submanifold
of M.

1. Introduction:

The importance of the study of fixed points can hardly be exaggerated. This is due to
the wide applications of fixed point theorems to many branches of mathematics. The main
use is the establishment of existence and uniqueness theorems by a certain fundamental fixed
point principle as in nonlinear integral and differential equations. Recently the structure of
fixed points on a complex manifold has been studied by several authors [2, 3]. For instance
W. Kaup and J. P. Vigue considered among other things the set of all G-symmetric points of a
hermitian manifold M [4]. They proved that such a set is a closed real-analytic submanifold
of M.

In this paper we consider the structure of fixed points of isometry mappings of a bounded
Riemannian complex manifold. Let M be a bounded Riemannian complex manifold and
f: M — M be an isomentry. We define the set Fix f by

Fiz f={peM: f(»)=p}

We shall prove the following main theorem in section 1.

Theorem (1.1): Let f: M — M be an isomentry. Suppose that the set Fix f is non-empty.
Then the set Fix f is a submanifold of M.
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Let B, (o) be a ball of radius r in C*, and let f : B,y — B,(0) be a holomorphic mapping,
consider the mapping ¢, defined by

1 n-—1
—_— £
0.=157
=0
Since B, (o) is convex, ¢, is a holomorphic mapping from B,.(o) to B,). Using Montel’s
theorem, we can obtain a subsequence ¢, converging to a holomorphic mapping ¢ uniformly
on compact subsets of B, ). As B, (o) is taught, ¢ is a holomorphic mapping from B, (o) to
B, (0). We then have the following lemma due to Vigue[5].
Lemma (1.1): Let a € Fiz f. The linear map ¢'(a) is a projection onto F = {v € C" :
f'(a)v =v}. Let G be the kernel of ¢’(a). Then f'(a)G C G, and 1 is not an eigen-value of
f@)le.
Since the above lemma is fundamental to the proof of our theorem, we shall give a proof

here for completion.

2. Proof of Lemma(1.1):

Suppose « is an eigenvalue of f'(a) of modulus 1. Put f’(a) in Jordan canonical form.
Then we claim that the relative submatrix is diagonal. Because if not, then there is a Jordan
block of the form

o 1 ces eee 0
0
| 0 ... ... 0 a]

Then (f'(a)" has a corresponding block of the form

a n 0
0
- 0 a -

and letting n — oo we get a contradiction since (f’(a)” should always have a converging

subsequence: [cf. Wu]. This proves our assertion that the relative submatrix corresponding
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to the eigenvalue « is in fact diagonal. Therefore the spectral space associated to a is equal
to the corresponding eigenspace. This implies that if f'(a) is written in a Jordan form, then
¢'(a) is a projection of C" onto F = {v € C" |f'(a). v = v}.

Now let z € C® be in F then f'¢'(2) = ¢'(2) = ¢'F (2).

i.e. f'(a) commutes with ¢'(a). If w belongs to the kernel G of ¢'(a), then

¢@f (@)(w) = F'(@)¢' (a)(w) = 0.

This implies that f’(a)(w) also belongs to G whenever w does. i.e. the kernel G of ¢'(a) is
stable under f(a) (f'(a)G C G).

We know that the spectral space associated to « is equal to the corresponding eigenspace.
This shows that 1 is not an eigenvalue of f'(a)|c since z € G means f'(a) = 0.

Now consider the sequence of iterates of ¢:

Using Lemma, (1.1) and Cauchy’s inequalities one can prove that [cf. 5] ¥, converges uniformly
on compact subset of B, (o) to a holomorphic mapping ¥ which is a holomorphic retraction
(i.e. P2 =) satisfying ¥ o f = ¥ and Fix f C Fiz 0.

These consequences will be utilized in the proof of the main theorem in section 3.

