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1. Introduction and Preliminaries. In this paper we shall state on a new proof of
. Gelfand-Neumark’s theorem and certain related results in the theory of normed rings.

A Banach algebra (over the field of complex numbers) is called a B*-algebra, when
there is defined an involutorial anti-automorphjsm x—x* such that (Ax)*=3x¥%, and || x%x | =

Il 2: An element x of a B¥-algebra R is said hermitean if x¥=x, and skew-hermitean if
x*=—x. Every element x is uniquely represented as the sum x=u+i4v, by two hermitean ele-
ments # and v. ‘

The spectrum of an element x of a B*-algebra R with the unit element e is the set
of all the complex numbers for which x—1e does not have the inverse. The spectrum of any
hermitean element consists of real numbers. If the spectrum of an hermitean element x con-
sists only of non-negative (or positive) numbers, x is said non-negative (or positive). In this
paper, we will consider only those B¥*-algebras which has the unit element.

The (real) linear space E of all hermitean elements of R is a Banach space with the
original norm. We denote by D and D, the sets of all hermitean, non-negative and positive
elements of R. Gelfand and Neumark (1) (also, [3]) have shown, under the additional assum-
ption that every ax¥*x-+e have the inverse (in this case the B*-algebra being called a C*-algeb-
ra), that D and D, is convex. We shall show, in the following, this latter fact without
using the Gelfand-Newmark's assumption, i.e., that it holds for every B*-algebra with the
unit element. 4 _

A (complex-valued) linear functional f(x) on the B*-algebra R is said positive if
flx*x)=0, for every xcR; we denote the totality of such functionals by %®. On the other
hand, we put P the totality of (real-valued) linear functionals on the Banach space E which
satisfies f(1D)=0. It can be easily seen that every feP satisfies f(D,)>0.For every linear
closed subspace H in E such that H~D, is empty, there is an feP with f(H)=0. This is
a consequence of the open convexity of D, and the Ascoli-Mazur’s theorem.

It is obvious that every functional fe % define a functional of P when it is restricted
on the space £; we shall denote this fact by P <P; on the other hand, if every functional
of P can be extended to the functional of ¥ in the sense indicated in Lemma 8 (next §),
we shall denote it by P<®p. It is not obvious in general that PF empty and P=P for an
B*-algebra with the unit element. We shall find an nécessary and sufficient condition for

" these requirements.

The following structure theorem for commutative B*-algebra is originally dué to Gel-
fand and Neumark: If A is any commutative B*-algebra with the wnit element, then A is iso-
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,mgi)réhic and isoretric to the algebra C(IN) of all complex-valued, continuous functions on the
" compact Hazzsdbrff space of all maximal ideals of A, such that| x| = 131[.11)2)31? (M) | and x%-

“(M)y=x (M) for every M:5t. It follows at once that any hermitean element ue D, (o7 eD)
may be represented as an everywhere positive (or non-negative) -valued continuous function
on N, where 9t denotes the compact space of_all maximal ideals of any closed commutative
seh adjoint B¥*-sub-algebra with the unit element e which contains #; any #eD belongs to D,

if and only if «# is regular. Also, ‘we see that any hermitean element w is the difference of

two noa—negetwe, hermitean elements, that is, w=ws—w_-, where w,=3 (w+w), w_=.l

(w—w) and w=v"w?® ; W, w, Wy, w- commute each other and w-- w;=0. Every u=D can
be put in the form w=ui, where u, ¢E, and if ueD,, #; must be regular.
. We state the following

Theorem 1. Let R be any B¥*-algebra with the unit element e. Then the foZlowmg postu-
lates for R are equivalent:

" (I). For.every x,y:R, x¥x+y¥y=0 implies x=y=0.

(II). For every x,¢R, x¥x+e has the inverse element.

Proof. We will prove the implication (I)—(II). Since a*x=1} —u>, wi-u_=0 and U,
w_cE, 0=(xu)*(xu_)+w2)?, which implies x%-=0, and #2=0, so thatx¥x=i} and x‘x—!—e
=e+uj is regular. The proof of (II)—(I) is analogons.

