Kumamoto J. Math. 53
Vol. 9, 53~64 March (1996)

Transformation groups on Heisenberg geometry
Yoshinobu KAMISHIMA *

(Received December 2, 1995)

Introduction

A geometry (G, X) consists of a finite dimensional Lie group G with finitely many com-
ponents and an n-dimensional homogeneous space X from G. A (G, X)-structure on an n-
dimensional smooth manifold M is a geometric structure locally modelled on X with coordi-
nate changes lying in G. A manifold equipped with a (G, X)-structure is said to be a (G, X)-
manifold. If X = S™ equipped with the group of conformal transformations G = Conf(S™),
then the geometry (G, X) is called conformally flat geometry. It is well known that the sphere
with one point removed is conformally equivalent to the flat euclidean space by the stereo-
graphic projection. The subgroup of Conf(S™) leasving one point fixed is callled the group
of similarity transformations, for which we denote Sim(R™). Then the pair (Sim(R"), R™)
is said to be similarity geometry.

Spherical CR geometry is viewed as a complex version of conformally flat geometry. In
fact, conformally flat geometry is identified with the boundary of the real hyperbolic space
H;‘H with hyperbolic group PO(n + 1,1), while spherical CR geometry is identified with the
boundary of complex hyperbolic space Hgt! with hyperbolic group PU(n+1, 1) which acts on
the boundary sphere as Cauchy-Riemann transformations. As a consequence, the sphere with
one point removed §2"*!-{c0} inherits a geometry from the spherical CR geometry. Such
geometry is called Heisenberg geometry. In this paper, we study the Heisenberg geometry
from the viewpoint of transformation groups.

We refer to [4], (8], [9], [6], [20] for the current development of Heisenberg geometry.
Especially, chains, and cross ratio.

1. Spherical CR-structure

We shall explain spherical CR-structure. Recall the projective model of Kihler hyper-
bolic space. Let C™*? denote the complex vector space, equipped with the Hermitian form

B(z,w) = —Ziw; + Zowz + - - - + Znj2Wnta.
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Consider the following subspaces in C**2 — {0}:

VIR (e €™ B(z,2) = 0},
VO = {zeCM| B(z,2) = -1},
y2nED) = {ze€C"*?| B(z,2) <0}.

Let P : C"*2 — {0}—CP™*! be the canonical projection onto the complex projective
space. By definition ([2]), the complex hyperbolic space Hg!" is defined to be PVt
The group U(n + 1,1) is the subgroup of GL(» + 2, C) whose elements preserve the form B.
Then the action of U(n+1,1) on V2"*2) induces an action of H%*!. The kernel of this action
is the center Z(n+1, 1) isomorphic to the circle S*. Let PU(n+1,1) = U(n+1,1)/Z(n+1,1).

There is an equivariant projection
P:(U(n+1,1), V") _(PU(n +1,1), H5™).

Put §2**1 = P(V:("H)H). Then the standard sphere S2"*! is the boundary of the unit
ball HZH! in C™*! and the group of biholomorphic transformations of Hg'! is isomorphic
to the group of unitary transformations PU(n + 1,1). The group PU(n + 1,1) acts on the
boundary by CR automorphisms and Autcgr(S**+') = PU(n+1,1) ([1]). If M is a spherical

C R-manifold of dimension 2n + 1, then there is a developing pair
(p,dev) : (Autcr(M), M)—(PU(n +1,1), S***1).
For the topology of spherical CR-manifolds, we refer to [4], [20], [10].

2. Heisenberg geometry

‘We examine the Heisenberg geometry from the viewpoint of transformation groups. First

we summarize the result:

Theorem A mazimal amenable group G of U(n+1, 1) is isomorphic to the semidirect product

N x (U(n) x C*) where N is the Heisenberg group. It lies in the following ezact sequence:
1—R—N—C"—1.

For the point at infinity {co} € ™+, the space §>"* —{oco} is canonically identified with N.
Then Autop(N) is the stabilizer at the point {0} in PU(n +1,1). Moreover, Autgg(N)
is a mazimal amenable subgroup of PU(n+1,1). IfP:U(n+1,1)—PU(n +1,1) is the
projection, then PG is isomorphic to Autcr(N) =N x (U(n) x RT).
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Now we explain how to deduce the Heisenberg geometry by using Cayley-Klein projective
model (cf. [2], [1], [10]).
Let
P:(U(n+1,1), VP2 vty (PU(n +1,1), HE U 527+
be the projection as above. Let {e;,--,ent2} be the standard basis with respect to the

Hermitian form B, i.e.,
B(ei,e1) = -1, Blei,e;) =65 (3, =2,---n+2), Bler,e;) =0 (j =2,---n+2).

