On the ergodicity of compact abelian group extensions of states on C*-dynamics

Yukimasa Oka

(Received October 31, 1995)

1. Introduction.

In [3], we obtained a characterization for the ergodicity of invariant states on C*-dynamics. In this note, as an application of the characterization, we discuss the ergodicity of compact abelian group extensions of invariant states on C*-dynamics. We give a necessary and sufficient condition for the compact abelian group extension of an invariant state on a C*-dynamics to be ergodic and its consequences.

Let A be a unital C*-algebra. If α is an automorphism of A, then the pair (A, α) is said to be a C^* -dynamics. A C*-dynamics (B, β) is conjugate to (A, α) if there is an isomorphism Φ of A onto B such that $\alpha = \Phi^{-1} \circ \beta \circ \Phi$ on A. A state φ on A is said to be invariant if $\varphi \circ \alpha = \varphi$ on A. Let $(\pi_{\varphi}, \mathcal{H}_{\varphi}, \xi_{\varphi})$ be the cyclic representation of A induced by φ . If φ is an invariant state on (A, α) , then it induces a unitary representation u_{φ} (or simply u) on the Hilbert space \mathcal{H}_{φ} such that $u_{\varphi}\pi_{\varphi}(x)u_{\varphi}^* = \pi_{\varphi} \circ \alpha(x)$ for every x in A and $u_{\varphi}\xi_{\varphi} = \xi_{\varphi}$. In fact, it is defined by $u_{\varphi}\pi_{\varphi}(x)\xi_{\varphi} = \pi_{\varphi}(\alpha(x))\xi_{\varphi}, x \in A$. A non-commutative version of ergodicity of an invariant state φ on the C*-dynamics (A, α) is that φ is an extreme point in the invariant states. We say φ to be ergodic in this case.

An automorphism α of A may be considered as an action α of the group $\mathbb Z$ of integers on A. If B is a C*-subalgebra of A which contains the identity of A and B is invariant under the action α , then the restriction β of α to B is an automorphism of B and hence (B,β) is a C*-dynamics. Moreover, if an invariant state φ on (A,α) is ergodic, then an invariant state ψ on (B,β) which is the restriction of φ to B is ergodic. In general, of course, the converse is false. Suppose that ψ is ergodic. What is the condition for φ to be ergodic? We consider this problem in the case that B is the fixed point C*-subalgebra of A under an action of a compact abelian group.

Let (A, α) be a C*-dynamics and let σ be a continuous action of a compact abelian group G on A such that $\sigma_g \circ \alpha = \alpha \circ \sigma_{\kappa(g)}$ for all g in G and some automorphism κ of G. Then α induces an automorphism $\alpha|_{A^{\sigma}}$ of the fixed point C*-subalgebra A^{σ} of A under the action

8 Y. OKA

 σ . If a C*-dynamics (B,β) is conjugate to the C*-dynamics $(A^{\sigma},\alpha|_{A^{\sigma}})$, we say that (A,α) is a (G,σ) -extension of (B,β) under κ , or simply a G-extension of (B,β) . If (A,α) is a G-extension of (B,β) , then (B,β) is frequently identified with $(A^{\sigma},\alpha|_{A^{\sigma}})$. Let Γ be the dual group of a compact abelian group G. An element γ of Γ is called n-periodic with respect to an automorphism κ of G if $\gamma \kappa \neq \gamma, \ldots, \gamma \kappa^{n-1} \neq \gamma$ and $\gamma \kappa^n = \gamma (n \geq 1)$.

Now we give a necessary and sufficient condition for an invariant state φ on the G-extension (A, α) of a C*-dynamics to be ergodic, as a spectral condition.

2. The ergodicity of a state on the G-extension of a C*-dynamics.

As a special case of Theorem 1 ([3]), we have the following characterization for the ergodicity of invariant states on C^* -dynamics (A, α) .

THEOREM 1. Let φ be an invariant state on C^* -dynamics (A, α) . Then φ is ergodic if and only if

$$\dim\{\eta\in\mathcal{H}'_{\varphi}:u_{\varphi}\eta=\eta\}=1\,,$$

where \mathcal{H}'_{φ} is the closed linear span $[\pi_{\varphi}(A)'\xi_{\varphi}]$ of $\pi_{\varphi}(A)'\xi_{\varphi}$.

