On some foliations on ruled surfaces of genus one.

Akihiro Saeki

(Received November 29, 1995)

§0. Introduction.

In [Sa5], we classified foliations on ruled surfaces leaving a curve invariant and having no singularities on it. There are three cases. (See Theorem 0.1 below.) The first case was investigated in [Sa6]. In this paper, we observe the second one on ruled surfaces over closed Riemann surfaces of genus one.

A foliation of dimension one can be defined in various ways. (cf. [GM1], [GM2], [Sa1], [Sa2], [Sa3] and [Sa5].) In this paper, we adopt the following one.

Let M be a complex manifold of dimension m, \mathcal{O}_M the sheaf of germs of holomorphic functions on M and Θ_M the sheaf of germs of holomorphic vector fields on M.

DEFINITION 0.0.

0) A foliation of dimension one on M is an invertible subsheaf \mathcal{F} of Θ_M satisfying the following: The analytic set

$$\{p \in M | (\Theta_M/\mathcal{F})_p \text{ is } not \text{ a free } \mathcal{O}_{M,p}\text{-module of rank } m-1\},$$

which is called the *singular locus* of \mathcal{F} , is of codimension strictly greater than one.

1) Let N be a subvariety of M defined by a coherent ideal sheaf $\mathcal{I} \subset \mathcal{O}_M$. A foliation $\mathcal{F} \subset \Theta_M$ leaves N invariant if

$$\mathcal{FI} \subset \mathcal{I}$$
.

Theorem 0.1. ([Sa5] pp.622-623. Main Theorem 2.1.)

Let C be a closed Riemann surface of genus g, $X = \mathbf{P}(\mathcal{E}) \xrightarrow{\pi} C$ a ruled surface over C with the invariant e, a normalized locally free \mathcal{O}_C -module \mathcal{E} and C_0 a normalized section of $X \xrightarrow{\pi} C$. Assume that a foliation $\mathcal{F} \subset \Theta_X$ on X leaves an irreducible curve $C_1 \simeq_{num} aC_0 + bf$ with a > 0 on X invariant and has no singularities on C_1 . Then one of the following is the case.

$$I-i$$
) $e=0$, \mathcal{E} is decomposable and $b=0$.

I-ii) e=0, \mathcal{E} is indecomposable and b=0.

II)
$$e < 0$$
, $a \ge 2$ and $b = \frac{1}{2}ea \in \mathbb{Z}$. (In this case, \mathcal{E} is indecomposable.)

Here f is the divisor defined by a fibre of $X \xrightarrow{\pi} C$ and ' \simeq_{num} ' represents numerical equivalence of divisors on X.

§1. The main theorem.

Let C be an elliptic curve with periods $(2\omega_1, 2\omega_2)$ and $X = \mathbf{P}(\mathcal{E})$ with e = 0, where \mathcal{E} is an indecomposable locally free \mathcal{O}_C -module of rank two. Note that g = 1, e = 0 and \mathcal{E} is indecomposable implies that \mathcal{E} is a non-trivial extension

$$0 \to \mathcal{O}_C \to \mathcal{E} \to \mathcal{O}_C \to 0$$

which is constructed as follows:

Let $\wp(z)$ be the Weierstrass \wp -function with periods $(2\omega_1, 2\omega_2)$, $\omega_3 = \omega_1 + \omega_2$ and $\alpha_i = \wp(\omega_i)$ for i = 1, 2 and 3. Considering the elliptic curve C as the quotient space of C defined by the lattice $\mathbb{Z}2\omega_1 \oplus \mathbb{Z}2\omega_2$, we denote by $[z] \in C$ the image of $z \in C$. Let $a_i = [\omega_i]$ for i = 1, 2 and 3 and $U = C - a_3$. Taking a small enough open disk V with a coordinate x centred at 0, we identify V with an open set in C:

$$V \subset C$$
 $x \mapsto [x + \omega_3].$

We define a vector bundle E over C, with respect to this open covering $\{U, V\}$ of C, by

$$E_{VU} = \begin{bmatrix} 1 & \frac{1}{\wp'(z)} \\ 0 & 1 \end{bmatrix}.$$

Let X be a ruled surface defined by the vector bundle E, i.e. defined by patching $U \times \mathbf{P}^1$ and $V \times \mathbf{P}^1$ together, idenifying $([z], \zeta) \in U \times \mathbf{P}^1$ and $(x, \xi) \in V \times \mathbf{P}^1$ if and only if

$$\begin{cases} [x + \omega_3] &= [z] \\ \xi &= \zeta + \frac{1}{\wp'(z)} \end{cases}.$$

Since $\dim \mathbf{H}^1(C, \mathcal{O}_C) = 1$, this is the only ruled surface over the fixed elliptic curve C satisfying e = 0 and defined by an indecomposable normalized locally free sheaf over C.