Since Voz("“)"'1 is a cone, we can assume that the inverse image P~!(c0) consists of a complex
line passing through the vector fi1 = (e1 + ent+2)/V2. Let G be the subgroup of U(n + 1, 1)
which leaves the vector fi invariant. The stabilizer PU(n + 1,1)e at {co} is the image of
the subgroup G by P. As above it is known that G is a maximal amenable Lie group. Put
frrz = (&1 — ent2)/V2.
Now each element g of G has the following form with respect to the basis
{fla €2,° ", €n+1, fn+2},
Az =z
g=| 0 B v
0 0 u
where A, 4 € C*, B is an (n,n)-matrix. z is an n-th line vector, y is an n-th column vector.

As B(gz, gw) = B(z,w) for arbitrary z,w € C™*2, we have the following relations.

(1) ’\ﬁ' =1, z= )\tha
(2) zZu+pz=1yl’, BeU(n).

Then the Heisenberg group VN is denoted by the subgroup consisting of the following matrices;

1
0
0

(=T ]

z
KJ
1
for which

I 2

R,ez:lyT, a::tg_

2
This follows from the relations (1), (2) that Z+ z = |y|°>. Thus, letting z = % + ia, there
is a one-to-one correspondence between the product R x C™ and this group:

1 %y %E +ia
(a3 y) = 0 I Yy
0 0 1
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We examine the group law on the product R x C™.

1 %5 =z 1 %F = 1 Y9+t 2 +'5y +=2
(@,9)-by)=| 0 I y o I ¢ |=]o0 I v+y
0 0 1 0 0 1 0 0 1
Calculate: 2 e ) "a
z+zl—%+ia+ly2| +ib=|y| ';lyl +i(a+b).

ly+y P =<y+v,y+y >=C+F)w+y) =W’ + W’ +2Re < 9,9 >,

Thus .
ly + 9|

5 —Re<y,y > +i(a+b).

z+2 =

As above, gy’ =< y,y’ >, we have

t— 1 |'.'/+y’|2
2

z+tgy + 2 =242+ <y Y > +ila+b)—Re<y,y >+<y,y >

12
Ilizgl—+ilm<y,y’>+i(a+b)

/2
= |y_+2_3i +i(a+b+Im < y,y >).
Thus by the correspondence we obtain

T+t e
I ¥+y | =@+b+Im<y,y > y+9)

0 1

Hence the Heisenberg Lie group N is the product R x C™ with group law

(aay) : (byyl) = (a'+b+lm < yvy’ >y +y,)-

In fact, AV is nilpotent because [N, N] = R which is the center consisting of the form (a,0).
Note also that the above correspondence can be written as

‘g
(Imz, y)_) I
0

o o=
[~

2
for which Rez = %
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Next, let ' % (U(n) x C*) be the semidirect product where the action of U (n) x C* on
N is given by

(*) (A,v)o(a,y) = (| 2var™, Ag™?).

(Note that vav™! = a in the C-case. Compare §3.)

We show that the subgroup G of the matrices

Az oz
g=]1 0 B y
0 0 u

is isomorphic to the semidirect product N x (U(n) x C*) by the correspondence

Q

]
© o »
o W 8

y | —((Im(z1),yA), (B, »)).
u

In order to prove that, first g has the following decomposition:

z 1 zB* 2\
Y = 0 I yA
7 0 0 1

©c O »
o W 8
[T =T W
o W o
T © o

Obviously,

EG.

o O
o W o
T o o

Note that

zB" = (M'gB)B* = A'jfrom (1),
2+23 = Az42)
= (uA)Az + zA(\g) from (1)
= PPz +20
= IM*(uz+ 2m)
= PP* = yAP from (2).
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So,
1 zB* =z
0o I yx |€G
0 0 1
Then by the definition,
1 zB* 2\
0 I yx | —(Im(zX),y),(1)).
0 0 1
A0 O
0 B 0 [—1((0,0)(B,n)
0 0 u

We see that the correspondence is a homomorphism for the above decomposition:

