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ABSTRACT. Symmetry of the general hypergeomeric functions of confluent type
on the Grassmanian G, is discussed. This symmetry comes from the action
of the normalizer of maximal abelian subgroups of GL(n) on the functions. In
particular, in the simplest case, the symmetry provides the well known transfor-
mation formulas for the hypergeometric function of Gauss and for the confluent

hypergeometric function of Kummer.

1. INTRODUCTION

Inspired by the work of K. Aomoto ([A]) and I.M. Gel’fand et al. ([G], [GRS]) on gen-
eral hypergeometric function, we introduced in [KHT1] the general hypergeometric function
of confluent type (GHF of confluent type, for short). This was defined by extending the well
known integral representations for Kummer’s confluent hypergeometric function, Bessel func-
tion, Hermite-Weber function and Airy function; as for the definition GHF of confluent type,
see Section 2.

The purpose of this paper is to give the group of symmetry for GHF of confluent type and
to illustrate why hold some transformation formulas for the classical hypergeometric functions
of confluent type.
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abelian group, normalizer.
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To present our problem concretely and to make our motivation explicit, we first consider

the example of Gauss hypergeometric function. It is given by

F(a,b,c;z) = E (a)k(b)k z*

k>0 (@ *

I'(e)

= Fe— o) J, w71 - u)* (1 — zu) Cdu

where (a)x = I'(a + k)/T'(a). The series converges in the unit disk || < 1 and defines a
holomorphic function there. It satisfies the differential equation on P! with singular points
z=0,1,o00:

:z:(l-—:c) +{c—(a+b+1)m} —aby =0.

The equation is called Gauss hypergeometric diﬂ'erential equation (HGE, for short). By
virtue of the integral representation or of the differential equation, F'(a,b, c; z) is extented to
the multivalued analytic function in P* \ {0, 1,00} by analytic continuation.

At each singular point, HGE has two linearly independent local solutions expressed in

terms of F(a,b,c;z). For example, at « = 0, we can take
F(a,b,c; x), ' Fla—c+1,b—c+1,2 —cz).
Each independent solution has 4 apparently different expressions. For example we have

F(a,b,c;z) = (1 — ) * °F(c — a,c — b, c; )
—a oz
=(1-2) F(c b,a,c,—:E_l)

=(1—zx)" _ T
=(1-z) F(c a,b,c,z_l)

and similar expressions for ' °F(a —c+1,b—c+1,2 —¢; z).
Since the situation is the same at the singular points £ = 1,00, there are 24 solutions in
total, which are known as “Kummer’s 24 solutions”. For the other explicit expressions, refer
to [IKSY]. The reason for the existence of such expressions can be explained from the group
theoretic point of view when the integral representation for F(a,b, ¢; z) is rewritten in a more
symmetric manner as follows (cf. [G]).

Let Za,4 be the space of 2 X 4 complex matrices any of whose 2-minor does not vanish

and an element z € Z3,4 is denoted as z = (zo,...,23) € Z2,4 with column vectors z;. Put

E={(t,2) €P' x Zau | tzi #0 (0<i<3)},
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where t = (to,%1) is the homogeneous coordinate of P! and tz; := (to, t1)2: denotes a homoge-
neous linear function of #p and £, defined by the vector z;. It is known ([H]) that the projection
to the second factor 7 : E — Z2 4 defines a C™ fiber bundle and, in particular, a topologically
locally trivial fibration. The fiber E(z) := 7~ 1(2) is

E@)=p'\{z,...,2},

where 2} denotes the point in P! defined by the condition tz; = 0. Take the parameter

a = (o, -..,a3) € C* satisfying the condition
Qo+t =—2
and consider the multivalued 1-form on E:

w(t,z,a) = H (tzi)"‘ (todtl - tldto)

0<i<3

Note that the 1-form w(t, 2z, &) is invariant by the homothety t — ct,c € C*, and therefore it
really defines a multivalued 1-form on E. Let £ be the 1-dimensional local system on E such
that each branch of [Jo.;<;(t2:)** determines a horizontal section of £. Let LY be the dual
local system of £ and consider the homology group Hi(E(z), £Y|g(z)) with coefficient in the
local system LV | E(z)- By virtue of the local triviality of the fibration = : E — Z5 4, we see that
H = Uzez, . Hi1(E(2), £Y|5(z)) is again a local system on Z 4 whose fibers are 2-dimensional
vector spaces.

Take a horizontal section A of H with A(z) € H1(E(z), £Y|g(z)), which is called a twisted
cycle (see [Kit] for the details about twisted cycles). Then the general hypergeometric func-
tion due to Gel’fand is defined by the integral

&(z,a,A) = / w(t, z, ).
A(z)
In the following, we consider ®(z, a, A) for some fixed twisted cycle A. Therefore, in order to
avoid the cumbersome notation, we omit A in ® and simply write ®(2; a).

The function ®(z; ) satisfies very simple but substantial properties. Let H be the Car-
tan subgroup of the complex general linear group GL(4) consisting of diagonal matrices. It
is easy to check that if z € Z3 4 we have gzh € Z, 4 for any g € GL(2) and h € H. Hence we
can consider the action of GL(2) x H on Z34 by the left and right matrix multiplication:

GL(2) X Zz_4 xH — ZZ,4
(9,2,h) —  gzh.
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This action can be lifted to the action of GL(2) x H on the universal covering space Zs,4 of
Za,4, where GL(2) and H are the universal covering group of GL(2) and H, respectively.

For this action ®(z; a) behaves as

®(gz; ) = (det g) ' ®(2;a), g€ dL(Z)

(1.1) -
®(zh;a) = x(h)®(z;a), h€eH

where x(h) := [], k. By virtue of this property, we can relate the function ®(z; @) to Gauss
hypergeometric function in the following manner. Put M := GL(2)\Z3,4/H. It is seen that
M is an complex affine algebraic manifold biholomorphic to P* \ {0, 1, co}. This is established

by finding a normal form of z € Z2 4 by the above group action as

emgth = 10 1 1
' 01 -1 -z’

and the entry  of 2’ gives an affine coordinate of M. Then, by taking the twisted cycle A(z)

given by the path in E(2) connecting the point 2] to 23, we have

®(z; a) = (det g) ' x(h)®(2; @),
_ Do + 1) (a2 +1)

(1.2) o(2;0) = (a1 + a2 +2)

Floy + 1, —asz, o1 + a2 + 2;z).