As an application of Theorem 1, we prove the following theorem, which gives a characterization for an invariant state on the G-extension of a C*-dynamics to be ergodic.

THEOREM 2. Let (A, α) be a (G, σ) -extension of a C^* -dynamics (B, β) under κ and let φ be an invariant state on A under α and σ . Suppose that the restriction ψ of φ to B is ergodic. Then φ is not ergodic if and only if there exist a positive integer n and a γ in Γ , n-periodic with respect to κ and not equal to 1, and a ξ_{γ} in \mathcal{H}'_{φ} , $\xi_{\gamma} \neq 0$ such that $u_{\varphi}^n \xi_{\gamma} = \xi_{\gamma}$ and $v_g \xi_{\gamma} = \langle g, \gamma \rangle \xi_{\gamma}$ for all g in G, where \mathcal{H}'_{φ} is the closed linear span $[\pi_{\varphi}(A)'\xi_{\varphi}]$ of $\pi_{\varphi}(A)'\xi_{\varphi}$ and v is a unitary representation of G on \mathcal{H}_{φ} defined by $v_g \pi_{\varphi}(x) \xi_{\varphi} = \pi_{\varphi}(\sigma_g(x)) \xi_{\varphi}$ for x in A.

To prove Theorem 2, we need the following lemma, as in [2].

LEMMA 3. Let v be a unitary representation of a compact abelian group G on a Hilbert space $\mathcal H$ and u a unitary operator on $\mathcal H$ such that $v_g u = u v_{\kappa(g)}$ for all g in G and some automorphism κ of G. For γ in Γ , let $\mathcal U_{\gamma}$ be the set of all ξ in $\mathcal H$ such that $v_g \xi = \langle g, \gamma \rangle \xi$ for all g in G. Then we have

(1)
$$\mathcal{H} = \sum_{\gamma \in \Gamma}^{\oplus} \mathcal{U}_{\gamma}$$

and

(2) if $\xi \in \mathcal{U}_{\gamma}$, then $u\xi \in \mathcal{U}_{\gamma\kappa}$.

PROOF. (1) For ξ in \mathcal{U}_{γ} and ξ' in $\mathcal{U}_{\gamma'}$, we have

$$(\xi|\xi') = (v_g \xi | v_g \xi')$$
$$= \langle g, \gamma \rangle \overline{\langle g, \gamma' \rangle} (\xi|\xi'),$$

for all g in G. If $\gamma \neq \gamma'$, $\langle g, \gamma \rangle \overline{\langle g, \gamma' \rangle} \neq 1$ for some g in G, and so ξ is orthogonal to ξ' . Suppose that a ξ in \mathcal{H} is orthogonal to any vector in $\bigcup_{\gamma \in \Gamma} \mathcal{U}_{\gamma}$. Put $\xi_{\gamma} = \int_{G} \overline{\langle g, \gamma \rangle} v_{g} \xi dg$ for each γ in Γ . Then ξ_{γ} belongs to \mathcal{U}_{γ} , and we have

$$\begin{array}{rcl}
(\xi_{\gamma}|\xi_{\gamma}) & = & \int_{G} \int_{G} \overline{\langle gh^{-1}, \gamma \rangle} (v_{gh^{-1}}\xi|\xi) \mathrm{d}g \mathrm{d}h \\
& = & \int_{G} \overline{\langle g, \gamma \rangle} (v_{g}\xi|\xi) \mathrm{d}g \\
& = & (\xi_{\gamma}|\xi) = 0.
\end{array}$$

Hence $\xi_{\gamma} = 0$ for all γ in Γ . If we put $f(g) = (v_g \xi | \xi)$ for each g in G, the function f on G is integrable and positive definite. Hence we have

$$(v_g \xi | \xi) = \int_{\Gamma} \langle g, \gamma \rangle \hat{f}(\gamma) d\gamma$$

$$= \int_{\Gamma} \langle g, \gamma \rangle \int_{G} \overline{\langle h, \gamma \rangle} (v_h \xi | \xi) dh d\gamma$$

$$= \int_{\Gamma} \langle g, \gamma \rangle (\xi_{\gamma} | \xi) d\gamma$$

$$= 0$$

for all g in G. Thus $(\xi|\xi) = 0$, and so $\xi = 0$. This implies the assertion (1).