Theorem 2. The class of all two-sided ideals J in any B¥-algebra R with the unit elem-
ent satisfying the condition

(1) a¥x+y*ye] implies x,ys] .
is identical with the class of all two-sided ideals ] satisfying the condition

(2) For every ze], there is a f(x)e P such that f(2%2)>0 and f(x*x)=0, for every xs].

Proof. We shall only notice that the residue class algebra of any B*algebra with the
unit element modulo any two-sided ideal is again a B¥*-algebra, and that every two-sided
ideal of a B*-algebra is self-adjoint. ' '

2. The Positiveness Concept in the B¥%-algedra. We shall prove the additivity of posi-
tiveness in any B¥*-algebra, without the assumption that every x¥x+e have the inverse.

Let R be any B*-algebra with the unit element e. Let E, D, D, be defined as in the
above. (Cf.(3D).

Lemma 1. If v and v are any element of D,, then u+tv also belongs to D,.

Proof. For the proof, we notice that every ueD, can be put in the form #=u,-de
for some u,eD, and some 8>0; that is, w#eD, if and only if #+A2e is regular (to have the
inverse) for all A=—4, for some 6>0. This can be easily seen by means of the structure
theorem for the commutative B*-algebra. : 5

Therefore, it can be easily seen that, in order to prove u+wvsD,, for every u, veD,,"
it suffices to show that, for every w,v:D, and for every 4>0, u+v+2Ae be regular.

As it is clear-that #zD, and A>0 imply Au:zD,, ‘we have only to prove that, for every



On a Theoreni, of Gelfand-Neumark etc. 19

#, veDo, etu+tv is regular, also it suffices to show that, for every u, v:D,, all e+aut
(I=a)v, 0=<a<1, are regular. _

Put w (a)=e+au+ (1—a) v; as both # and v, together with all etau, e+ (1—a)v
are regular for all &, 0<a<1, w («)is regular if and only if

w(@)=u""wa)v='=(u"'+ae) (v'+(1—a)e)—a (I—a) e is regilar. )
By the representation theorem for R,and R, ?, we have

I '+ ae)" | =§1ﬁ/pl>(a+l/zt(M) ) Nl /el +1)

and

I+ A=)t IZ ol /ol A—a)+1);
consequently, we have . ‘

| (wttae)~t wia) (v=14+1—ade)-1—e|

<a@—=a) lull - 1ol /A+ Tula)1+ |l A—a)) <1,
for all &, 0<a< 1, which proves that (u='+ae)~'wla) (v-'+(1—ade)-? is reoular.v

Thus, w(a) is also regular for every «, 0=<a<1, and-for every # and v:D,, which
completes the proof. *

An immediate consequence of the lemma is the following

Lemna 2. If uw and v belong to D, then u+u also belongs to D.

Lemma 3. Any ueD belongs to D, if and only if u is an inner point of D.

Proof Let u=D, and let vsE be any element such that | u—v || <E, E being determined
later on. We shall prove that v=D. A

As u+2e is regular for all real A=—2,, for some 1, > 0, v + ke = (u+ie) + (v—uw)
= (u+tie) (etw), wherelwl <lu—v] - | (ut2e) -t | <M-e, Wi’thM=/1 Supx I Cutae)=1 .

= 7o

Such M exists by the continuity of | (u+/le) -1 . It follows, after e being taken such
“thatM- e<I, that (u#+2ie) (et+w) is regular for A=—1,, so that v+2e is positive and regular.

Conversely, if » is any inner point of D, then wu—AesD for some A>0, so that u=Je
443 eDg. \

Theorem 3. Let R be any B*-algebra with the unit element e, and let D, and D be the
lotality of hermitean and positive elements and of hermitean and non-negative elements of R.
Then D, forms a convex, open cone in the real Banach space E of hermitean elements of R,
and D is a convex cone. Moreover, D, is the set of all inner points of D.

' As this theorem is obtained easily by means of the preceeding lemmas 2,3, we omit
the proof.

Lemma 4. Doﬁ( D) is empty; D ~(—D)=(0). .