Take fibre coordinates $\eta=\frac{1}{\zeta}$ and $\rho=\frac{1}{\xi}$. The transition relation is written as follows:

$$\rho = \frac{\wp'(z)\eta}{\eta + \wp'(z)}.$$

Curves defined by $\eta=0$ in $U\times \mathbf{P}^1$ and $\rho=0$ in $V\times \mathbf{P}^1$ are patched together to define a normalized section C_0 of $X\stackrel{\pi}{\longrightarrow} C$. It should be noted that C_0 is the unique section satisfying ${C_0}^2=-e=0$. (cf. e.g. [Gu] §5.)

On
$$\pi^{-1}(U) \cap \pi^{-1}(V)$$
,

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial z} - \frac{\wp''(z)}{\wp'(z)^2} \eta^2 \frac{\partial}{\partial \eta} \qquad \text{and} \qquad \rho^2 \frac{\partial}{\partial \rho} = \eta^2 \frac{\partial}{\partial \eta}.$$

We define a holomorphic vector field $\sigma \in \Gamma(X, \Theta_X)$ by

$$\sigma|_{\pi^{-1}(U)} = \eta^2 \frac{\partial}{\partial \eta}$$
 and $\sigma|_{\pi^{-1}(V)} = \rho^2 \frac{\partial}{\partial \rho}$.

Let θ be a holomorphic vector field

$$\frac{\partial}{\partial z} + \frac{\wp(z - \omega_3)}{\wp''(\omega_3)} \frac{\partial}{\partial \zeta} = \frac{\partial}{\partial z} - \frac{\wp(z - \omega_3)}{\wp''(\omega_3)} \eta^2 \frac{\partial}{\partial \eta} \in \Gamma(\pi^{-1}(U), \Theta_X).$$

 θ extends to a vector field

$$\frac{\partial}{\partial x} + \left(\frac{\wp(x)}{\wp''(\omega_3)} - \frac{\wp''(x + \omega_3)}{\wp'(x + \omega_3)^2}\right) \frac{\partial}{\partial \xi} = \frac{\partial}{\partial x} - \left(\frac{\wp(x)}{\wp''(\omega_3)} - \frac{\wp''(x + \omega_3)}{\wp'(x + \omega_3)^2}\right) \rho^2 \frac{\partial}{\partial \rho}$$

on $\pi^{-1}(V)$. Recall the Laurent expansion of φ at 0:

$$\wp(z) = \frac{1}{z^2} + c_2 z^2 + c_4 z^4 + \cdots$$

Since

$$\wp'(\omega_3) = 0, \qquad \wp''(\omega_3) \neq 0 \qquad \text{and} \qquad \wp(x + \omega_3) = \wp(\omega_3 - x),$$

 $\frac{\wp(x)}{\wp''(\omega_3)} - \frac{\wp''(x+\omega_3)}{\wp'(x+\omega_3)^2}$ is holomorphic at 0. Thus θ defines a global holomorphic vector field on X, which we denote by θ also.

Main Theorem 1.0.

Let C be an elliptic curve, $X \xrightarrow{\pi} C$ the ruled surface over C satisfying e = 0 and defined by the normalized indecomposable locally free sheaf over C and C_0 the normalized section of $X \xrightarrow{\pi} C$, which are described as above. Assume a foliation $\mathcal{F} \subset \Theta_X$ on X leaves an

irreducible curve C_1 on X invariant, has no singularities on C_1 and is not the ruling. Then the curve C_1 is C_0 and the foliation \mathcal{F} is defined by a global holomorphic vector field

$$\theta + k\sigma \in \Gamma(X, \Theta_X)$$
 with $k \in \mathbb{C}$,

where θ and σ are holomorphic vector fields on X defined as above.

§2. Proof of the main theorem.

It follows from Theorem 0.1 that $C_1 \simeq_{num} nC_0$ for a certain $0 < n \in \mathbb{Z}$. First, we claim the following proposition, which we prove in §3 bellow.

Proposition 2.0.

If an effective divisor D on X satisfies $D \simeq_{num} nC_0$ then D is nC_0 .