(2) If ξ is in \mathcal{U}_{γ} , we have

$$v_g(u\xi) = u(v_{\kappa(g)}\xi)$$

= $\langle \kappa(g), \gamma \rangle u\xi$
= $\langle g, \gamma \kappa \rangle u\xi$.

This implies the assertion (2).

Thus the proof is complete.

PROOF OF THEOREM 2. Since (A, α) is a (G, σ) -extension of (B, β) , we may identify (B, β) with $(A^{\sigma}, \alpha|_{A^{\sigma}})$. Let $(\pi_{\psi}, \mathcal{H}_{\psi}, \xi_{\psi})$ be the cyclic representation of B induced

10 Y. OKA

by ψ , where $\psi = \varphi|_B$, and u_{ψ} be a unitary operator on \mathcal{H}_{ψ} defined by $u_{\psi}\pi_{\psi}(y)\xi_{\psi} =$ $\pi_{\psi}(\beta(y))\xi_{\psi}$ for all y in B. By the above identification of (B,β) and $(A^{\sigma},\alpha|_{A^{\sigma}})$, we have $\mathcal{H}_{\psi} \subset \mathcal{H}_{\varphi}, \xi_{\psi} = \xi_{\varphi}$ and $u_{\psi} = u_{\varphi}|_{\mathcal{H}_{\psi}}$. Suppose that ξ_{γ} satisfies the conditions of Theorem 2. Put $\xi = \sum_{i=0}^{n-1} u_{\varphi}^{i} \xi_{\gamma}$. Then ξ belongs to $\sum_{i=0}^{n-1} \mathcal{U}_{\gamma \kappa^{i}}$ and $u_{\varphi} \xi = \xi$, where $\mathcal{U}_{\gamma} = \mathcal{U}_{\gamma \kappa^{i}}$ $\{\eta \in \mathcal{H}'_{\varphi}|v_g\eta = \langle g,\gamma \rangle \mid (g \in G)\}$. Since ξ does not belong to $C\xi_{\varphi}$, the dimension of $\{\xi \in \mathcal{H}'_{\varphi} : u_{\varphi}\xi = \xi\}$ is greater than 1. Hence, by Theorem 1, φ is not ergodic. Conversely, suppose that φ is not ergodic. Then, by Theorem 1, there exists a vector ξ in \mathcal{H}'_{φ} not belonging to $C\xi_{\varphi}$ such that $u_{\varphi}\xi=\xi$. By Lemma 3, we have the direct sum decomposition $\xi = \sum_{\gamma \in \Gamma} \xi_{\gamma}$ with ξ_{γ} in $\mathcal{U}_{\gamma} = \{ \eta \in \mathcal{H}'_{\varphi} | v_g \eta = \langle g, \gamma \rangle \eta (g \in G) \}$, and also $u_{\varphi} \xi = \sum_{\gamma \in \Gamma} u_{\varphi} \xi_{\gamma}$ and $u_{\varphi}\xi_{\gamma}$ is in $\mathcal{U}_{\gamma\kappa}$. Since $u_{\varphi}\xi = \xi$, we have $u_{\varphi}\xi_{\gamma} = \xi_{\gamma\kappa}$ and $||\xi_{\gamma}||_{\varphi} = ||\xi_{\gamma\kappa}||_{\varphi}$ for all γ in Γ . From the orthogonality of ξ_{γ} 's, we have $\xi_{\gamma} = 0$ if γ is not periodic with respect to κ . Now we note that for a vector η in \mathcal{H}'_{φ} , if η is u_{φ} -invariant and $\{v_g:g\in G\}$ -invariant, then it belongs to \mathcal{H}'_{ψ} and is u_{ψ} -invariant. If $\xi_{\gamma}=0$ for all $\gamma\neq 1$, then $\xi=\xi_1$, and so ξ is $\{v_g:g\in G\}$ -invariant and u_{φ} -invariant. Hence ξ belongs to \mathcal{H}'_{ψ} and u_{ψ} -invariant, and thus ξ belongs to $\mathbf{C}\xi_{\psi}$ from the assumption of the ergodicity for ψ . Thus ξ belongs to $\mathbf{C}\xi_{\varphi}$ which contradicts the assumption of ξ . Therefore there exists a γ in $\Gamma, \gamma \neq 1$ such that $\xi_{\gamma} \neq 0$. From the above, this γ is n-periodic with respect to κ for some positive integer n, and then we have $u_{\omega}^{n}\xi_{\gamma}=\xi_{\gamma\kappa^{n}}=\xi_{\gamma}$.

