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Or a pro;ectiVeIY conhectedl space whose groiip of holonomy fixes a non-degenerate
hyperquadric, some interesting results have been obtained by $S.Sasaki and K. Yano [1]. On
the dther hand, T:Otsuki has reached to the same results. by a slightly different way 2.

This paper deals with the consideration for a gener. al space with projective eonnextion.

4. .In a ‘projectively :connected space, we use a. repére semi-natuyel [R.R;). The pro-

jective .connexion s defined by

dR,=( @,dx* +¥,dp* )R, +R,dx",

Al SR dR;= (1% dx* +D3dp* IR, + (rlyds*+Djydp*IR;.
Theh the coefficierits of connexion -are usually -defined by the following formulae:
6 o i i o
TG =7%, Tin=7Tik—9;%,

T B
ok =Tk = g,

6 _ 1o i +mi _ siqp
r = Djp, Cir=Dj,— 9 Y,
PO P
Cor=Dop = 0.

Generally the coefficients of conniexion are the fufictions of the &’s. and the p’s, in
which (x% p") and (% pp®) (p%0) are being the same element of the manifold. Accord-
ingly, as the connextion is independent of p, we can see that @y, 73p 7t together with
I'% and I'%, are the functions of degree zero-in:the 'S, and that ¥, D’ D% together
" with:Cjr and .Cly, are the functions of degree —1 in the p’S. A coordinate transformation is
g1ven by .

R R .. : P
(I 2) Xt = Z(x JETREPE R xn) (l Fobeeoe =1,2, ,%),
Whe:‘e %t are, analytn:al functlons of the x 'S and the funchonal determmant is different from
zero. The .coefficients of connexion Tl T Ly Chio C,,k are transformed by (1. 2) into

oxa axb , ox% ?xb ¥xC ,

=0
ab = Cab’

I =—5 —%
ik % B%"
-"10’ ox4 axb

= 2
Y axk ek’

0% o%" R ox?

1.3

o%i oxb o%c . oxa +axb R a?cdpe o)
ik gxa \axd oxk 0T axloxt  o® oxfex® extl 7

i
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X! 2xb oxc

Furthermore, we must consider a transformation of the repere semi-naturel [Ro, R;1,

o

namely:
1.4 R,=R, , I—fj =R;+4;R, (4 isa vector), -

which is usually called a transformation of the hyperplane at infinity. Thne 'Sz I'iw Cor
. are transformed by (1.4) into

5 0 045 i
Tjkzpjk'l_g—k_zi i = 2; %,
x
_ 92 ; ’
Ch=Cl,+= -1,
ik ik apk i “jk
(1.5) T, =Tk, + 0 2, + 8,2,
— - i
e =Clg -

The proofs of (1.3). and (1.5) are given by K. Yano (3). v
In the general space with the projective comnexion (1.1), if the group of holonomy
fixes na non degenerate hyperquadric at a tangential point x* with the equation

: . o
(1.6) Qn— 1 a},y X/ X" =0 (det I ak,ul #O: dzy=ax,¢)
where X, being a projective tensor and X\ a projective vector, then we must have the
condition - .
A A
-D (aZ/L.X -Xlu) = Ta?»,uX X'u:
where we denote by D the covariant differential and by 7 a scalar factor.Since DX = 0
for an arbitrary projective vector we have the following equations:
e ) A
_ (D& ) X" X" =7 a), X" X".
Therefore , a necessary and sufficient condition in order that the group of holonomy fixes
" the hyperquadric Qn-1 is as follows:
a.n ‘ Da, = gz (r=t,dxk+ 7, ap®). - -
This is also expressed in the following form: :
aal/.t v

v
axk T,#k D™ Top By = Tp G,

1.8 aa}w
apk
When a..F0, we can put, without loss of generality,-

1.9 a,=2¢ (==%1).

v v ;
1k a, — Dkk a,uu =Ty a?t,u,
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~ Hence putting Z=O, p#=0 in (1.8) we get the following relations