Now we are ready to explain the group theoretic aspect of Kummer’s 24 solutions. Let
Ng(H) be the normalizer of the Cartan subgroup H in GL(4). It is the semi-direct product

Ne(H)=H xW.

Here W is the subgroup of Ng(H) consisting of all permutation matrices which is isomorphic

to the symmetric group G4 of 4 letters by the correspendence
Py = (6is(j))o<iica & 0 €64

and is identified with the Weyl group of GL(4). In the followings of this section, we regard W
as &4 by the above identification. Define the action p : W — Aut(Z2,4) by

p(0)z = 2Py := (24(0), - - -1 20(3)) for z=(20,...,23).
We see easily that the function ®(z; ) satisfies

(1.3) ®(2P;aP,) = ®(z;a) for o € W.
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On the other hand, since P, € N¢(H), the above action induces a representation of W in the
group of automorphisms of M = GL(2)\Z2,4/H :

p:W = Aut(M), p(o)|z] = [2Ps).

Interpretting the relations (1.3) as those for Gauss hypergeometric function using (1.2), we
obtain 24(= W) solutions of Kummer.

The purpose of the present paper is to extend the above result about the Gauss hyper-
geometric function for the GHF of confluent type introduced in [KHT1].

This paper is organized as follows. In Section 2 we recall briefly the definition of GHF of
confluent type. The GHF is defined as the “Radon transform” of a character for the universal
covering group of the maximal abelian subgroup H) of GL(n), which is parameterized by a
partition A of n. In Sections 3 and 4, we determine the structure of normalizer Ngr(n)(Hx)
and W := Ngrn)(Hx)/Ha. The latter group can be regarded as the analogue of Weyl group
for GL(n). In Section 5 we consider the action of the normalizer Ng(H») (and of the group
W) on the affine manifolds Z,, and M = GL(r)\Z,,»/H» on which GHF of type X is defined.
Then we study the effect of the action on the GHF of type A. In Section 6, we treat the
hypergeometric system of Airy type, namely the system of differential equations for GHF of
type A = (n). We give the transformation formula for the system under the action of the
group W. The last section is devoted to establishing the connection between GHF on Z2,4,22,5

and the classical hypergeometric functions of one and two variables, respectively.

2. GENERAL HYPERGEOMETRIC FUNCTION

Let » be a positive integer. There is given a partition A = (Ao, ..., Ai—1) of n, namely,
a sequence of positive integers Ao > Ay > -+ > Ay satisfying |A\| = Xo+ -+ + A1 = n. We
visualize A by the figure called Young diagram as illustrated in the Figure 1. We sometimes
say “ Young diagram A ” instead of saying “partition \”.

FIGURE 1. Young diagram for A = (4,4, 3,2).

To such X, we associate a maximal abelian subgroup of GL(n) := GL(n,C):

Hx = J(o) X -~ x J(Ai—1) C GL(n),
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where J(A) is the Jordan group of size Ay defined by

0<i<Ay

J( k) :={ > MAiIhiGC,hO'#O},

where A is the shift matrix of size Ax:
(2.1) A=

We use also the notation [ho, ..., hx,—1] to denote the element 3 o, ., hiA* € J(Ax). Define
the biholomorphic map

(2.2) v Hy - e x )
k

by associating h = (h?,..., RU-DY R = [hgk), vy h&?_l] with

uh) = (B, .. B, BT, LR ).

Let Hy be the universal convering group of Hx:
f{,\ = j(z\o) X eee X j()\z_l).

Then the map ¢ can be lifted to the map Hx, — [, (C* x €*~1), which will be also denoted
by ¢.. We give the explicit form of the characters of H,, namely, the complex analytic homo-
morphisms from H) to the complex torus C*. To this end, we define the functions 6;(v) (i > 0)

of v = (v, v1,v2,...) by the generating function

oo
3" 6:(v)T* = log(vo + 0T +v2T? +---)
=0
= logwo + log (1+ Nrs v—2T2+...) .
Yo Vo

Notice that 8o(v) = logve and 6;(v) (i > 1) is a weighted homogeneous polynomial of
v1/vo, - . .,Vi/vo of total weight ¢ when the weight of v; is defined to be j.

Proposition 2.1 ([GRS]).
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(1) Let Xm : J(m) — C* be a character. Then, for some complex constants o = (o, ...,

am-1) € C™, we have

xm(h) = exp ( > aiei(b(h))) =hg%exp | > aiai(b(h))) )
0<i<m 1<i<m
where h = [ho,...,hm_1]. This character will be denoted by xm(-;c) to indicate the
dependence on a.
(2) Let x be a character of Hx. Then there are complex constants a = (?, ... ,a=1) ¢
Cc*, ol® € C** such that
x(B)= T xa(h®;a®),

o<k<!
where h = (h?,...,h¢-Y) € H\ and h™® € J(Ax). The character x with parameter o
will be denoted by x(-; ).

For the sake of simplicity, we write 6;(h) instead of 8;(¢(h)) by abuse of notation. To give
the space on which the general hypergeometric funciton is defined, we introduce the following

terminology.

Definition 2.2. Let A = (Xo,...,\i_1) be a Young diagram of weight n. A subdiagram of A

is a sequence of nonnegative integers A = (o, ..., 1) such that
0<mm <A, 0Li<li

and is denoted as ;2 C A. The integer |y| := po + - - - + py—; is called the weight of .

Let M(r,n) be the set of 7 x n complex matrices. The set M(r, ) will be denoted simply

as M(r). For an element z € M(r,n), we write

- k k
z=(29,... 207, - (2% ),...,zg‘k)_l)

where z{*

i

are column vectors. For a subdiagram u of A of weight r, we put

0 -
zZ, = (zl(, ),...,z‘(‘%)_l,...,zs 2

-1
you ,z‘(‘l_l)_l) € M(r).
Definition 2.3. The set

Zran={z€ M(r,n) | detz, # 0 for any subdiagram u C X of weight r}

is called the generic stratum of M(r,n) with respect to H,.
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Note that the generic stratum Z» is a Zariski open subset of M(r,n). Put
E={(t,2) P X Zrs |tz #£0 (0<i< D)},

where t = (to,...,¢r—1) is the homogeneous coordinate of P! and tz((,k) denotes the ho-
mogeneous linear function of ¢ defined by the column vector z((,k). Let 7 : E — Zpn be the
projection map defined by (¢, z) = z. Then we know that E is a C* fiber bundle over Z,,»
with the fiber

E(z) =P \U'c H®(2),

where H(®)(2) is the hyperplane in P"~! defined by the equation tzék) = 0. Note that these
hyperplanes are in general position by virtue of the definition of Z; ..