This completes the proof.

Also, in particular, if κ is the identity automorphism of G, then we have the following

COROLLARY 4. Let $(A, \alpha), (B, \beta), \varphi, \psi, v_g, g \in G$ be as in Theorem 2. If κ is the identity automorphism of G, then φ is not ergodic if and only if there exist a γ in Γ , not equal to 1, and a ξ_{γ} in \mathcal{H}'_{φ} , $\xi_{\gamma} \neq 0$ such that $u_{\varphi}\xi_{\gamma} = \xi_{\gamma}$ and $v_g\xi_{\gamma} = \langle g, \gamma \rangle \xi_{\gamma}$ for all g in G.

COROLLARY 5. Let σ be a continuous action of a compact abelian group G on a unital C^* -algebra A and φ be an extremal G-invariant state on A. Then φ is not an extremal state, i.e. not a pure state on A if and only if there exist a γ in Γ , not equal to 1, and a ξ_{γ} in \mathcal{H}'_{φ} , $\xi_{\gamma} \neq 0$ such that $v_g \xi_{\gamma} = \langle g, \gamma \rangle \xi_{\gamma}$ for all g in G.

Since it is clear that if ξ_{φ} is separating for $\pi_{\varphi}(A)''$, then ξ_{ψ} is separating for $\pi_{\psi}(B)''$, we have the following

COROLLARY 6. Let $(A, \alpha), (B, \beta), \varphi, \psi, v_g, g \in G$ be as in Theorem 2. If ξ_{φ} is separating for $\pi_{\varphi}(A)''$, then φ is not ergodic if and only if there exist a positive integer n and a γ in Γ , n-periodic with respect to κ , and not equal to 1, and ξ_{γ} in \mathcal{H}_{φ} , $\xi_{\gamma} \neq 0$ such that $u_{\varphi}^n \xi_{\gamma} = \xi_{\gamma}$ and $v_g \xi_{\gamma} = \langle g, \gamma \rangle \xi_{\gamma}$ for all g in G.

The condition of Corollary 6 is rather fitting in the following property (*) of φ :

$$\dim\{\xi \in \mathcal{H}_{\varphi} : u_{\varphi}\xi = \xi\} = 1 \tag{*}$$

It is known that the property (*) implies the ergodicity of φ , but, in general, the ergodicity of φ does not imply the property (*) ([1],[3], etc.). For the property (*) of the G-extension, we have the following

THEOREM 7. Let $(A, \alpha), (B, \beta), \varphi, \psi, v_g, g \in G$ be as in Theorem 2. Suppose the restriction ψ of φ to B has the property (*). Then φ does not have the property (*) if and only if there exist a positive integer n and a γ in Γ , n-periodic with respect to κ and not equal to 1, and a ξ_{γ} in \mathcal{H}_{φ} , $\xi_{\gamma} \neq 0$ such that $u_{\varphi}^{n}\xi_{\gamma} = \xi_{\gamma}$ and $v_{g}\xi_{\gamma} = \langle g, \gamma \rangle \xi_{\gamma}$ for all g in G.

The proof of Theorem 7 is almost parallel to one of Theorem 2, so is omitted. Since if ξ_{φ} is separating for $\pi_{\varphi}(A)''$, then the ergodicity implies the property (*) ([1],[3], etc.), Corollary 6 follows again from Theorem 7.

References

- [1] Bratteli, O. and Robinson, D.W., Operator algebras and quantum statistical mechanics I, Springer-Verlag, New York, 1979
- [2] Oka, Y., On a compact abelian group extension of a W*-dynamics, Kumamoto J. Sci.(Math.), 16(1985), 69-75.
- [3] Oka, Y., A note on ergodic states on C*-dynamics, Kumamoto J. Math., 4(1991), 1-4.
- [4] Osikawa, M., Notes on minimality and ergodicity of compact abelian group extension of dynamics, Publ. RIMS, Kyoto Univ., 13(1977), 156-165.
- [5] Sakai, S., C*-algebras and W*-algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1971

Department of Mathematics Faculty of Science Kumamoto University