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1. Contact transformation. We consider the underlying n-dimensional manifofold X
in which each set of # independent real variables (&,1¢,2...... ,€™) may be considered as the
coordinates of a point, and then we associate a system of plane-elements . (a=1,2, -+ , 1)
to every point in Xn. Under K, we understand the associated point set. The point in X,
is called the fundamental point in K.

At an arbitrary fundamental point P(¢), a linear homogeneous equation 7y, d&, =0 of
d&’s with coefficients 7’s defines the (n— —I)-direction at the point, and so . may be consi-
dered a plane-element at P(¢). : '

A homogeneous contact transformation is defined by the following equations:

K= gi (5" ...... y B om e y Tu)s
(1.1) by =b; (B vy &% e,
j),- dxi = med§&*, -
where x¢ and p are homogeneous in the n’s of degree zero and one respectivel y(1). '
A neccessary and sufficient condition that equatlon (1.1)s holds for arbltrary values of
d&* and dn* is .

1.2) - pi x' f38* = =, i 9xi /3, = o. !
While, in accordance with Euler’s formula, we have E
(1.3) T, 0%1/37% = 0, o 0Pi/Ome = p;.

We also have
0p; /28" axi /8" — op, /08" oxi/oEF —

(1.4) ‘ Op;/dmp Bxi /08" — 0p; /08" Bxi/dmg = oF,
0pi/dng ¥xi/om,— Op;/0m, Bxi/3ng = O.

The unique inverse of a contact transformation (1. 1) is
£ = (g, ereer R LN NI s Dnds
(1.5) 7y = 7y (5", e N R s D)
pidx’ = m, €7,
and analogously to (1.2) and (1.3) we have
(1.6) 7, 06% /30X =p; 7, 06" /3p; =
and

(1.7) | _ Piaf“/api= 0, biom, /op; = m,.



28 T. OHKUBO

We have also the following ideritities frequently used in this paper:
88% Jaxi = Op; /Oy, Om./OP; = 3%/0E%,
3% Jop; = —0xi/On,, Omy/ox' =— 3Pi/3E,
by which we derive from (1.4) the following:
omy /op; 8n‘3/axi — 87r“/axi .anﬂ/api = 0,

(1.9) oa Jop; OEP Joxi — om, Joxi 0P Jop; = 05,
| 98* /ap; 9EP Jaxi — 08% Joxi aéﬁ/ap,- =

Next we shall consider infinitesimal homogeneoué contact transformations. Each infin-
1te31mal homogeneous contact transformation is defined by equations of the form
L1y . xi=& +03C/m 8,  pi=m — 0C/o oL,
where C is homogeneous of degree one in the n’s, moreover any such function C determines
an infinitesimal homogeneous contact transformation. The function C is called the characte-
ristic function of the transformation..

If we form the differentials of (1.10), we obtain

(1.8)

dxi = de + (2 am de + o "C_gny ) ot
0
dpi:dﬂi_( FEX dE + OE'LS dﬂj>6t'

These equations and (1.10) define the extended infinitesimal transformation. Hence i_n ac-
cordance with the general theory of continuous groups, the quantities 7, J&* is invariant
under the finite guoup G, generated by the extended infinitesimal transformation, and the
finite equations of G, are given by the integral of the equations '

(1.11) d&i/dt = 3C/ax;, dn;/dt =— 9C/2g,
say :
(1.12) xi = Soi (E’ , t): i = ¢; (E, T, t)»

and their differentials. Conversely (1.12) define a one-parameter group of contact transfor-
mations. ' .

If we transform the equations (1.11) by means of a general homogeneous contact
transformation (1.1), we have
(1.13) dxi/dt = 3C/3p;, dpi/dt =— 3C/3xi .

Hence we have:

A group G, of homogeneous contact transformations is transformed into another group
Gy by any homogeneous contact transformation and the equations of the new group are the
integrals of the equation (1.13), where C is the transform of the characteristic function of the
Ziven group.