3. Proof of the main theorem:

Let M be a bounded Riemannian complex manifold of complex dimension n and let
f: M — M be an isometry mapping. Suppose that a is a fixed point of f. Take a coordinate
system u, @ around a = f(a) in M such that a(a) = a(f(a)) = 0. The neighborhood u maybe
taken to be a small ball centered at a. (If u is not originally a ball then a small ball centered
at a inside « may be considered.) Now take a ball B, () of radius r in a(u) = u C C*. Then
B, (0) is a bounded convex domain in C*. Since f is an isometry one can define the map
f=ao foa™! such that

f: B0 — By

with the property that f(0) = 0. We shall first prove that the set Fix f is a complex sub-
manifold of B,.0). The proof is as follows:

Consider the mapping ¥ which is constructed from f at the end of section 2. Since this
¥ is a holomorphic retraction, by a theorem of H. Cartan [1] we can find a neighborhood K of
the fixed point 0 and a local chart k: K — K such that k(0) = 0 and ¥ is a linear projection
P in this local chart k. Assume now we are in the local chart k. Let F = Im P, G = ker P.
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‘We can use coordinates z = (z,y) withz € F and y € G. Now
Vof=10, Y(z,y) ==z
This implies that we can write
flz,y) = (=, falz,y)), z€F

By Lemma(1.1), 1 is not an eigenvalue of F/(0))e this means that 1 is not an eigenvalue
of 0f2

oy oF
det(id|g — a—;(w,o» #0

(0,0). This is true for every = belonging to a small neighborhood W of 0 in F. So

Now let g = id|g — f2(z,.). Using the inverse function theorem, the image of g contains an
open set in G.

For z =0, g(0) = —f2(0,0) =0, i.e. 0 belongs to this image. The same is true for every =
in a small neighborhood of 0 in G. Now

g71(0) = {(=,0) : Is(0) — fa(z,0) = 0} = {(=,0) : fa(=,0) = 0}

is a submanifold of B,.). For any (z, 0) in this submanifold we have f(x,0) = (z,0), z € F.
i.e. it is a submanifold of fixed points of f. Then we use analytic continuation to extend the
above situation to the whole of B,(). Notice that for any (x,y) € B0 We have ¥(z,y) =
(z,0) i.e. ¥(B.o)= Fiz f which means that Fix f is a complex submanifold of B, (o).

Next we continue the proof of our theorem at the level of f : M — M. Solet = Fiz f
and let = a~}({}) C u. Then we shall prove the following statements.
(i) Q belongs to Fix f and Q@ = u Fix f.
(ii) Q, 7 o a|q is a coordinate sysatem around a € Fiz f, where 7 is the projection

w(2Y,..., 2™, 2™ 27 = (2N ., 2™
The statement (i) follows from the following argument:
Write a0 foa™ () = f(Q) =Q
This implies that
foa'(®) =a'(Q)ie fF(Y=0

so Q C Fiz f. Since §2 C u we get Q='g Fix f.

To prove statement (ii) let p € 2. Then p = a~*(Z) for some Z in Q2. Notice that since
© = Fiz J is a complex submanifold of C", then one can write Z = (2*,2%...,2™,0,...,0)
for some integer m < n.

Thus 7 o a(p) = n(2) = (2%, 2%, ...,2™) which proves (ii).
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Now let a; be an arbitrary point belonging to Fix f in M. Repeating exactly the above
argument we have Q;, 7 o a;|n a coordinate system around a; € Fix f. To show that Fix f
is a submanifold of M of dim m < n we need to show that (i, 7 o cil;) is an atlas for
Fix f. With the help of (i) and (ii) we need only show that if a belongs to two overlapping
coordinate neighborhoods €2, = o o; and Q;, 7 o e, then the mapping

(moas)o(mooy)™! : wo (R A R;) = mo (R AKy) is analytic. But this is obvious

1

since (Toa;)o(moa;) ' =moa;0 a; o 7~ is analytic by virtue of a; o ozj'1 being analytic

as M is a complex manifold, and 7, 7~ also analytic.
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