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. The geometry of paths initiated by L.P.Eisenhart and O. Veblen has been generalized-
by J.Douglas to the general geometry of paths and further to the geometry of K-spreads.

In a space of (n—1)-spreads, that is to say, in a space of hyperplanes, the elements of
the space are points (x*) and hyperplane elements (#;) attached with each point. Thus,
the geometry of hyperplanes can be studied in the form dual to the general geometry of
paths. This was done recently by K.Yano and the present author [8)*

The purpose of the present paper is to study affine collineations in such a space and
to generalize some of theorems by K.Yano [7). Corresponding problems in a space of K-sp- .
reads have been studied by R.S.Clark (1), E.T.Davies (2] and Buchin Su (3,4,5,6].

We shall use, throughout the paper, the same notations as those in our paper cited
above.

1. In an N-dimensional space of -system of hyperplanes, referred to a coordinate
system (x%), we consider an infinitesimal point transformation:
(1.1) Ei=xi+5i(x)dt ((Z b C, e ,Z,j,k, R ,N),
where £*(x) is a contravariant vector field and df an infinitesimal constant. When there is
given a geometric object 2(x, ), if we regard (1.1) as a transformation of coordinates of
the space, the components 2(X,%) of the object in the new coordinate system will be
calculated from the old components £(x,%) by (1.1). Then, the Lie-derivative X of '
O(x, u) with respect to £'(x) is defined by the equation ' ‘
(1.2) De=9(x,u)—o(x,un)=Xadt,
neglecting the terms in d{ higher than of the first order.

From this definition, we can find the Lie-derivatives of various quantities of the space
To express these Lie-derivatives in tensor forms, we define the covarlant derivatives of a

- scalar f and that of a tensor field Tz1 ]” by

(1.3) i =f +f/aI'aj, -
P S . | iy g \, ; ,’_L — i od
a.4 Tji...js g = T 1 Tk =k T / I, Tji ..... an;+1 ....... jsral;e
. 1 ........................ iy -,a.
p‘ilT “Jp-1@pay - sI]Pk

respectively, where a comma followed by an index denotes the partial differentiation with
respect to x¥ and vertical stroke that with respect to #;.

Thus, the Lie-derivatives of a scalar f, of a tensor field T}l:::}:‘ and of the compo-
- J1 8

* See the Bibliography at the end of the paper. -
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S e 2y ’ 2‘ .
nents of affine connection F, , are given by

(1.5) i Xf_—_-f;ag a _;f/a E?a s,
iy ix a ¥ ‘i, _qai et 1
(1.6) XT1 e, *T‘l ]q’aE —:p%_l T;; ..... ?.t.,l....f’.f.l..,..]s 5’2’
. : PR simend, e i eed, jagh
T 2 T 1 “Jp=1@i p41Fg "idyp TJi J /4§ a¥y
and. :
(7. - XTI j= &g+ Riy8 =1 §/*¢u,

respectively. We shall remark here that the Lie-derivatives of these quantities are all compo-
nents of ‘tensors and that Xu ;= 0.

We can see that the Ricci formulae for an arbitrary tensor field T’1 ; 3
.8 DY — T e = 3 T nsian R
-2Th "'5;';';'21}';'§£L'555f: RS u + T35 Ry
1.9 THlpw —ThIES,
= 3 ThTinenh pi - § TR

and the generalized Bianchi identities:

(1.10) Ripsm = Tie/"Rapy) + evc (el,m)= 0
hold good, where cyc(k, I, m) denotes two terms obtained from the first by cyclic permuta-
tion of indices %,7 and m.

By suitable use of the above formulae, we get the following formulae for an arbitrary
tensor giving the relations between the Lie-operation and the covariant derivation or partial
differentiation with respect to 2

. iyeed, i "i: o 5 i,y _qai i i
(1.11) (XT3 )a—XT 0l = = ,-; ..... i ltaof XER
s i, s iy i, sa b
+h£1Tji Jp-1% pi1° -73 XFJ k T L. / Xpakub
i (X:I"1 O/ _Xz‘;iiilijg/l:

and the similar formulae for the components of affine connection:
(L.13) (XI5, —(XT ) =XR}y “Tﬂa/ XThuy+T /" X Ty,
(1.14) . : (ijk)/, T‘ijtjk/l=

The above formulae are frequently usad in the latter discussion.

2. If we consider, in the space, an r-parameter continuous group Gy whose symbols
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are given by X,.f= 7, e 8% %) Q, u,'.v, ------ =1,2, - »7), then there exist the relations

@1 ' (X, X,) f=Cu Xof

where C,..} are constants of structure of the group. From (2.1), we have
Ezgia'—éféi‘,a: Ei;a_gz —¢ f‘;a £ = C/“’l Ei

from which, by thevdeﬁnition of the Lie-derivatives, we get

©2.2) X, &= C/w?L £;.