1 zB* =z A 0 O
0 I yx * 0 B 0 ——-»((Im(z/-\), y’\), (Ia 1)) : ((01 0)» (Ba "))
0 0 1 0 0 pu
In fact,
((Im(zX),yA), (1,1)) - ((0,0)), (B, ))
= ((Im(zX),yA) - (1,1) 0 (0,0)), ({1, 1)(B, »))
= ((Im(zX),yX) - (0,0)), (B, n))
= ((Im(zA),yA), (B, u)).
Now,
Az =z N oz 2
0 y 0 B ¢
0 0 pu 0 0 4
1 zB* 2\ A0 O 1 z'B” 2N M 0 0
=l o 1 X 0 B O o I X o B o0
0 0 1 0 0 u 0 o 1 o 0
1 zB* z\ 1 M'B*B™! X'Vu! A0 0 X o0
=lo 1 yx |10 I By' Xp~?! 0 B O 0 B
0 o0 1 0 0 1 0 0 p 0 O
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1 X'B"B '+zB" XNp l4ayNp 422 A0 0
=10 I ByXut4+yx |-] 0 BB’ o1,
0 0 1 0 0 uy

which is mapped by the above remark;
—((Im(A2'Np™" + 2y’ X" + 23), By’ X! +93), (I, 1)) - ((0,0), (BB, ust')).
On the other hand, A\fi = 1 implies A = |u|"?4. Since - ImB-a~! = Im(aBa™?), and
<yABy'Np™! >= (N'g)By'Np ' =2/ Np! from (1),

the above formula becomes:

= (AmA'Nu™") + Im(zy' X p™") + Im(2X), By' Mt + yX) - (1,1) 0 (0, 0)),
(I, 1)(BB', up'))
= (el Im(pz'Np™") + Im < yX, By'Xp™" > +Im(2X), By' N~ +y3) - (0,0)),
(BB, uu'))
= (s -Im(2'X) - p™" +Im < yX, By'Xp? > +Im(2}), By'Np~! + y3),
(BB, uyt')).
By the action (*) of U(n) x C*,
((Im(23),y2), (B, p)) - ((Im(z'X"), y'X'), (B', "))
= ((Im(z3),yX) - (B, p) o (Im(2'X), 5’ X)), (B, ) - (B', "))
= ((Tm(2X),yX) - (|| g - Im(2'X') - ™, By'X'p™"), (BB, ')
= ((Im(zX) + |u) ™2 - Im(2'X) - ™" +Im < yX, By’ Np~! >, 97 + By'Xu™),
(BB, ut')). |

Therefore, the correspondence is a homomorphism:

Az oz D Y
0 B y 0 B g | —((Im(2}),4A), (B, n)) - ((Im(z'X’),y'X'), (B', &')).
0 0 p 0 0 u

Recall that Autcr(N) = PG, where S'>U(n +1,1) = PU(n + 1, 1) is the projection
as before. Then, PG is isomorphic to A" x (U(n) x Rt), for which the action of U (n) x R
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on /N is given by
(A,t) o (a,9) = (t%a, t~1 Ay).
As a final remark, we show that P(G) acts transitively on §**** — {oo}. As
S+ = POy — ([ 29,0 zmaa] | = 2P 4 |22 40 4 |2n2|* = 0}
by the definition, it implies that with respect to the basis {f1,e2,"**,ens+1, fns2}
82"+ = {lz,,91,+*,ym, ] | = (Em+ ) + [yl* = O}
Moreover, P(f1) = 00 = 1,0,---,0]. So,
82" {oo} = {[z, 41,7+, Yny 1] | — (0 + B2) + 9* =0, p #0}.

Choose the point zo = [0,--+,0,1] = P(fat+2) € §>*+! — {c0}. As p 50, setting

1 _
A=E,m=AwL
the element
Az oz
g=101 y
0 0 p

belongs to G and
(znyh"'aynsﬂ) =g (0)"':091) =g fat2,
so that P(g) - To € $2"*! — {c0}. Since P : G—PG maps N onto itself, it is easy to check

that
N -z0 = P(G) - 7o = S+ — {00}

with stabilizer P(G)z, isomorphic to

P( )y~ U(n) x RY.

o O »
o W o
T o ©

3. Remark

We can also consider the quaternionic Heisenberg geometry. In general, our geometry

(G, X) is lying on the boundary of rank one symmetric space with noncompact factor.
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Let F stand for the noncommutative field of quaternions F. Let F**? denote the R-vector

space, equipped with the Hermitian pairing over F as before;
B(z,w) = —Ziw1 + Zawz + -+ + + Znj2Wnya.