Putting
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2 ‘U(E: 75) = CQ<E: ﬁ))
now we shall adopt the following as the contravariant fundamental tensor
/i V

07:0, ()71';3 2

(1.14) : 78 =

which introduces metric properties in our space Kn and we define the covariant fundamental

tensor by means of

ﬁ 8
7" Tg, —»ay .
The homogeneity property of C implies the following:
ol . ,
am,—aﬂp—ﬂ“nﬁ = 92 Il or Talgﬂan'ﬂ = 92 [[,
(1.15) 02‘” 3
— o3 — o oC
e 0 B & e bp=C 0me *
la = TECU = Ta,lﬂlﬁ’
(1.16)

I* = 09C/on, = 1" .
From the above equation (1.13) we see that the magnitude of the covariant vector m. is C
and C0C/on, is a contravariant vector perpendicular to the plane-element n, and moreover *
w./C and 9C/on, are both unit vectors.

2. Linear displacements in K, . Now we shall define the absolute differentials of vec-
tors, when a fundamental point P (&) is displaced to a near point (§+ g¢) and its plane-ele-
ment r, at thev point P is changed slightly, say, into =, + dn, , ‘by the following equations,
o1 vt = dgv* + Cg” of dmy + I, o d¥,

s = dva — C vpdmy — T, v d€’.
1°. Fyom the standpoint of contact transformation a change m, — pr, s of no significance,

so that, the functions T:‘m (¢, ©) and C;;y (&, @) may be assumed fo be homogeneous of degreeé

zero and one in the ©'s respectively, and the relations Cf" ng = 0 may be also to hold good.
2°. Secondly we assume that our connection is a metric one. This assumption leads to the

Sfollowing

(2.2) 0748/08" =1+ Ty + 7oy ['pyr  OTep/3my =10, C§ + 1.5 C/,
or

(2.3) us/38" = Iupy + I'puyp  OTup/3my = Cgl + Cofy

and . N

(2.4) or*8/ag, = — s — %, orbjem, = — PV — C.

3°. Denote X and Y two vectors of the same linear element (&, n); let DX and DY

their absolute differentials when their contravariant components Xt and Y are fixed and when
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their common linear element (§, m) rotate infinitesimally about their center. Then we assume

that B
X-DY = Y-DX.
The law of symmetry implies
CBr = CB,
Combining the above relations with (2.4), we have
(2.5) CBr = — L3y°B/om, or Cy = 5 OTap/my .

For arbitrary function f(§, 7) we put

(2.6) - fT[‘ = 9f/on, C

and for arbitrary quantities, say Zes, we denote as follows
@7 Tuglf = Tup  elc

Putting

(2.8) A® = c ¢ = — 5P,

‘the tensor A%T is symmetric and the contracted tensor A°*® is a zero tensor.

L 4

The absolute differential of any vector V¢ may be written as follows:

2.9 Dv* = dv* + BT, d& + v°CE dmy,
:and, for I* and /. we have respectively

(2.10) DI* = dl* + 1PT ;% d&", or di* = DI* — T,y d¢".
and _

(2.11) Dl.=dl.— 1gTh, d&, or dl. = Dlu+ I, d€".
‘ . Substituting (2.11) into (2.9) we obtain "’

1(2.12) Dv* = dv* + vﬁl’:;"; d&’ + of AY DIy,

where

€213 rs =Tk + Af I'rpy-

By means of the above relations, (2.10) and (2.11) become

2.14) | DI* = dl* + Ty d&"

and

(2.15) " Dl. = dla — I'nyy d&

respectively.

4°. Finally we assume the law of symmetry:
(2.16)  Tagy = Ty

- We have easily the following relations:
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2.17)  Tugy + Tpey=07up/08" + 24,5 T,y

(2.18) Tosy = (a1, B3 + A Troy — Al Trop,

and

(2.19) Togy = [ar,B) + Ayg T — A,y Trgp.

contracting (2.19) by I?, we have

(2.20) . Logy = (07,0 = Ay I'rpp = Lar, 01 = Ay (70, 0],
because :

(2.21) I,,, = lro,o0l.

Substituting (2.20) into (2.19) or (2.18), we-have
(2.22)  T,g, = lar,f] + A/ﬁ ((ra, 0] — A, [00,0]) — A, (7B, 0) — A.§ (s0,0)),
or
I'igy = lar, B + A, (e, 01 — A, (o0, 01)
+ Aup ((e1,01 — A, (00,01) — A, (8, 0] — A.§ (50, 0)).
Thus we have determined the connection completely.