Proof. u+v=0 for #,veD, is impossible, because D, does not contain 0, by the open-

1) Here Ry may be any commutative self- -adjoint subalgebra of R with the unit element e
" containing #,
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ness of D,
(ii) As #, veD and u=—v imply that #, v commutes; it follows, by the representation
theorem, that u(M)=—v(M), for all MR, now, w(M)=0 and v(M)=0 imply u=v=0.

Lemma 5. x%x+xx%=0 implies x=0. '

Proof. Put x=u-+iv, where u,v are herimitean, then x¥x+xa%=2 (#*+v*?), from which
we have u=v=0 and ¥=0, by the preceeding lemma.

Lemma 6. x*xF+ —e. ’

Proof. Let x=u-+iv, u,v:E, and suppose xFfx=—e. As x¥x+axx¥=2(u+v?), we have
= e+2(u +92) and so xx% is regular (¢ D°) (by Lemma 1). On the other hand,
(xx%)2 =x (a¥%x)x%¥=—xx%, which is impossible, because both xx* and xx¥+e are regular.
Tﬁis shows that x¥x¥F —e.

Lemma 7. If u is hermitean and w¥x=—u? for some xR, then u is not regular.

Proof. If otherwise, we shall have' (xu~1)%(au~1)=—e; this is impossible by the reason
of the preceeding lemma. :

By this lemma, any element x¥x which has the non-positive spectrum cannot belong
to—D,, but only to—(D D). (D.Cdenotes the complemen‘t of D).

Lemma 8. Let R be any B¥*-algebra with the unit element e, and let E be lhe Banach
space of all hermitean elements in R. If f(u) is any real-valued linear Sfunctional, defmed
on E, such that f(D)=0, then the functional F (x) on R defined by

F(x)=f(u)+if(v), for x=u+tiveR, u, veE,
is a complex-valued linear functional on R such that | F(x) | ZF) I x1;

F(x*x)=0 for every x<R if and only if f(x*x)=0, for every xcR.
Proof. F(Ax)=2AF(x) and F(x+2)= F(x)—l—F(y) are obvious. Since | f(w) | Zf() lull,

| f(a) I °<f(e)f(u ) and 2 (u®+0* )—x"x+xx‘< we have ]F(x) ={|fw) |2+ | f) | ‘l}"

_f(e) (f (u®+0?))* <f(e) R7AE A | ‘—f(e) Il +C xxx—l-xxx) I ‘<f(e) lxll =FC) lxl.
The last statement is obvious.

Lemma 9. Let G be a real Banach space, and H a linear closed subspace of G. Suppose
that theve is defined a set K in G such that

1. xeK and X>0 imply AxeK,

9. x and yeK implies x+yeK,

3. x:K implies —xzK,

4, K is an open set,

5. K~H is empty.
Then the factor space G-H is a real Banach space in its usual defzmtzon of the norm, in
which the set K-H (CG=H) satisfies the same postulates 1. —4.

Proof. Let U,V be the elements of K-H, i,e., the cosets U=u+H, V=v+H with #,

v:K. The validity of 1, 2 and 8 for K=H is obvious. Take any Ue K~H, then we can take,

by 4, an"¢>0 such that the sphere {&/llu—xl <e, %G} is contained in K. Consider the
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sphere {X/ | U~X | <—} in G-H. As|U=X1| = h1nf ll u—x+nh|, there is an heH such that

l u—x+h| <e, so that we have v=x—heK and X= x+H— (v+h) +H=v+H and XeK-H.
This proves 4. for K-H.

The following theorem is a modification of the Ascoli-Mazur’s Theorem.

Theorem 4. Let G, H be a real Banach space and its any linear closed subspace If
there is defined a set K satisfying the following conditions:

1. xeK and 2>0 imply Ax:K,

2. x and y:K imply x+y eK,

3. xeK implies —xeK,

4. K is an open set,

5. K~H is emply.

Then there exists a linear functional f(x) on G satisfying f(K)>0 and JS(H)=0.

3. The Positive Functional on the B¥*-algebra. .-

Theorem 5. Let R, E and D, be defined as above and let H be any Lnear closed subs-
pace of E. suchthat H~D, is empty. Then there is an f(x)sP such that f(H)=0(f(Ds)>0).