Let P : F**2 — {0}—FP"*! be the canonical projection onto the quaternionic projective
space. Consider the 4(n -+ 2)-subspace V2"*? = {z € F**?| b(z,2) < 0}. Then the quater-
nion hyperbolic space H3*! of dimension 4n + 4, is defined to be P(V*("*2)),

The group O(n + 1, 1;F) is the subgroup of GL(n + 2, F) whose elements preserve the Her-
mitian form B. It is called the Lorentz group of type (n + 1,1). The group O(n + 1,1; F)
leaves Vf("+2) invariant and thus it induces an action on H;'H. The kernel of this action is
the center Z(n + 1, 1;F) which is isomorphic to {+1}. The quotient group O(n + 1,1; F)/
Z(n + 1,1;F) is denoted by PSp(n + 1,1) Then it is known that the geometry
(PSp(n + 1,1),Hz*') is a complete simply connected Riemannian manifold of —1 < sec-
tional curvature < —1 (cf. [14],[15]).

The projective compactification of Hg*! is obtained by taking the closure HE*! of HZ*! in
FP"*!. Moreover if we put a (4(n + 2) — 1)-dimensional subspace Vg("*+?-!

{z € F**?| b(z,z) = 0}, then it follows that H2*! = H2*' U P(V"*?~1). The boundary
of Hg*" is the standard sphere of dimension 4n+3. Put P(VE("*?~1) = §9+3, The group
of isometries PSp(n + 1,1) extends to a smooth action on the boundary sphere $4**+3. The
geometry (PSp(n + 1,1), S***3) is said to be pseudo-quaternionic flat geometry.

As usual, we write Autpsp(S*"*3) = PSp(n + 1, 1).

Put §*"*2 — {00} = M. Denote by Autrsp(M) the subgroup of Autpsp(S*™*?) which
stabilizes the point at infinity {co}. Then the geometry (Autrsp(M), M) is called quater-
nionic Heisenberg geometry.

A maximal amenable group G of Sp(n + 1,1) is isomorphic to the semidirect prod-
uct M x (Sp(n) x F*) where M is the quaternion Heisenberg group. It lies in the follow-
ing exact sequence: 1—R*—M——F"—1. For the point {00} of 84713, as we identify
§4*3 — {00} with M, Autpap (M) is the stabilizer in PSp(n+1,1) of the point {co}. Then
Autrsp(M) is a maximal amenable subgroup of PSp(n + 1,1).

Let Zz—Sp(n + 1,1) = PSp(n + 1,1) be the projection. Since G is as above, PG is
isomorphic to Autrsp(M) = M % (Sp(n) - Sp(1) x R¥).

Let
P:(Sp(n+1,1), V22 U V™) —(PSp(n + 1,1), HRt! U §47+3)

be the projection as before. For the point at infinity {co} € S*"*3, the stabilizer
PU(n + 1,1) at {oo} is the image of the subgroup G by P. As above it is known that
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G is a maximal amenable Lie group. Each g € G consists of

[~

I
o o »
o W 8
T o W

where ), € F*, B is an (n,n)-matrix. z is an n-th line vector, y is an n-th column vector.

As B(gz, gw) = B(z, w) for arbitrary z,w € F**2, we have the following relations.

(1) Ai=1, =z=M\§B,
(2) zp+pz=1yl°, Be Sp(n).

Then the Heisenberg group M is denoted by the subgroup consisting of the following matrices;

1'z =z
01 y
0 01
for which
lyl? t
Re z= —2——, =Y.
This follows from the relations (1), (2) that 2+ z = lyl>.

2
Thus, putting z = % +ia + jb + ke, there is a one-to-one correspondense between the prod-

uct R® x F™ and this group:

1 tg J—%E +ia + jb+ ke
((aa b, C)’ y) = 0 I Yy
0 0 1

The group law on the product R3 x F" is obtained similarly; thus the Heisenberg Lie group
M is the product R® x F* with group law

(@,y) - (b,y) = (a+b+Im < 9,9 > y+¢)

M is nilpotent because [M, M] = R?® which is the center consisting of the form (a,0). As
above, M x (Sp(n) x F*) is the semidirect product for which the action of Sp(n) x F* on M

is given by
x)  (4v)o(e,y) = (W Pvar™, Ay™).

Finally, since Autrsp(M) = PG, where Z/2—Sp(n-+1,1) £, PSp(n+1,1) is the projection,
PG is isomorphic to M x (Sp(n) - Sp(1) x R*), for which the action of Sp(n) - Sp(1) x R
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on M is given as follows: if v = (g,t), then

(Aw (g7t)) o (aa y) = (t_2gag—l,t‘1Ayg—l).
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