Consider a variable vector, for example X¢. Sinece 8X®/0nr mr= 0, its absolute diff-
erential can be put in the form

(2.23)

(2.24) DX* = Xx"|,a¢ + X*|” Di,,
where
(2.25) X", =0X*/38” + X*||° rp,, + XP 5, X*|7 = X°IV + x° AY.

Particularly for the fundamental tensor, we have
Taply = 1Pl = 1,517 )
3. Spaces T, as transforms ob spaces K, [2). Consider the identity
(3.1) P(x, p) = 1I(¢, ©)

under a homogeneous contact transformation. We notice that the function I7 is homogeneous
of degree two in the n’s and that the function P is homogeneous of degree two in the p's.
By differentiation we have

oP/3p, = 91l/on, om, /op; + 011/3€, 38 /op;,

(3.2)
oP/ax* = 0ll/om, o, /3x% + 011/3§, 96% /axt,
or
0P/ap; = 0ll/om, xi /3¢, — 8ll/3&* dxi /3x,,
3.2)

—0P/ox’ = 8ll/am, 3p; /38" — 011/3€* 3p, /on,.
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From homogeneity property of I/ in the =’s, when we define quantities & by & = 01I/0n.,

we have

3.3) . &e =03ll/on, = y*Bm,,

3.4 Ty = T, &P,

and

(3.5) I =L, g H=1Ly,6%¢b

As we can solve (3.4) w1th respect to m., we can write (3.5) in terms of E“ and

£, When it is done we denote — 5 T §° £ by ¢(&, &) as follows:

(3.6) (5 &) = 5 rap & EP.
From (3.3) and (3.6), we can introduce the following relations
3.7 7ap = Omp/08,
(3.8) - 09/0E" =,
(3.9 7%% = Tup»
(3.10) orp/o8y = — [ {5} + 1 {51), aTﬂa/aEV (Br,ad + Car, B.
From (3.5): and (3.10) we have
| CRIDIN 3ll/o€, = — E9€F oy, B
i and from (3.6)
| (8.12) 0 /ol = — 7w {5} =& €F 174, A1,
Hence we have . ' '
(3.13) 00 /087 = — dll/3E,
When ;Ne define x* by the following
(3.14) x't = oP/ap;, .

i x't is homogeneous of degree one in the p’s.
From the definition of £¢ the first equation of (3.2) is

(3.15)  aP/ap; = 3ll/dm, (3% /38, + s {ac) ot /3re )
in consequence of (3.11). When we define g by
! . :P .
(3.16) =24
g 0P 0p;
immediately we have the following relations
(8.17) g7 pi pj = 1P ramp = 2P.

Differentiating the above equation we have
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‘ oP/axk = % 08/ axkp,-pj = — % i aP/ap/zpi {[jk’ hl + Ehk’j]}
(8.18)
= — 0P/ap, 0P/ap; [jk, i1,

in concequence of the similar equations to (3.10), where g;; is the inverse of g¥.
On the other hand from (3.2); and (3.11), we have

.19 — OP/axk = 31l/om, (00, /08" + o {5} 084 /0w, ).
From this result and equation (3.18), we get
(3.20) OP/ap; 8P/ap; Ujk, i) = 011 /om; (3P /28" + {E} 3y /om: ).

From (3.18) and the similar equations to (38.2)": .
0ll/3m, = 3P/ap; 9€" /ax' — 3P/ox! 06*/ap;,
S — 011/38 = 8P/ap; on. /a5t — BP/oxi Omu/fop;,
we get the following relation
(3.22) oll/3r, = 3P/ap; (3&" /ox® + 8P/ap; Uik, 71 35 /ap,),
which is the inverse of (8.15). And the inverse of (3.20) is following
w1 P (0, f) = — 0P/a&* = oP/op,

(3.23) .
(8ma/227 + 0P/ap, Ui, k) 8na/op; ).