Now, consider 7 infinitesimal transformations of the space
(2.3) F = xi +£,(x)ds,
then we have, by straightforward calculations:

b
2.4 (XX, >f=f;aXy55—f/“ (X 8.); 01
@5 (XX )T]IlF=Tilk X, 60— g T“...f?....l.fzf.f’.?‘..l...., (X,62).,
] seeisstseinetsiciinnans i! 1 1! a
p:=1 T .- “Jp-1f pyyds (X‘“ 5 ) T v / (X E ) a,

(2.6) (XﬂXv)f}k= (X, E’V);j;k+R;-k,(Xﬂ E,,) F’k/“(X £2). 41ty
' Thus, we have

Theorern 2.1. If we apply the operators (X.X.) to an arbitrary scalar, tensor and
the components of affine connection, then we get theiy Lie-devivalives with respect to the
vectors X 1.

If the §L(x) are 7 vectors defining an r-parameter group Gy then (2.4),(2.5) and
(2.6) are reduced to

@7 (X,X, >f=c#f X, f,

©.8) : (X X,)TH =Cu er;?;:::;i;
and

2.9) . (XX, )I' —C,w X, T

respectively, and we have
' Theorem 2.2. If v veciors & t(x) define an r-parameter group, then ithe expressions

similar to (2.1) for an arbztrary scalar, tensor and the components of affine connection.

hold.

3. In a space of system of hyperplanes, a point transformation in the space with the
finite equations

Gn F= T, 2o, 4 ] #0

is said to be a colhneatlon, if it transforms each hyperplane into a hyperplane Under this
point transformation, the equations of hyperplanes
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uids = 0 du; —Ljp(x, u)dx® = 0 (u; =3f/2x')
are transformed into
(3.2) w;dx =0 ( du; — i (%, B)d%x*= 0 (u; =of/0%).
On the other hand, from (3. 1) regarded as a transformation of coordinates, the equations
of hyperplanes are reducible to

(3.3 aidx' = 0 du; —T j(%, )d%*= 0 (@; =23f/ox").
We shall call the transformation (8.1) an affine collineation, if the equations (3.2)
and (8.3) are equivalent under a suitable change of constant factor of f defining the hyper-

planes. Thus, for affine collineation, we must have I "i1(% U)—T 3(%, %)= 0, from which,
differentiating these equations with respect to #;, we have
3.4) I'W(Z8)-T (% a)= o.
- Conversely, as is easily seen, if this condition is satisfied, then the point transformation
(8.1) defines an affine collineation.
From the above discussion, when an infinitesimal point transformation (1_.1) defines

an infinitesimal affine collineation, we have, from (8.4),
(3.5)  XT j=8L, +RY, 61 T oeb 4 — o

Conversely, if this condition is satisfied, the tensor equations (3.5) become 377%,/dx'=0
in a suitable coordinate system such that §'=07, and consequently I'in(%. w)=I%(x, ).
On the other hand, from the transformation law of I'y we have I'iy(%, w)=I% (x,u).
Thus, the equations (3.4) hold. We have ‘

Theorem 3.1. A necessary and sufficient condition that an ; nfinitesimal transformation
(1.1) be an infinitesimal affine collineation is that the Lie-derivatives of the components

of the affine connection vanish.

From (1.11), we have

Theorem 3.2. In order that an infinitesimal transformation (1. 1) be an infi nitesi}nal
affine collineation, it is necessary and sufficient that the Lie-operation and the covariant
operation be interchangeable.

As is seen from the proof of theorem 3.1, when the $pace admits an infinitesimal
affine collineation, there exists a coordinate system such that 97" f;,c/ 9x'= 0. If this condition
is satisfied, the finite equations X'= x40} ¢ satisfy (3.4), in other words, the space admits
a one-parameter group of affine collineations generated by the infinitesimal affine collineation
X'=x+0} dy,

If we take a coordinate system for which &'=x? the equations (3.5) become I"k; 4%
+ I 3%: 0. From this condition, we can see that our space admits a one-parameter group
of affine collineations %= 4" ¢ generated by X'=x"+ x%df. Thus we have

Theorem 3.3. If the Space admits an infinitesimal affine collineation, the space
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-admits. also a one-parameier group of affine collineatr’ons generaled by the infinitesimal
affine collineation. A .

Theorem 3.4. A necessary aud sufficient condition that the space .admit a one-para-
meler group- of affine collineations is that there exist a coordinate system im whzch

af”k/ax =0 or ri +F

The followmg theorem can also be easily proved:
Theorem 3.5. If X wf are the symbols of v infinitesimal affine collmeatwﬂs, then
C*Xf is also that of an infinitesimal affine collineation, where C* are arbitrary- cons-

ik, a

3

tants not all zero.
’ From theorem 2.1 and theorem 3.3, we have

Theorem 3.6. If §i(x) are the veclors defining r ome-parameter groups of affine

collineations, then so are X &% .
. When X, f are the generators of an r-parameter group Gy, the transformations of this
group consist of the transformations of one:parameter group generated by the infinitesimal
transformation with the symbol C*X,f (C*: constants) and of the products of such trans-
formations. Therefore, from theorem 3.5, we have :

Theorem 3.7. If each of v generators of an r-parameter group Gy is a genemz’or of a
one-parameter group. of affine collineations, every transformation of Gy is also an affine
collineations. . :

From' Lie’s second fundamental theorem and theorem: 3.7, we have

Theovem 3.8. If Xyuf ave generators of a complete set of one-pammeter groups of
affine collineations, they are generators of an y-parameter group of affine collineations.