It follows that C_1 , which is redeced, is C_0 and that \mathcal{F} leaves C_0 invariant and has no singularities on C_0 . It holds that

$$\mathcal{F} \subset \mathrm{Der}_X(\mathrm{log}C_0),$$

where $\operatorname{Der}_X(\log C_0)$ is the sheaf of germs of logarithmic vector fields with respect to C_0 . (cf. [Sai] pp.267-268, (1.4) Definition.) Since the coherent ideal \mathcal{I} defining C_0 satisfies

$$\mathcal{I}|_{\pi^{-1}(U)} = \mathcal{O}_{\pi^{-1}(U)}\eta$$
 and $\mathcal{I}|_{\pi^{-1}(V)} = \mathcal{O}_{\pi^{-1}(V)}\rho$

 $Der_X(log C_0)$ is as follows:

Proposition 2.1.

$$\operatorname{Der}_X(\log C_0)|_{\pi^{-1}(U)} = \mathcal{O}_{\pi^{-1}(U)}\sigma + \mathcal{O}_{\pi^{-1}(U)}\eta^{-1}\sigma$$

and

$$\operatorname{Der}_X(\log C_0)|_{\pi^{-1}(V)} = \mathcal{O}_{\pi^{-1}(V)}\sigma + \mathcal{O}_{\pi^{-1}(V)}\rho^{-1}\sigma.$$

Note that any holomorphic line bundle over X is meromorphically trivial. Thus the foliation \mathcal{F} , which is an invertible subsheaf of Θ_X , has a non-trivial global meromorphic section, which can be regarded as a global meromorphic vector field.

We can take such a vector field of the form $\theta + h\sigma$ with a global meromorphic function h on X since \mathcal{F} is not the ruling. We claim that the meromorphic function h is constant: $h \in \mathbb{C}$.

Let (h) and (σ) be the divisors on X defined by h and σ , respectively. (h) is written as

$$(h) = (h)_+ - (h)_-,$$

where $(h)_+$ and $(h)_-$ are the zero and the polar divisors of h. Note that the numerically equivalent classes of divisors on X form an abelian group

$$\mathbf{Z}C_0\oplus\mathbf{Z}f$$
,

where f is a fibre of $X \stackrel{\pi}{\longrightarrow} C$ and that

$$C_0^2 = -e = 0$$
, $C_0 \cdot f = 1$ and $f^2 = 0$.

Since the foliation leaves C_0 invariant and

$$(\sigma)=2C_0,$$

one of the following two must be the case.

- a) $(h)_{-} C_0 \not\geq 0$ and $(h)_{-} \cdot C_0 = 0$ or
- b) $(h)_- C_0 \ge 0$, $(h)_- 2C_0 \not\ge 0$ and $((h)_- C_0) \cdot C_0 = 0$. Let

$$(h)_{+} \sim (h)_{-} \simeq_{num} nC_0 + mf$$

where '~' represents linear equivalence of divisors on X. In both of the cases a) and b), m = 0. It follows from Proposition 2.0 that $(h)_{+} = (h)_{-} = nC_{0}$. Thus $(h)_{+} = (h)_{-} = 0$ and the function h is constant, which completes the proof.

§3. Proof of Proposition 2.0.

Suppose that the divisor D would not be nC_0 . We may assume $D - aC_0 \not\geq 0$ for any $0 < a \in \mathbb{Z}$.

Consider the holomorphic vector bundle $E \xrightarrow{\pi_E} X$ described in §1 and take the following fibre coordinates of E:

$$(\lambda_U, \mu_U)$$
 on $\pi_E^{-1}(U)$ and (λ_V, μ_V) on $\pi_E^{-1}(V)$,

which satisfy the transition relation

$$\begin{pmatrix} \lambda_V \\ \mu_V \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{\wp'(z)} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda_U \\ \mu_U \end{pmatrix} \quad \text{on} \quad \pi_E^{-1}(U) \cap \pi_E^{-1}(V).$$

 C_0 is defined by $\mu_U = 0$ on $\pi_E^{-1}(U)$ and by $\mu_V = 0$ on $\pi_E^{-1}(V)$, respectively. Since $D \cdot C_0 = 0$, the divisor D should be defined by the following homogeneous polynomials of degree n in λ_U and μ_U and in λ_V and μ_V .

$$P_U = \lambda_U^n + \sum_{j=1}^n p_{U,j} \lambda_U^{n-j} \mu_U^j$$
 on $\pi_E^{-1}(U)$

and

$$P_V = \lambda_V^n + \sum_{k=1}^n p_{V,k} \lambda_V^{n-k} \mu_V^k$$
 on $\pi_E^{-1}(V)$,

where

$$p_{U,j} \in \mathcal{O}_C(U) \subset \mathcal{O}_E(\pi_E^{-1}(U))$$
 for $j = 1, \dots, n$

and

$$p_{V,k} \in \mathcal{O}_C(V) \subset \mathcal{O}_E({\pi_E}^{-1}(V))$$
 for $k = 1, \dots, n$.