When any contact transformation is applied to our space K, we have spaces T, as its
transforms. Consider a non-singular transformation in K,

(3.29) & = f~14(F),  m =7p 08P 08",
Then if the coordinates 4% in T, are subject to the transformation

(3.25) xt = fLi(x)

and if we put

(3.26) pi 9%’ /0% = B;, b; = B; 9% /oxt,
and

(3.27) | 1(¢, =) = 1, 7),

we have

D; 0% /o8 =7,  p;0X /0w, = 0 and 3ll/om, = oll/d75 96 /3EF.
Hence 01]/0n« and 81I/0%; are the components of a contravariant vector in K, in their res-
pective coordinates. From (8.1) and (3.27).we have
(3.28) P(x, p) = P(X, p).
Differentiating the above relation we have

(3.29) oP/ap; = aP/a]y oxt /a%7, aP/aAE{ = aP/apj Xt Joxl |
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From the equations (3.24) we have
| om, /0€9 887 f38° 4 m, 3267 /08% & = 0
- On the other hand from (2.23) we have
22 & /oF’ 0F + I 06" /08’ 08" JoF° = T} 07 /0P,
From above two equations and relations:
%! /0B = 0% [oxi (0xi /08" 3&" /0F° + 04 Jom, anY/asu),
0%/ /o7, = 0X7 st Oxi [om, 0F° /o€,
we have .
(3.50) %7 /08’ + Pus 0K/ Jom, = 0K [oxi 08 /B £,
where fuy = P F and f = 8XF J3E* + fyy oxt /3y,
Since
M fomy 7o 17 Iy, = 211 Iy, = 241 Tov, 01 = 8ll/3m, 7, {1},
from (8.30) we have

ofl (078, _ 5 aﬁi_ﬂ(ax" 8 axi)aﬁ”‘
T(aé‘s * ”{"S}ﬁ— o, \o&= T 7B {“7} o | ox®

671'5

(3.31)

by multiplying 9/1/97s, If we multiply (3.15) by ox/ /axi and if we compare the result

with (3.31), we have
o P %7 _ b/]( 7 aﬁi) _ P
(8:32) oy 05" oE 47 e} 5m) = 0ps °
4. Tensors in spaces T, . Let X*(§,n) which are homogeneous of degree zero in the
7’s, be the components of a contravariant vector in K, and define functions ¢* (x,p) in Tn

by the equations
(41) o= fXx°,
Let X. (§, #) which are homogeneous of degree zero in the =’s, be the components of
a contravariant vector in K, and define functions vi (%, ) in Tn by the equations
4.2) v; = X« (.35“/6;\:" + bij 35“/81),'),
where the functions b;; are symmetric in its indices and are homogeneous of degree one in
the p’s and are to be such that

(4' 3) ) apz' /85“ = axj /877-'0' .Bco: bz] - api/aﬂc .Bca + axj/aEa bij.
Then by the equation (4.3) we have ,
(4.4) fa hﬁ 0/3

where we put

hf = 06P/oxt + bijafﬁ/aj)j.
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Therefore by means of (4.1), (4.2) and (4.4) we have
vt = Xy X%,

Since .

ol fo&* 88F /axi = 3, — 3p;/06% 388 /ap;,

; oxt form, 98P faxi = — 3p;/om, 08P /ap;,
the equation (4.3) is written in the form
(4.5) 0P j /08" + Puy 3D ;/3m, — bij (8% /38* + Buy 0xi/0m,) = 0
or .
(4.6) 0o /387 + bij e /op; — Buy (987 /07 + 85087 Jop; ) = .
Multiplying (4.5) by §///0n, and making use of (3.15) and (3.20), we have
0P 9P oP
e apy P FIT B = 0,
; P = 0P oP __ P ()P
bl b = Tikiap, ope ~apy o O B

Hence we have

0
4.7 by = I'y; azf + Cy =By + Cs
where

From (4.6) we have the equation analogous to (4.8)

(4.9) o, /%% = 08" /3p; bij fur. — By, /2p; by; + O /ox’ B
By means of (4.5) and the identities

ox' o€ | ox' ome _ oxt of* | oxt om _
08" ox’ oy 0x7 L 8% op; 0T IP;

we obtain '

. ] « __ of

(4.10) £iK =8,

When a transformation of coordinates (3.24), (3.25) and (3.26) is made in K, and T}, the
equation (4.1) multiplied by 0%/ /04’ is written by means of (3.30) in the form:

Ui af_cj/ax" =7° (aij/aéo “ ﬁo‘e ai}j/aﬁs ) = i)j;
therefore v?,as defined by (4.1), are components of a contravariaat vector in 7, . Also we

see that ¢, as defined by (4.2), are components of a covariant vector in Ty . From (3.15)
we have

(4.11) oOP/op; = 8ll/om, f},.