20, ==2¢cqa, (a,=a,=ay),
.10
T ERTS R ¢k=—2?Ifk_ . .
Furthermore, putting A= 0, #=7 in (1.8), we get the following relations:
aaj 0 1 ’
%—djkaj - Tjk 5'._ajk"_7jk a; = Tkaj,
4
op*

The above relations and (1.9) show us that

0 ! o
—Vpa;— Cire—Cjpa,=17a;,

FO % k( ca; Je=ile= 501) (—saj)(—eak)= — &8,
1.1
. + _( ea ) ( 501) jk = 0,

Where gng —-dw Easz
' Similarly, putting A=7, #=j, we obtain from (1. 10) and (1. 11) the following results:

?ii’:—f’ —T ;=0
P k8t = Us
(1.12) »
2 #l 5loo— g
oDk Cir &1~ Cjr 8= 0.
where Ti=1i— 64 Op+ (—ca;) i+ (—ear) 0% and Cip = D— 0% ¥, Now we can put

gu C,,;c C,n;c, and assume the followig condition:
() Cjin are symmetric with respect o i, j» k.
Then we get from the second equation of (1.12),

08i;
a’% === CUk’
so that the differential *equations
2 =
F oy ap'ap’ TV

are completely integrable by the reason of (i) _
If ‘a solution of (1.13) satisfies the following conditions

(i) F (% p*) >0 or <0 for every DL e , p* not all zero,
(iii) F is a homogeneous Sunction of degree 2 in the p’s,
then, followmg E. Cartan (4) we can introduce the connexion of the Finsler space whose

fundamental metric function is given by F=£4 ~/ F( %% p*) (k being a constant) and the
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coefficients of connexion are given by the following formula:

7‘

I'l —{ }_" zm< apmﬁ nz]rapk>
where { /.1 is the Christoffel symbol and G7 are given by
OF k oF

G ghrGr 2(

By these arguments, we have the followmg

Theovem. In a general space with Projective comnexion, when the group of holonomy
fixes any non-degenerate hyperquadvic, the coefficients of the projective connexion are given
by those of a Finsler space. »

2. In this paragraph, following S. Sasaki (5], we show that a metric can be defined
for a general space with projective connexion whose group of holonomy fixes a hyperquadric

au.)‘X)\ X

) We cons1der an arbitrary contmuous curve x"“=x’(t) The arc- length d's of this curve
is defined by

b5

ox”

COSk =i

A/ P (B 0)

where £ is an arbitrary constant and #. are defined as follows:

W & (1_‘loj(x,%)dxj), uk =dxk,

ke
where Jx* = % di.

From this definition of the metric, we can easily find by simple calculation the follow-
ing result:

ds 1
(2.1) COS— =
: Z P
N/s+gij(x, %)dx’ dx’

If gij(x,g—;c) is positive definite, we can put €=1 and get, by expanding (2.1) in
power series,
e 42 dx i 4.7
| ds” =k &;(x, Z)dx' dx’ .
If g;(x %) is negative definite, then by putting ¢ =—1. the imaginary distance is
defined by (2.1). B

3. We have discussed the projective connexion of the general space whose group of
holonomy fixes the hyperquadric Qn-1. It is obvious that the Q-1 is expressible by

e (X°) +gii X'X) = o

The projective connexion is then expressed by the following formulae:
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dR,= R; dx’,

4 dRj = gjkdx*Ro + (I}, dx* + Cjdpk)R:.

S. Sasaki formerly studied the relation between the metric of a projectively (or confor-
1ally) connected space whose group of holonomy fixes a non-degenerate hyperquadric and
. the non-euclidean geometry with a hyperquadric as the absolute figure (6).

T We can prove that there is the same relation, in other words, the Klein’s representation

: ; is applicable to the hyperquadric (as the absolute figure) and to the metric which we have
“iftroduced in this paper.
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