Set $p_{U,0} = 1 \in \mathcal{O}_C(U)$ and $p_{V,0} = 1 \in \mathcal{O}_C(V)$, respectively. From the above transition relation, P_V would satisfy on $\pi_E^{-1}(U) \cap \pi_E^{-1}(V)$

$$P_{V} = \lambda_{U}^{n} + \sum_{j=1}^{n} \left(\sum_{k=0}^{j} p_{V,k} \frac{(n-k)!}{(n-j)!(j-k)!} \wp'(z)^{-(j-k)} \right) \lambda_{U}^{n-j} \mu_{U}^{j}$$

on $\pi_E^{-1}(U) \cap \pi_E^{-1}(V)$. Since these polynomials would define the same zero loci on $\pi_E^{-1}(U) \cap \pi_E^{-1}(V)$, there should exist a never vanishing holomorphic function $\alpha \in \mathcal{O}_E(\pi_E^{-1}(U) \cap \pi_E^{-1}(V))$ such that $P_V = \alpha P_U$. Since both P_U and P_V are homogeneous polynomials of degree n in λ_U and μ_U and the coefficients of λ_U^n of both equals to 1, it should hold that

$$P_U|_{\pi_E^{-1}(U)\cap\pi_E^{-1}(V)} = P_V|_{\pi_E^{-1}(U)\cap\pi_E^{-1}(V)}.$$

Thus

$$p_{U,1} = p_{V,1} + \frac{n}{\wp'(z)}$$

and $p_{U,1} \in \mathcal{O}_C(U)$ would extend to a global meromorphic function $p_{U,1} \in \mathcal{M}_C(C)$. Then $p_{U,1}$ would have a pole of order one at $[\omega_3]$ and be holomorphic on $C-[\omega_3]$, which is a contradiction.

References.

- [B-B] Baum, P. and Bott, R.: Singularities of holomorphic foliations. J. Differential Geometry, 7, 279-342 (1972).
- [Ca-S] Camacho, C. and Sad, P.: Invariant varieties through singularities of holomorphic vector fields. Annals of Math., 115, 579-595 (1982).
- [GM1] Gómez-Mont, X.: Foliations by curves of complex analytic spaces. Contemporary Math., 58, 123-141 (1987).
- [GM2] ——: Universal families of foliations by curves. Astérisque, 150-151, 109-129 (1987).
- [GM3] ——: Holomorphic foliations in ruled surfaces. Trans. of the American Math. Soc. 312, 179-201(1989).
- [Gu] Gunning, R. C.: Lectures on vector bundles over Riemann surfaces. Math. notes 6, Princeton Univ. Press (1967).
- [Ha] Hartshorne, R.: Algebraic Geometry. G.T.M. 52, Springer-Verlag (1977).
- [Sa1] Saeki, A.: Foliations on complex spaces. Funkcialaj Ekvacioj. 38, 121-157 (1995).
- [Sa2] ——: On foliations on complex spaces. Proc. Japan Acad., 68A, 261-265 (1992).
- [Sa3] ----: On foliations on complex spaces II. Proc. Japan Acad., 69A, 5-9 (1993).
- [Sa4] ——: On some foliations on ruled surfaces. Proc. Japan Acad. 70A, 17-21 (1994).
- [Sa5] ——: Some foliations on ruled surfaces. Math. Sci. Univ. Tokyo. 1, 617–629 (1994).
- [Sa6] ———: Some foliations on ruled surfaces II. to appear in Math. Sci. Univ. Tokyo. 2.
- [Sai] Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. 1A Math., 27, 265-291 (1980).
- [Su1] Suwa, T.: On ruled surfaces of genus 1. J. of the Math. Soc. of Japan, 21, 291-311 (1969).
- [Su2] ——: Unfoldings of complex analytic foliations with singularities. Japan. J. of Math., 9, 181-206 (1983).
- [Su3] ——: Complex analytic singular foliations. (lecture notes).

Present address.

Department of Mathematics Nagoya Institute of Technology Gokiso-cho Shouwa-ku, Nagoya 466 Japan

e-mail address.

saeki@ks.kyy.nitech.ac.jp