Differentiatirig (4.11), and making use of the relation
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(4.12) o2l /om, 98 = — {3} 7 7 — 1 P — A% [wh, 01 311/0m,
which is obtained by successive differentiation of (3.5), we have, after some calculation,
g =18 £ i + olljony0f} fonp 053 [06F — (0f} /08"
— i} — AT, 03 1) 87 /oms).
But we can .prove that the second term of the second member of the above equal_tion vani-
shes, hence we have

(4.13) - gi=rf f,é' or g = 1up W h‘;.
Now we consider the expression for b;; in (4.7). If we put

we obtain from (4.7) and (2.23)
(4.14) bij = Bij = T'y; OP/opy, = Uij, k10P/ap;, — Al tkh, 010P/ap,.

We can verify that the covariant vector in Tn derived from a gradient vector 09/0&,
+ Bug 99/0mp in Knis 0f/axt + bij 8f/op; where ¢(&, ) =f(%, p). In fact, we have by
differentiating the above identity with respect to £* and m, respectively

. 8¢/dg* = of/ox! ax7 /38" + Of/2p;op /0%,
aSO/'an:a = af/axj a'xj/an'oc + af/apj apj/an'oc.

Substituting the expression 9¢/38. + Pug 9¢/0m, for X.in (4.2) and making use of the
above equations, we obtain

vi:{ﬁ ox’ P, of ops ﬁﬂa(ﬁf—a—xi+-‘3f—‘l&)}<ﬁf_+b aga)

ax’ 9&* 0ps ()E“ 0x’ omg op; 0ms ox? ik by
of 45 4 _Ji{_yj?am v i bﬂa_afg__l_ga_ti(girf__‘_b. ﬂ)}

oy Uk o T oaxg U oome xR oops opr - 0% ax*  Tkopy

af g—— —a-ﬂ;‘f 2] . ps 07a + ap ((’)72‘5 3 B 07Tg )%
T ope U 0 ax® T ik an, oy, o i apr
" But the last two terms of the last member vanish identically, because the relations

om,/0p; 0&* /3y + %7 /Omp Omp/opr =

| — oxi /a&* axk Jom, + 0xF /On, 3xk/o8* = 0

- aﬂ'“/axj api/a”a T+ apj/an'oc aﬂa/axi =

@ L op/a8s 3p;/om — 0p; /%7 BDi/08" = O,

i hold, so that we have

| v; = 3f/ax* + bijof/op;.

5. Contact frame. Differential forms d7a — Buy d€” and dp;i — bij d &/ are the
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components of a covariant vector in respective spaces Kx and 7u. In fact we have

dne — Puy A& = (072 /05" — uy 087 /34 ) d

4- (axi/vaE“V — .‘gay 5‘357/3175:) df’i = fi(dp,- = B dxj)

' by makiﬁg use of (4.5) .and (1.8). Hence we put

% I Ony = dmy — Buy dE7.

While differential d€* and dx’ are transformed in the manner:

(5.2 FldEr = daf — 3xi f3ma b,

We introduce here a “contact frame” (3)(4) defined by the functions I"*8(&, ), hom-

ogeneous of degree —1 in the #’s and symmetric in the superier indices, which are trans-
formed in the following manner: '

. (5.3) =0k fon, + T =TV 1.

Then the quantities defined by ' '

(5.4) 08* = g&* + 1P onP = q& + ' dny — I' Bye d¥°,
are transformed as follows . '
®.5) o fl= s,
where :

8x' = dx' + I'V opj = dx* + 'V dpj — I'V bjp d .
In our theory, these Pfaffian forms (5.1) and (5.4) play the role of differentials of
ordinary coordinates. If we resolve (5.1) and (5.4) with respect to d¢* and dr., we obtain ;

d&* = 6§* — '™ éx7,
(5.6)
dne = 0my + ,Bay 55}/ - pay I o,

Now we can define the covariant derivatives of a vector as follows’
5.7 DX. =dX*+ C§ X’ dn, + 1§, X" a&
= Ve X*0€° + VV° X%bz,,

where we put

(5.8) Ve X* =0X*/06° + I, XP + Bys(0X%/0m, + C§ XP),
(5.9) V7 X* = 8X%/on, + C XP — I'ya (3X% /087