Cor. 1. For every v:D ~Do°, there is a f(x)eP with f(v)=0.

Cor. 2. For every veD ~DC, there is a f(x)eP with f(v)>0. »

Proof. Put u=e+av, (—oola< o), then there is an a,;<0 such that uy=e+aveD ~
D.C. If we put H the linéar closed subspace of E spanned by the vector #;, then H~D,=
empty is obvious, so that, we obtain a F(®)eP with f(H)=0, which is the required one,

Lemma 10. If R satisfies the condition: :

(III). XX+ y*y+ -+ 2¥zF —e, for every fz'nfte set of elements x,v,.
then, there is a linear functional f(x)0, that is, T is not empty.

Proof. At first, we consider all those elements w with w=x%x=—u?, where xR and
usE. Let G be the totality of all positive linear combinations of any finite number of such
elements. It is obvious that AGCG for every A>0 and that every element of G is identical
with a certain —u, ueD (Lemma 2), where # cannot belong to D,. For otherw1se, we have

a relation

.oy 2,

x¥x+y¥y+ - Fz¥z=—u, u being regular,
which imply the relation

X¥%1+ %91+ 21 %2, =—,
which contradicts to (III).

" Thus, any wsG does not belong to —D,. Also the linear closed subspace spanned by

G does not contain any point of D,. For, "if G=G~G does contain an #eD,, then there is
a relation v; —v,=# with v;,v.eD~D.¢, so that we must have v,=#+v,eD,, which is a
cotradicton.

Therefore G ~D,° is empty. Applying Theorem 5, we find a linear functional f(x)eP
such that f(G)=0.
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2-.0: Next, we shall prove that the thus obtained f (x) eP-is a fu'ﬁc‘:tional of P, 4. e. f (%)
=0, for every xcR. Every x*x is expressed in the form a¥x=wu-—v, u, veD and %.v=0.
Case (i). #=0. We have x¥x=—v, ‘so that f(a%x)=0 by the definition:

Case (ii). v=0. We have x¥x=u. so that a¥*x=D and f (x%x) =0.

V_Clase'.(iii). u,vF0. It is easy to see, by means of the structure theorem, that there is,

for every k>0, a positive element g which commutes with x%x, » and v, and such that gk
Xhx qp=—"0 gr. Then we have f(v(l—qﬁ));%, and f(v)=f{v(1—q§)')+f(_v qﬁ)=f(v(1—‘qff))§%,
since f(vge)=0 by the definition of f(x). So we have f(v)=0, and fla¥x)=f (u)=0.
Theorem 6. For the set & of all positive linear fzmbtionals on any -B*-algebra R with
the unit element e to be not empty, it is necessary and sufficient that in R the condition (III)
is satisfied. ' o
Proof. The sufficiency of -(III) are shown in Lemma 10. The necessity is evident.
Theorem 7. T he necessary and sufficient_condition for P=S{ to be valid for any B*-alge- ‘
bra R with the unit element e is the following condition:
(IV) a¥x-+y¥y+ - +2¥z=0 implies x=y="--=2=0,
for every x,y, oy zeR. _ _
Proof. Suppose that (IV) is satisfied in R.- It is clear that the condition (II) is valid,
and that every a¥*x=u, for some weD. Thus, f(x)eP implies f(x%*x) =f(u)=0, which shows
P<$ As Q<P is evident, we have L=P.

. Conversely, suppose that P<§ and there exists a relation a¥x+y¥y+---+2¥2=0, where
x=i=6, say. _Pﬁt rx=u—v, where u,veD and u-v=0. After two-sided multiplication by some
adequate elements, we obtain another rélation xy%xy~+y:*y;+-+2:¥2,=0, where x,¥x,=
—1, vleD,\DoC. _ _ .

- By Theorem 5, Cor. 2, we have an f (&) ¢ P with f (v1) >O. Since P<Td irﬁplies

f C(x%x) =0, we have a contradiction. Thus vi;, and v, must be equal to 0. In the same

manner for ¥, -, 2, we obtain x=y=--=2=0. This proves the necessity of (IV).*?)

-
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