Let a = (&{?,..., oY) ecC™, a®) € C** be complex constants satisfying

(23) o 4o otV = .

And let x(-;a) be the character of Hx. Put
W(t, 2, a) = X(L_l(tz);a) )

where

T= Z (—l)itidtof\"'/\zt\i/\"'/\dtr_l,
0<i<n

is the (r — 1)-form obtained by taking the inner product of Euler vector field and the r-form
dto A - -+ Adtr—1, the symbol Jt\, implies that this term is omitted in the expression of 7. And
¢ is the map defined by (2.2). Note that by virtue of the condition (2.3), we see that the
(r — 1)-form w(t, z,a) is homogeneous of degree 0 with respect to ¢ and hence it defines a
multivalued (r — 1)-form on E.

Now we turn to the description of chains over which the integral of w(t, z, ) is considered.
Put

X(“_l(tz);a) = Ul(t7z)U2(t7 Z),

where

(k)
Uit,z) = [ @289y,

o<kl

Ua(t, 2) = H exp( Z agk)ei(tz(k))) .

ogk<l 1<i< A,
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Note that U1 is an element of Og/z,. . (—) and U: is a single valued holomorphic function on

E with the essential singularities along

Uisse BY: B =1, HY).

Let £ be the 1-dimensional local system on E such that each branch of U; determines
a horizontal section of £. We denote by £V the dual local system of £. Moreover let ¥ be
the family of supports in E defined by the function Uz, namely, ¥ is the family of closed sets
A of E such that the real part RUz(%, z) tends to —oco as the point (t,2) € A approaches to
Uk, >2H ™). The restriction of ¥ to the fiber E(z) of the fiber bundle 7 : E — Zy,n, defines
again a family of supports on E(z), which will be also denoted by the symbol ¥. Consider the
homology group Hr_1(wFE(z); £Y|g(z)) with family of supports ¥ and with coefficients in the
local system LY. Put

H:= Uzez,,,. HY (B LY |ee))-

A horizontal section A of # will be called the twisted cycle.

Definition 2.4. The function defined by the integral

®(z,a,A) = A w(t, z,a)

(=)
will be called the general hypergeometric function of type A (GHF of type A, for short).

In the following, we consider ®(2; a) for some fixed twisted cycle A. Therefore, we omit

A in ® and simply write ®(z; a).
Remark 2.5. When A = (1,...,1), GHF of type A coincides with the general hypergeometric
function defined in [G].

3. NORMALIZER OF ABELIAN GROUP H)

In the followings of this paper we use the different notation about the partition of n from
that in the previous sections.

There is given a partition of n:

A=(A1,.. 051,22, .00, A2, ., Asy ey As),  Ai FE A
N s N N ——’
p1 times p2 times Ps times
namely, a sequence of positive integers Ay > --- > A, which appear py,...,ps times, respec-

tively, and satisfy
P1A1+- -+ psds =0
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We associate such A with the abelian group H) defined by

H= ][] B, H= [ J),

1<i<s p; times

where J(A;) is the Jordan group of size A;. The group H; =[] J(A:) is considered as

p; times

a subgroup of GL(p; ;) by the correspondence
H;> (Xl, e ,X,,‘) — diag(Xl, e ?XPi) € GL(pi)\i),

where X; € J(A;). Similarly, Hx = H; x --- x H, is regarded as a subgroup of GL(n) by the

correspondence
Hy x---x He 3 (Xu,...,X;) — diag(Xs,...,X,) € GL(n).
By this identification, H) is a maximal abelian subgroup of GL(n). We write G and H instead

of GL(n) and H), respectively, if there is no fear of confusion.

Theorem 3.1. Let Ng(H) be the normalizer of H in G.
(1) The correspondence

H Nerpro)(Hi) 3 (Xa,...,Xs) — diag(Xa,...,X,) €G
1<i<s

gives an isomorphism

No(H) = [] Nevwo(H:).
1<i<s
(2) For any i, we have

Nerpa) (Hi) ~ ( H NGL(,\;)(J(/\i))) X Gp,.
p; times
Precisely, any X € Ngp(p;»;)(H:) is decomposed uniquely as
X =diag(X1,...,Xp;) - Ps,

where X; € Napo,)(J(A:i)) and P, € GL(piXi), 0 € 6y, is the permutation matriz which
has, when decomposed into blocks of square matrices of size A;i, the (4, k)-block equal to
Biok)ln;. Let S; := {Po | 0 € 6p,} be the subgroup of GL(p;i i) isomorphic to Gp,. Then

we have

p; times

Nerpa)(Hi) = ( H NGL(,\,.)(J()\.-))) x S;.

In the particular case, we have the following well known result:
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Corollary 3.2. When A = (1,...,1), the group H = H) is the Cartan subgroup of GL(n)

consisting of the diagonal matrices and its normalizer Ng(H) is
Ng(H)~H x W,

where W = Ng(H)/H =~ &, is the Weyl group of GL(n).
Proof of Theorem 8.1. Let X € Ng(H). Decompose X into blocks as

X = (Xij)hi<ijcs,  Xij € M(midi,mj);)

according as the product structure H = Hy x---x H,. Since X € Ng(H), for arbitrary chosen
A = diag(As,...,As) € H, we have XAX™! =: B € H. Put B = (By,...,B,), B; € H;.
The condition XAX ™ = B is written as

(3.1) XijA; = BiXi;, 1<4i,j<s.

We assert X;; = 0 if ¢ # j. Note that A; € H; = [] J(X:) and its each compo-
nent belonging to J(A;) can be chosen arbitrary. Note also that A;,..., s are distinct pos-

p; times

itive integers. Since the structure of Jordan normal form is preserved by the conjugation
A XAX™! for generic A, the eigenvalues of A; coincides with those of B; counting their
multiplicities. It follows from (3.1) that X;; = 0if i # j and Xi; € Neppa,)(H:). This
proves the assertion (1).