4. We: shall find the 1ntegrab111ty conditions of the: equations

(4.1) are written in the standard form:
@ =g /=0 gh= Ry & AT/ 0wy, 9l =T
with N (N+1) unknown functions §* and 7% independent variables being x* and #;; the
integrability conditions can be obtained in the usual way. But, using the formulae already

obtained, we can find these conditions as follows:
If we substitute (4.1) into (1.13) and (1.14), then we get the conditions

(4.3) ‘ XRiy= 0
and

4.4 Xr/=
respectively.

Our conditions are (4.3), (4.4) and those obtainable from them by repeated covariant
differentiation and partial differentiation with respect to g, For this purpose, we shall use
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freely (1.11) and (1.12), that is to say, the fact that, under the condition (4.1), the Lie-
operation is interchangeable with both covariant differentiation and partial differentiation
with respect to #;-

We first consider the condition (4. 4) By repeated differentiation with respect to #,
we have a set of qond1t1ons

(4.5) XTI o/l /=0 (s=1,2, ), -
but, from the relations X#;=0 and the homogeneity properties of the left hand sides of

the above equations with respect to #, the final equations of (4.5) include all the preceding
ones. Thus, we can rewrite (4.5) as

(4.6) XT b/l /5= 0.
Differentiating (4.6) covariantly, we have a set of conditions
“.n Xﬁ}k/ll/l2'~“”"/ls,m] ity Stngg, = 0 (il B, s ).

We consider the partial derivatives of (4.7) for #=1 with respect to #y. If we apply
the formula (1.9) to the tensor I'%/*1/%2/-- /Is and next apply the Lie-operation to the
resulting equations, we can see that

(Xl’i /ll/lo/....../ls;m )/n=X1“: /ll/lz/..‘.-../ls ml/"

are expre531ble in terms of X I'%/", X I'kp/b1/t2/ - s and XI5/t /teeeeeee /Zs/" m, Which
is the same type as t_he left hand side of (4.7) for #=1. Thus, the partial derivatives of

(4.7) for t=1 with respect to #, give no new conditions. This argument can be repeated

for - i= 2 3 ...... .

Next, we consider (4.3). The equations X R /™= 0 obtained from (4.3) by the
partial differentiation with respect to #. give no new conditions. For, if we apply the
Lie-operation to both sides of the identities . .

i om_ i i m .
Ri/"=T 3/"4—T /",
then we can see that (X R )/"= X Ri/™ are the consequences of (4.7).
By repeated covariant derivation, we have a set of new conditions

(4.8) - X s

By the similar method as in the precedent case, the partial derivatives of (4.8) for =1
with respect to #, give no new conditions. For, if we apply the formula (1.9) to the
tensor Rix; and next apply the Lie-operation to the resulting expressions, it can be seen that
(X Ripgm, )/™ =X Risgm, /™are expressible in terms of X I'5z/", X Riz and X Ripa/" mp but
the expressionsRX %/ ;mg = 0 are the consequences of (4.7) for t=2.

Thus, our integrability conditions are that a set of equations (4.3), (4.6), (4.7) and
(4. 8) is algebraically consistent in & and &%, ‘We shall remark here that the solutions &
of (4.1) or (4.2) do not contain the variables #;.
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Theovem 4.1. A necessary and sufficient condition that the space of hyperplanes

admit an infinitesimal affine collineation is that

XT3/ /gy oeimy = O (0=0,1,, +2)
4.9 . '

XR oo o, =0 (1=0,1,2. )
be algebraically consistent in &' and E%;.

The left hand sides of the integrability conditions are linear ‘homogeneous in & and
&%, so that we have

Theorem 4.2. A necessary and sufficient condition that the space adn.u't v linearly
independent infinitesimal affine collineations is that theve exist N(N+1)—y ind epend ent
equations in (4.9). .

Furthermore, an arbitrary solution of (4.1) is a linear combination (with constant
coefficients) of such 7 vectors &4(x). From theorems 2.1 and 8. 1, X.& are solutions of
(4.1), so that they are linear combineations of &} (x) with constant coefficients. Thus, from
theorem 3.8, we have

Theorem 4.3. A necessary and sufficient condition that the space admit an v-parameter
group of affine collineations is that therve exist N(N+1) —r independent solutions in (4.9).

If the equations (4.1) are completely integrable, then X I'}/*= 0 and X Rz = 0 must
be identities in &; and &%, and consequently I'in/*= 0 and Riz = 0. Thus, we have

Theorem 4.4. In order that the space admit a group of infinitesimal affine collineations
of maximum oyder, it is necessary and sufficient that the space be affinely flat.
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