+ 1%, XP) — By I (3X%/2n, + C§ XP).
In particular for 7., we have

Verta =0 and °nr,= 6,.
Now we can immediately obtain various curvature tensors and torsion tensors in usual man-
ner, but here we write the only following relation for a scalar function f(§, _7r)
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(V,u VV — Vo V,u) f = S,uvr V'_f + S/wr".z-.m'r Vocf, '
where & o o e e
(5.10) Sr = 0By /08" — 8fu/88” -+ Pep 3Prv/3pe — Pev OPru/ O

6. Absolute differential in 7,. In the space K, with l_inear connections (1’;7, C;y)
the expression DX* = dX* + TZ»}, xXPae + _C};”Xﬁ dn? is an absolute differential of the
vector X*. We denote by ' :
(6.1) DY = aYi + Y/ Ly, dpy, + ¥/ D} dpy
the absolute differential of the vector ¥# in T derived from X® in K,by equation (4.1).

From Y; DY = X.DX*, we have

dY' + Y Liydx* + Y D*apy = (dx* + I',X" a8 + C§ XF dmy) £i.
Since d X! =d fi X*+dX* fi for arbitrary vector, we must have
(6.2) Ldxt + D dpy = — dfyhl + (I'h,a8 + C§ dm)) fil.
On the other hand, since n« and p; are.coyariant vector in Ky and T respectively, we

have _ .
(6.3) dpr — Li; pjdx’ — Di pjdp; = (dme — Ty np €’ ) by,
= dnuhy = 0Dy = dpp — bridx'.

hence, we :obtain -

(6.4) Dii pi=0 or - Dkﬁ-pf =0
6.5 L‘;a- bD; = bei. v
By covariant derivation of the fundamental tensor, we have ;

dg + Li, g% dxk + L, &' dx* +Dif gjdpr
+ Df* g dpe = Dg¥ fiff= 0.
Hence, we have
(6.6) L agii/oxk = I + LY,
(6.7) agii/apk = piik 4 piik,
From (6.4), (6.7) and" relation p;089/ap, = 0, we have

(6.8) D7k p; = 0.
By equation (6.4), (6.3) becomes
(6.9) . dpp— Lk pydxi = (dra —Pay dE7) by,
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If we put 67, = 0, from (6.9) we have d pk - Lfa- i dx', hence (6.2) becomes
(L ’k+DmLhkp1) dit = o o
— 1 (oS /08" + af5/0my Byu)ds* — I, d&Y fa]

Therefore, we have

@10y Lypfhrh= ;'(afg/afw-af;;/any Pra) + T 1y,

where

: _z_v _ . -h l

(6.11) L, —L;k + DLy -
b When we alternate the indices « and 8 in (6.10) and substruct the result from (6.10),
: -we have ' A

6.12) - (Li — L) £E fh = — Sup- 827 /2m,,

* -- - . . . i
because I’ Igﬁ is symmetric in indices f and «.

If the torsion tensor S.s: vanishes, from (6.12) the quantity L ik is symmetric in low-

er indices, i.e.

. LT

- (6.13) Ljy = L.
Assume that the quantity D is symmetric in indices ¢ and j, from (6.7) we have
(6.14) Diik = L ogli/ap,,

then, in such a case, the conditions (6 4) and (6.8) upon the quant1t1es Dk are satisfied.
In this way we have, from (6.11),

(6.15) L;,; = ij + Aj-h Lok,
where
A} =vop D}  and Lok =Luel'.
By alternating the lower indices j, % in L;k and by summing the result to L:;-k, we have

L]lk + L’]k L]zk + L;][e + .aA Lho'g &= ag“j/axk + ‘)AU Lhok:

because
Dgij = dgij — (Lijs + Lji) dx® — 2C.f dpp = Dgus i 1) = o.
Hence we have _
0g;;/0x% = Lijx + Lji
accordingly from (2.13), (2.16) and (2.17), we conclude
(6.16) = I

In this case the transformed space Ty is also the space K, with the connections C’s and I”s.
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