The assertion (2) is shown in the same way. Let Y € Ngr(pa,)(H:). Set p = p: for
simplicity. Decompose Y as Y = (Yji)1<jk<p, Where Yji is a A\; X A;i-matrix. As above, for
any C = diag(Ch,...,Cp) € H;, there exists D = (Dn,...,D,) € H; such that YCY ™' = D.
Note that the eigenvalues c1,...,c, of Ci,...,C, can be chosen so that they are all distinct.
Since the eigenvalues are preserved by conjugation C — Y CY ~! counting their multiplicities,

the eigenvalues di,...,dp of Ds,..., D, are obtained by rearranging ci, ..., cp, say,

(dl, ey dp) = (ca—l(l)a .- ,Ca—l(p))

for some o € G,. We assert
Y =0 for j#o(k)

and
(3.2) Yook € Naron(J (X))
In fact, the relation YCY ~! = D is written as

(3.3) YixCr = DYk, 1<j,k<p;
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when j # o(k), the eigenvalues of Ci and D; are different and the equation (3.3) implies
Yjx = 0. Moreover the equation (3.3) for j = o(k) implies (3.2). Put Yoy 1= Yoy (1 <
k < p). Then we see that

Y = diag(hh,...,Yp) - P,
where P, denotes the permutation matrix in GL(pA:) whose (j, k)-block is &;5(k) - 1»,. This
establishes the assertion (2). O

4. NOMALIZER OF THE JORDAN GROUP

Put G = GL(m) and let J = J(m) be the Jordan group of size m. We use the notation
h = [ho,h1,...,hm—1] to denote the element h = Yo, . hiA’ € J. In this section we
investigate the structure of the normalizer Ng(J) of the Jordan group.

Let = (1, 22,...) be the variables and consider the formal power series in T

f(z,T)= inTi.

i>1

Define the polynomials ¢:;(z) (¢,j > 0) in the variables z by

(4.1) f@T) =) ¢i(x)T?, i>o0.

20

We set, by definition, f(z,T)° = 1 and therefore,

1 ifj=0,
$o,5(z) = ,
0 ifj#o0.
The polynomials ¢;;(x) are given by
(4.2) ¢ii(z) = Z Tyy * " Ty
vit+etvi=j

where in the summation v1,...,v; run over the positive integers satisfying v1 + --- + v; = ;.
Define the weight of z; to be equal toi. We see from the expression (4.2) that if the polynomial
¢ij(z) is nonzero, it is a weighted homogeneous polynomial in z of weight j. It follows that

¢i;(z) is a function of z1,...,z;.

Remark 4.1. The expression (4.2) is written in terms of Young diagram as follows. Let u =
(po, p11, - - - ) be the Young diagram. The length of p is £(x) = max{k | pr # 0}. Rewrite p
as p = (1™12m23™3 ... k™ ...), Put

£(p)!

c(#) = mylmal - -mygl- ..
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and
.’z)" =1:;nlz;n2--.z;n" e
Then the formula (4.2) is written as

$ii(2) =D _ e(u)z*,

u
where in the summation px runs over the set of Young diagrams of weight j with the length
£(p) =1.

Lemma 4.2.

(1) Fori > j, we have ¢;j(z) =0.

(2) For arbitrary non-negative integers i1 and iz, we have

(4.3) birtizs(@) = D bir k(2)diz, i (2)-

0<k<)

Proof. Easy. 0O

Proposition 4.3. Let g € Ng(J). Then g is an upper triangular matriz and is written

uniquely as
(44) g=hX,

where h € J and X € Ng(J) such that X = (zij)o<ij<m Satisfies (Too,-..,Tom—-1) =
(1,0,...,0). : :

Proof. Given a g = (gi;) € Ne(J). For any A € J, there exists B € J such that gAg~! = B.
Comparing the components of both sides of gA = Bg, we see that g is upper triangular.
For the above g, we can take h = [ho,...,hm—1] € J such that A~'g € Ng(J) is an upper
triangular matrix whose first row is (1,0,...,0). In fact, put h~! = [co,c1, . . -, Cm—1] then the

first row of h™g is
(cogoo, cogor + €1g11, - - -, Cogo,m—1 + -+ + Cm—1gm—-1,m—1),

and therefore cp, . . ., cm—1 can be determined inductively so that this vector equals (1,0,...,0).
Putting X := h~'g € Ng(J), we get the decomposition (4.3).
The uniqueness of the decomposition is proved as follows. Suppose that g is decomposed
in two ways as
g=hX; =h2X;.
Then X1 X5 1 hl_lhz; the right hand side belongs to J, whereas first row of the left hand side
is (1,0,...,0); it follows that the h1hz! is the identity matrix and that hy = he, X1 = Xa. O
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Proposition 4.4. Let X = (zij) € Ng(J) satisfy (oo, ..., Zo,m-1) = (1,0,...,0). Then
X = (¢ij(x))ogi,i<m

for z = (z11, %12, - - -, Z1,m—1) € C™ 1, where ¢:;(z) are polynomials defined by (4.1).

Proof. Let X € Ng(J) satisfy the assumption. Then for any A = [ao,...,&m-1] € J, there
exists B = [bo,...,bm-1] € J such that

(4.5) XA=BX.

Since the eigenvalues of A and B coincide, we have ap = bo and comparing the first rows of
both sides of (4.5), we get

(4.6) (ao,...,am_l) = (bo,...,bm_1)X.

We prove the proposition by induction on m. In case m = 1, the assertion trivially holds..
Assuming that it is true for m, we prove it for m + 1. Suppose X, A and B in (4.5) is of size

m + 1. We decompose these matrices into 4 blocks as

X X A A B B
X un X2 A= 11 Az  B= 11 Bi2
0 Xz 0 Ax 0 Bz

where X11, X12 and X22 are matrix of size m x m,m X 1 and 1 x 1, respectively, and A, B are

decomposed in the same way. The equation (4.5) breaks into two conditions:

(4.7 X1[0,a1,...,8m-1] =[0,b1,...,bm-1]X11
and
(4.8) Xut(am, ves ,a1) = [0, by, .., bm_1]X12 + t(bm, veny b1)X22.

Since A is an arbitrary element of J(m + 1), and therefore a4, ...,am—1 can be chosen arbi-
trary, it follows from (4.7) that X11 € Ngi(m)(J(m)), and hence, by virtue of the induction

assumption, we have
(4.9) X11 = (¢ij(2))ogij<m
for some z € C™~!. The relation (4.6), in which m — 1 is replaced by m, is written as

(4.10) (@myeen381) = (60 s bm) (Ko - .-, K1)
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where X; is the i-th column vector of X. Substituting (4.10) into the left hand side of (4.8),

we obtain
(4.11) X11* (X, o, X1) b0y .y bm) = [0,1, -« y b1 ) K12 + 2 (brm, - - ., 1) X2

We want to show that (4.11) implies that the components Zim, . .., Tmm of X12 and Xo2 are

determined as

Thm = Prm(z), 1<k<m

with z = (211,...,21m). We note that the matrix X1; *(Xm,..., X)) is written as
0 zu ... Zym-2 ZTim-1 Tim
. 0 ¢2m e ¢m—l,m ¢mm 0
0 ¢3m v ¢mm 0
0 édmm O

This can be seen by using the property (4.3) for ¢;; in Lemma 4.2 and (4.9). Then the
equation (4.11) is equivalent to

(4.12) Z Ditk,mbr = Z bk—iTkm + bm—iTmm, 1<i<m-—1.
1<k<m—i i+1<k<m—1

Put ¢ = m — 1 in (4.12) and we get Tmm = @mm(z). Suppose that zrm = drm(z) for
i+1<k <m. Then we get Tim = ¢im(z) from (4.12). O

Summing up Propositions 4.3 and 4.4, we obtain

Theorem 4.5. Set W(m) := {(¢i;())o<i,j<m | = € C™"1, 21 # 0} C GL(m). Then W(m)
is a connected subgroup of Ng(J), and Ne(J) is a semi-direct product of W(m) end J:

Ng(J) =J x W(m).

Proof. The result follows from the uniqueness of the decomposition of g € Ng(J) into factors
g=h-X for h € J,X € W(m) and Proposition 4.4. O

Corollary 4.6. For the Jordan group J of size m, we have
(1) dimW(m)=m -1,
(2) dim Ng(J) =2m — 1.
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Theorem 4.7. Let \ be the partition of n and let H be the abelian group associated with the
partition A as given in Section 3. Set

(4.13) w=J] [ TI woa) | xS

1<i<s \ pitimes
where S; is the subgroup of GL(p:\:) consisting of permutation matrices P which, when de-
composed into p? blocks of square matrices of size i as P = (Pjk)1<jk<p, each component
satisfies Pjx, = 0 or Pj. = 1, and is therefore isomorphic to the symmetric group Gp,. Then
we have

Ng(H)Y=H xW.

Remark 4.8. Theorem 4.7 says that the group W defined by (4.13) is the analogue of the Weyl
group of GL(n).
Corollary 4.9. Let )\ be the partition of n as in Section 3. Then we have

(1) dimW = 2151'53 pi(Ai — 1),
(2) dim Ne(H) =n+ 3, <, Pi(Ai — 1).

5. ACTION OF Ng(H) oN GHF OF TYPE A

We consider in this section the action of an element of Ng(H) on the general hypergeo-
metric functions of type A. We adopt the notations in Sections 3 and 4 for the partition A of
n and the retated subgroups of G = GL(n). Let Z = Z,,» be the generic stratum of M(r,n)
with respect to the group H (see Definition 2.3) and let Aut(Z) be the group of holomorphic
automorphisms of Z. It is easily checked by virtue of Theorem 3.1 and Proposition 4.3 that
we have zg € Z for z € Z and g € Ng(H). For g € Ng(H), define the map p(g) € Aut(Z) by

p(9)(z) = 29, z€Z.

Thus we have the anti-homomorphism
p: Ng(H) — Aut(2).

In particular we have the representation of W C Ng(H) in the group Aut(Z), which will be
denoted also by p.

Put M := GL(r)\Z/H. It can be seen that M is a complex affine manifold. Let Aut(M)
be the group of holomorphic automorphisms of M. Since we are considering the normalizer of
H, the actions of Ng(H) and of W on Z induces the actions of these groups on M:

p: Ng(H) — Aut(M)



NORMALIZER OF MAXIMAL ABELIAN SUBGROUPS OF GL(N) 29
and
p: W — Aut(M).

By Theorem 4.7, we see that
W= Wo X S,

where

Wo:= [[ wow, s:= [ s

1<i<s 1<i<s
Note that Wy is the identity component of the Lie group W and S is the finite subgroup of
W isomorphic to W/Wo =[], <<, Gp; and S; = &,,.
Let x(-; ) be the character of the universal covering group H of H:

(5.1) x(ie)= TI TI xCiet®™),

1<i<s 1<k<p;

where a = (@1, ..., o) oD of*P)) € C" and x:i(-;a'"®) is the character of
J(A:) with the parameters o(*) = (af™®. .., af\ii”i)l) € cM,

Theorem 5.1. Forge W,

(5.2) x(" ((h)g);0) = x(hia'g) for h € H,

where ¢ is the biholomorphic map given by (2.2). In particular, for g € S, we have
(5.3) x(¢ 7} (e(h)g); g) = x(h;a) for he H.

We immediately see the following result.

Corollary 5.2. For g e W,

(5.4) x( 7' (tzg)0) = x(¢ 7 (t2); ')
In particular, for g € S, we have

(5.5) x( 7 (t2g); ag) = x (¢ (t2); @).

Integrating the relations (5.4) and (5.5) on the same twisted cycle, we get the following:

Theorem 5.3. Let ®(z;a) be the GHF of type \. Then
(1) forge W,

(5.6) ®(2g; @) = B(z; '),
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(2) forg €S,
(5.7) ®(zg; ag) = 2(z; ).
Following is a consequence of Theorem 5.3, (1).
Corollary 5.4. We assume that the parameters o € C" of ®(z; a) satisfy
B £0, 1<i<s1<k<p

Then there ezists g € Wo such that the change of coordinates z — z' = zg~! transforms

&(z; a) into ®(2';0’) with the parameters

Proof. Since W, acts on C™ blockwise as a(»%) — o{ik)tglik) g(ik) ¢ W ();), it is sufficient to
prove the particular case A = (n). We show that, for any o = (o, ...,an-1) € C" satisfying
an—1 # 0, there exists g € W(n) such that

o = otg = (0,0,...,0,1).

Recall that g € W(n) has the form g = (#i;(z))1<i,j<n With some z = (z1,...,Zn-1) €C*"?
such that z; # 0. From Lemma 4.2, (1), we have

n—1
(5.8) of = (a'g)i = Y aidis(x)
=0
= a,-t,bﬁ(:c) +-- 4+ an—1¢i.n—1(w)-

Consider (5.8) for ¢ = n — 1. Noting that ¢n_1,n-1 = z7~! and an—1 # 1, we can choose
xy # 0 so that af,_; = 1. Next we consider (5.8) for i = n — 2. Note that, from (4.2), the

terms ¢n—2,n—2 and @dn-2,n—1 has the form
-2 -3
¢n—2,'n—2 = x? ) ¢n—2,n-l = (TL - 2)-'13,1l Z2.

Using the condition an—1 # 0, we can determine x> so that the right hand side of (5.8) becomes
0. Proceeding in inductive manner, we can choose 3, ...,%n—1 so that o,_3, ..., o} becomes
all zero. Lastly from the condition (5.8) for i = 0, we have ag = ag because ¢o;(z) = bo; by
definition. O

The rest of this section is devoted to the proof of Theorem 5.1. First we prove the
theorem for g € Wp. Since g acts on C" block-componentwise, it is sufficient to prove the

theorem for the particular case where H = J(n) and x is a character of J(n).
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Lemma 5.5. Assume H = J(n). Then the identity (5.2) holds for any g € W(n).
Proof. Take g € W(n). For h € J(n), put
B =" (h)g).
Then we have

log x(h';a) = > aubsi(h')

0<i<n

/ ag

= (6o(R'), - - -, 01 () (

On—1
Set G(h) := (Bo(h), . ..,0n-1(h)) and show that the following identity holds.
(5.9) 6(r') = G(R)g.

In fact, by the definition of the function 8;(v), we have

(5.10) exp (Z Gi(h')Ti) =hy+ T+ ---+ho T mod. T"
1
= uh)g
Tm.—l

Since g € W(n) has the form g = (¢i;())1<i,j<n With some z = (z,...,2,—1) € C*"}, from
the definition ¢;;(z), we have

1 1
T T
g . = f(:z:‘ ) mod. T,
Tn—l f({C,T)n_l

where f(z,T) = 21T + -+ + zo,_1T""!. Therefore the right hand side of (5.10) equals
exp (32, 0:(h) f*) modulo T™. It follows that

1 1 1

TN =64(h) .| =6(r)g T mod. T™.
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Thus we have the identity (5.9). Now the identity (5.2) is immediate. In fact,
log x(c™* ((h)g); @) = B(R')'ex = B(h)g" @ = B(R)" (" g) = log x(h; o'g)

by virtue of (5.9). Exponentiating this identity, we get (5.2). 0O

Next we want to prove (5.2) for g € S. Taking account of the structure of the group S =
[Ti<i<s Si» to show the identity (5.2) for g € S, it is enough to show it for each S;. Therefore
it will be sufficient to consider the case that the partition A of n has the form A = (m,...,m),

Ny e’

P times
namely mp = n, and § ~ &, is the subgroup of GL(n) consisting of permutation matrices

P which, when decomposed into p? blocks of square matrices of size m as P = (Pjk)1<j k<ps

each component satisfies Pjx = 0 or Pjr = 1m.

Lemma 5.6. The identity (5.2) holds for the case H =[] J(m) C GL(n) and g € S.

p times
Proof. Note that g € S is decomposed into blocks according to the product strucure of H,

and its (i, 7)-block is 8;(j) - 1. Then the assertion is immediate from fg =g~'. O

Now the proof of Theorem 5.1 is already completed since any elelment of W is a product
of those of Wp and S.

6. ACTION OF Ng(H) ON GENERAL HYPERGEOMETRIC SYSTEM

It is known ([KHT1]) that GHF of type X satisfies a system of linear differential equations
which we will call the general hypergeometric system of type A (GHS of type J, for short). In
this section we investigate the action of p(Ng(H)) C Aut(Z) on GHS. Taking account of the
structure of Ng(H) given in Theorems 4.5 and 4.7, we will restrict our consideration to the
case where the GHS is associated with the Jordan group J = J(n), which will be called the
Airy system in this paper because it is essentially the same equation as the Airy equation

y" — zy = 0 when (r,n) = (2,4). The Airy system is
(Lm —am)u=0, 0<m<mn,
E(a): (Mij + 6i)u=0, 0<i,j<r,
Oijpqu=0, 0<4,j<7 0<p,g<mn,
where

Ly:= ZE: ZE: zﬁp—n&%p

0<i<r m<p<n
M := E 2ip0ijp
0<p<n
Oijpq : = BipOiq — Digd;



NORMALIZER OF MAXIMAL ABELIAN SUBGROUPS OF GL(N) 33

and 8;; = 8/8zi;. Take g € Ng(J) and consider the change of coodinates z — 2z’ = zg. Set
8; = 8/8z{; and

8 = (94)ocii<n, &' = (8i5)oi,j<n-
These operators are related as

(6.1) =29 -tg.

We denote by L;,, M;; and Oj;,, the differential operators in the variables z’ obtained by
replacing z by 2’ and 8;; by 0,{1- in the corresponding operators in z. Denote by g.F(a) the
system of differential equations in 2’ obtained from E(a) by the transformation z — 2’ = zg.

We write down explicitely how the system E(c)’ is related to g. E(c).

-Lemma 6.1. . The operator L, can be written as
Ly = trace(zA™ - *9)

where A is the n X n matriz of the form (2.1).

Proof. We have

Lm = Z (2i0y - - - s Zin—1-m)* (Bim, - - , Biyn—1)

0<i<r
t
= E 0,...,0,2i0,...,Zin-1-m) (ioy -+ .y Pin—1)
o<ier W
- m times
§ : mi
= (z,-o,...,z,-,n_l)A (6;0,...,ai,n_1)
oLi<r

= trace(zA™ - ).
a
Proposition 6.2. Let g € W(n) which is given by g™! = (¢i,;(z))o<i,j<n- Then the systems
E(a)' and g.E(a) are related as
GeLm = ¢me(@)Li, 0<m<n,
)
gMi; =M;;, 0<ij<r,

9+Dijpg = Z Bpgije, 0<4,j<r, 0<p,g<n,
o<k<i<n

where @ = (a1,...,an-1) is determined by the condition that f(a, T) = EiZl a:T* is the
inverse function of f(z,T) mod T", and

Apgkt = Pp(a)dq1(a) — dgr(a)dpi(a).
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Proof. We have

geLin = trace(z'g”'A™ g*d’")
= trace(z' (g" Ag)™ *d')

Since g € Ng(J) and A € J, we have g~'Ag € J. Then there exists a1,...,an—1 such that

(6.2) g 'Ag= Z a:iA’,
1<i<n

Therefore we get

Q*Lm = Z ¢mk (a)L;e
k

We show that f(a,T) = a1T + --- + an—1T™"! is the inverse function of f(z,T) mod T™.
Rewrite (6.2) as
A= (T g
1<i<n
Multiplying the vector !(1,T,...,T""") to the both sides of the above relation from the right,
we get
¢TI QLT,. L TV = () ah)g (LT, T

1<i<n

which is equivalent to

LA LT =) w Y (LS5 7)) mod T

1<i<n
Comparing the first entries of the both sides, we obtain
T= Z aift mod T™.
1<i<n

Hence we conclude that f(a,T) is the inverse function of f(z,T) mod. T™. This show the

first assertion. Next we cosider the operator g.M;;. We have

g M;; = Z 2ip0ijp = Z Zip z gpt8y = Mj;.

0<p<n 0<p<n oi<n
The assertion for g.0i;pq is easily proved using the relation (6.1). O

Remark 6.8. The third relation can be understood as follows. Define the lexicographic order
on Z x Z, namely, (p,q) < (k,!) if and only if p < k, or p = k and g < . For fixed (4,7),
define the column vector 0i;; := (O:jpq) arraying the entry in the order so that the index (p, q)
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increases. Then the matrix A= (Apg:) is interpreted as an upper triangular matrix of size

n(n — 1)/2 whose diagonal element is Apgpe= pp(@)Pgq(a) # 0.and

g.lﬁij =A ﬁ:_,

7. EXAMPLES

In this section we study the general hypergeometric functions of type A on Z2,4 and on
Z3,5 for various partitions A of 4 and 5, respectively. There are two things to be done. One
is to give the relation between the classical special functions of hypergeometric type of one
and two variables and the GHF on Z24 and on Z, 5, respectively. Another one is to make

clear what the theorems in the preceeding sections imply for the classical special functions.

Put M n := GL(r)\Z,,n/Hx, where Z,, is the generic stratum of M(r,n) with respect
to Hj.

7.1. GHF on M; 4.
The Young diagrams of weight 4 are listed as

17 N
- (LT

I A N [~

FIGURE 2. Young diagrams of weight 4.

The arrows between the diagrams indicate the process of confluence among the GHF of
type A for various A, cf. [KHT2]. The parameters o of the GHF will be indexed as a =
(@0, 01,2, 3). Let us list up the normal form of z € Z2 4 by the action of GL(2) x Hy which
provides an affine coordinate of M2,4 and the normal form of the parameters o by the action
of Wo =TT, W(X:) (see Corollary 5.4).

The relations of GHF on Z» 4 with the classical special functions of one variable are given
by

Proposition 7.1. Let ),z and « be as in Table 1. Then the general hypergeometric function
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TABLE 1
A Normal form of z Normal form of o
10 1 1
1, 1, 1,1 0 1 _1 z Qp, 01, (02,3
1 00 1
2,1,1 0 z 1 1 ao,—l,az,aa
9.9 1 00 —zx 1 1
ag, 1,
’ 011 0 55
31 10 00 0.1
1 2 1a
’ 01z 1 a0 s
1 00 O
4 -2,0,0,1
010 -z

®,(2;a) on Ma are expressed as

®(1,1,1,1)(z50) = f u® (1 — u)*2(1 — z1u)*3du
T
— I"(al + 1)1"(a2 + 1)
T + a2 + 2)
( Gauss hypergeometric function}
®2,1,1)(z50) = / e u?(1 — u)*3du
Y2
_ T(az + 1)I'(aas + 1) P
(o2 + a3 +2)
( Kummer’s confluent hypergeometric function ),

. ag+1
Q(g,z)(z;a)=/ ¥~/ M2 dy = 2mi(—1)"2 ™2y 5 J—az—1(2VZ)

2Fi(on +1,—0as3, 001 + az + 2;2)

(o2 + 1,02+ a3 +2;2)

RH)
( Bessel function ),
. = —u?/24zu_ a3z _ 2mi
®@i1(25 @) [y4 e u3du = ——F(_as)H_,,,s_l(a:)

(generalized Hermite function ),

®y(z50) = / e 3Ty = —2miAi(z)
T
{ Airy function ),

where the paths v; of integration are given in Figure 3.

Theorem 5.3 explains the group theoretic aspect of the transformation formulas for clas-
sical special functions (See also Introduction). In fact, we can show the following

Proposition 7.2. For A = (2,1,1), the group S C W is isomorphic to &2 with the generator



NORMALIZER OF MAXIMAL ABELIAN SUBGROUPS OF GL(N) 37

h n
0 1 v
T ) u
—/
0 T
u

2«9/? / s u
0 \

FIGURE 3. Path of integration v;, 2 =1,...,5.
g= nE Then the relation (5.7) gives

1F1(a,c;z) = €1 Fi(c — a,¢; —x),

which is known as Kummer’s first transformation formula for the confluent hypergeometric
Junction.

Proof. Put ®(z,a) = ®(2,1,1)(2, @). By Theorem 5.3, we have

®(29,9) = @(2, ).

, 10 1 0 ,
2 =z2g9= 0z -1 1)° o = ag = (ao, —1, as, az).

For ®(2',a’), the integral is taken along the path starting from 0 and terminating at 1. Note
that 2’ is normalized by the action of GL(2) x H as

1 —=x
1 1 1 0 0 1 1
2 = z”h, 2= , h=
-1 0 -z 1 -1 1

Furthermore notice that the integral which defines ®(2”;a’) is taken along the path which
goes from 1 to 0. Therefore we have

1

(7.1) ®(z';a’) = —@(2"; o' )x(h) = —"B(2"; o).

Expressing ®(z"; ') in terms of Kummer’s confluent hypergeometric function, we get from
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(7.1)
1F1(a2 + 1,02+ 03+ 2;z)= e’lFl(aa +1,a2 + az + 2; —x).

O

7.2. GHF on Mz,s.

A list of special functions of two variables of hypergeometric type can be found in [E] and
is known as Horn’s list. In the list, there are functions whose associated holonomic systems

are of rank = 3. Except the function G, they are given by the series

Fl (a" b, bl, T, y) Z (a)m+"(b)m (b,)’n myn

2y @rninl
U
Ga(a,d,b,b;z,9) = > (@)m (@’ )n(ri),:l:m(b Jm=n ™y
m,n>0
(@)min(b)m m, n
®,(a,b,cz,y) = gy
1( y) méo (c)m+nm!n! Yy
B)m (6)n
®,(b, ¥, c; z, _O)m(t)n_ i T
2( y) mzn;o (c)m+,,m'n’ Yy
(b)m m n
P3(b, c; x, ——
3( y) mzn;() (c)m+nm!n! Y
@)m(B)n-m(E)m-n m
Ti(a,bbiz,y)= D ( y
m,n>0 min!
b n—m b m—n m n
Ta(bbizy) = Y ® m,(n.) "
m,n>0

The holonomic systems on P! x P! for the first two functions are of Fuchsian type and those
for the rest have irregular singularity in addition to regular one. The latters are obtained
from the first two by so-called the process of confluence:
1
®i(a,b,c;z,y) = hm Fi(a,b, i €y),
®2(b, b, c;z,y) = lin(x] Fl(? b, b, c; ez, ey),
€—
. 1 1
®3(b, c; z,y) = lim Fi(-,b, =, c; ez, €%y),
e—0 € €
. 1
Iy (a'a b, b,; z, y) = h"(‘, Gz(a, ;a b, b,; z, ey),
€~
1
Pz(a, bs b,; z, y) = lil’I(l) Fl("ﬁ'? b7 b,; €T, y)a
[ Lad

. 11
= P_I.I(l) Gz(;, ;, b, bl; €T, Gy).
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Let us relate these functions to the GHF’s on M2 s with various Young diagram of weight

5. The Young diagrams of weight 5 are listed as

[ ]—

X

[ ]

FIGURE 4. Young diagrams of weight 5.

The meaning of the arrows in the figure is the same as in §§7.1. The normal formzof z € Zz 5
and that of parameters a = (o, a1, @2, a3, 4) are gathered in Table 2. Note that there is
other possibility of choice of normal form z and accordingly the GHF of type ) takes different
form in appearance. The detailed study of this kind will be taken up in [KKT).

TABLE 2

A Normal form of z Normal form of o
1 01 11

111:15111 z, = (0 11 z y) G, 01, 02, O3, (g
- 101z 1
27\01 11y
1 0 01 1

21 11 171 Z3 = (0 y 1 1 :L‘) aOs_laa2’a33a4
S 100 =z gy
“"lo111 1
. _(1 001
57\ y 111
1 0 011

2,2,1 Zg = (0 y 1 0 .’B) 0, —1, a0, — 1,4
S 100 =z 1
"\0 y 101
1 0 0 01

3,1,1 Zg = (0 z y 1 1) ao,O, 1,&3,&4

1 0 0O

3,2 Zg = (0 1 z 1 g) ap, 0, 1,a3,1
1 00 00O

4,1 le = (0 1 z y 1) a0)0’ 0? 1) a4
1 00 00O

5 Zy11 = (0 10 z y) —2,0,0,0,1
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Proposition 7.3. Let \,2:; and o be given as in Table 2. The GHF of type A on Mz are
related with the classical hypergeometric functions of two variables as

1111, (2150) = / w1 +u)*? (1 + zu)™ (1 + yu)**du

= A:l- Fi(aa +.1, —a3, —04, 01 + a2 + 2; —z, —y)
Brnan@ma) = [ U1+ @+ 0 (14 )
= Aj Ga(—03,—as, 1 + 03+ 1,—on — a2 — a3 — 1; -z, —y)
B2,1,1,1)(z3; ) = / e ¥ u2 (1 + u)*3 (1 + zu)™du
Y3

= Az - ®1(a2 + 1, -, a2 + a3 + 2; 7, 9)
B2,1,1,1)(z430) = / u®o e-l/“(l + zu)*3 (1 + yu)**du

Y4

= A4 - B2(—a3, —a4, 20 + 252,9)
B21,1,1)(z532) = / e u?(z + u)** (1 + u)**du

Y5
=As -Th(-as,—az—az—as — 1,2 +axa + 1;—z,—y)

B(2,2,1)(26; ) = / e u2e™ V(1 + zu)*du
Y6

= Ag - Pa(—aa, 02 + 2;2,9)

B2,2,1)(27;0) = / e Vi u2e /M (1 + u)*du
vr
= A7 -To(az + 1, —az —aqs — 1;x,y)

where the paths of integration v; (i = 1,...,7) are given in Figure 5 and A; denotes the

constants given by

T(ca + DT (a2 + 1)
I‘(a1 + a2 + 2) ?

I‘(a1 + a3+ 1)F(Otz + 1)
T(oa + o2+ a3 +2)

A= (1)

A2 = (_1)01+03

Ay = (- Eigp e 1)

A= T T

.
4= D)

Ay = (—1)™ D(oz + Dl(ca +1)

T(az + s +2)
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FIGURE 5. Path of integration vi, i =1,...,7.

We can give the similar results as in Proposition 7.2 for the classical hypergoemetric
functions Fi, G2, ®1, ®2, ®3,T'1 and T';. The explicit formulas will be given in [KKT].
For the other partitions, A = (3,1, 1), (3,2), (4, 1) and (5), we have the following functions.

B(3,1,1)(zs; ) = / exp(—%a:zu2 + yu)u® (1 + u)™du
¥

1
P(3,2)(z05 ) = / exp(—su® + zu + Lyu2du
- 2 u

1
D4,1)(Z10; ) = /exp(gu3 — zu? + yu)u®idu
vy

®(5)(z11; ) = /

exp(—lu4 —zu® 4+ yu)du,
. 4

where <y are the cycles of the homology associated with the above integrals given in Figure 5.

Remark 7.4. The GHF @, in the affine coordinates on M 5 listed above have already appeared
as particular solutions for the completely integrable Hamiltonian systems called Garnier sys-
tem and its “systems of confluent type ”, [K, OK]. It is to be noted that these Hamiltonian
systems arose in an entirely different context, namely, from the theory of monodromy pre-
serving deformation of the second order linear differential equations on P* and that they were
indexed by the partitions of 5.

The detailed study of the general hypergeometric functions of type A ®»(z; ‘a.) on M5 such
as series expansions at the singular locus, asymptotic expansions, transformation formulae and
the explicit form of Pfaffian system on P! x P!, etc. will be given in the forthcoming paper
[KKT].

Acknowlegement. The authors would like to express their thanks to Professor M. Ishikawa
for valuable comments.
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