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This paper is concerned with an n-dimensional projectively connected space Hn with
homogeneous coordinates whose group of holonomy fixes a non.degenerate hyperquadric

; Qn—l' For the case of ordinary projectively coﬁnected spaces, S. Sasaki, K. Yano and T.

Otsuki have obtained intresting results.
In an n-dimensional projectively connected space H, with "homogeneous coordinates

(2%, -+, x™), a point x* is expressed by

2

Cxt=cht (A py < -=0,1, -+, n; c'=const.),

where ¢ is a parameter. We must consider ths following coordinate transformations:
—A —A
X =X (xo,...,xn),

F: ®r=pat, p (2% -, 5") & (pFo),

(0.1)

where El_are homogeneous analytic functions of the first degree in x*, such that the functional
determinant is different from zero for all points under consideration, and p is an analytic
" function of degree zero in x? The coefficients of the projective connection 77 .ﬁv are homog-

eneous analytic functions of degree —1 in x*, and, by (0, 1), 77 Zw are transformed into

_ 74 B o,T 2
G: wa =% (a—fu afu Br —a— x—ﬁ )"
0.2) . 2x% \ox“#ox 9x"0%
PR 7 I, Qe gy
F: 1, =p " 11,
We restrict ourselves to the following case:

A A A ono_
I]W—HW , I]Wx = 0.
We also restrict ourselves to projective vectors and tensors such that the laws of

transformation in (0.1) are given by:

= 0 '

¢ xzﬁ =, F: wt=pd,
- ox* -

G: v, =—v , F:. 3,=p"1v,,
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Hereafter we assume that the hyperquadric‘ Q .1 ata tangential point x* is given by

(0.3) Q, ; G XX¥'=0 (det| G 1#0, Gp= G

where G o X% are a covariant pfojective tensor, and a contravariant projective vector
respectively, and the tangéntial point «* does not 1ié on @ 1. Therefore we can assume.
Gip it x* = — 1 without any loss of generalify.

Under these conditions we ‘Shall investigate the structure of the projectively connected
spaces with homogeneous coordinates.

1. We consider the following n equations:
(.1 g (a0, &) Gdik =120

where Ei are homogeneous analytic functions of degree zero in ;»c’1 and we assume that the
matrix has rank n.
Then we put:
. of
1.2 4 E ="
X
Furthermore we must consider a hyperplahe:
(1.3) p,x =0,
which does not contain the ‘tangential point x* and is used as a plane at infinity. This °

projective covariant vector p, enables us to define the inverse of ( E . We define the’

quantities Elfx, Et'f, E° , by means of the equations

A LA Ay j
(1..4) E"’l_—_p/1 K Eo =& |, Ez. E]-x=3]iﬁ'
E E*=0—x"b, , Elp, =0, E,x' =0
Then we define ng (a, b, ¢ +--=0,1, -+~ n) as follows:
., 0
. 5 2 .
(1.5 sz = El-zl Eb# Eky Huu - Eb# Eky ox¥ E‘-l,u'

[’g 5 are analytic functions of degree zero in x’1 , so that we can express as the functions in &7 .
Then we get, by putting =0, b=0; a=0, b=j; a=i, b=0; a=i, b=j in (1.5), the
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following equations:

i

[’ok 0, Fok:~5/1%’
' op”
(1.6) F]k = - E 'uE ( p,{ lllf)’
;  ney d peppy O &P
Tip=EL B B 1, — BB —

We can easily prove that ]’;:k are the coefficients of the affine connection, and ]“J?k

are tensor components.
If we define Hab by

N ALV S ALY
Hab - Ea Eb G/Iy ’
we can find that det]Habl#‘ 0 in virtue of det|G, | 0.

The covariant differentials 4H b with respect to ]“Zk are related to the covariant

@ifferentials DG n with the followipg equations

(1.7) 4H, = E/E} (DG, —2 G,,p,dx"),

where 4H, = dH, — I, H, d§* — 5, H, d¢*, and DG,, = dG,, — 115, G4, dx"
— 1%, G,y dx”.

If the group of holonorhy fixes @ then D(G n xt X*) must be proportional to

n—1°
G A X* X* in virtue of the relation DX* = 0. But as X* is an arbitrary vector, we can
write these results into .
(1.8) DG,, = (rp dz?) G,,.
Hence we get by putting (1.8) in (1.7) the following relation:
QA s
AHab = Ea .Eb/‘l (?dep) DG

Aus

where gpp =T, gpp._ Hence we get:

oH,,

Therefore

.9 War _pe g, — 75 H, = o, 2
: aEk Fak cb Fbk ac = Yk ab,

where ¢, = E];‘ @, If we write (1.9) in full detail, then we get
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a=0, b=0 : ¢, =2 Hy (H, = H, = H,),
(1.10) a=0, b=j : H,+rIy—H,=2HH,,
a=i, b=j : Hy,—HT}—HIj=2HH;,
H,,— 2 _rig H,, -5 _ g _rn
where  Hj = gk — Lt o ik = gk Tl T betti

We know, from the definition of ¢, ¢, x” = 0, hence if we replce p L with §,=p, -
+ %ga y» then we get from the definitions of E"l"’ EI;X’ and FZk the following relations
Ez.szz.g ’ E;I:E,‘,A,
E];u:EJ;#_quj,
and
S Tj =Ty —H; 0, — H, 5,
(1.11D) oH.
70 _ po0 T i _
Therefore we get from (1.10), (1.11) the following results.
(1.12) Th =&
=i [
T ={a} > N
where g;= I'Iij - Hz I{] and {j‘k} are the Christoffel’s symbols. We can easily see det
|g;.ji|#0fromdet|GM|:f=O(or det|H_,|#0) |
Qn—l is also written by putting Z% = E‘_‘./1 b & as Hab YAA b — 0, and hence we obtain
(Z2°) =g;2° 7

as an equation of @, .

*

Hereafter we assume that & Z! 77 is positive definite or negative defipite.

Now we can formulate the above mentioned facts as follows:

Theorem I. When the group of holonomy of a projectively connected space with
homegeneous coordinates fixes a non degenerate hyperquadyic Qn—l, the coefficients of the
connection P{k are induced from '172 . as the Christoffel’ s symbols with respect to &;; which are
derived from.G,, .

2. When the paths in the space are given by

2.1 ot = % (a0, u'),




- £2.2)

e gyt
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these equations are satisfied with the following differential equations:

2 A ¥

o x ax” ax” 2zt
. @ Ay— ['Z; (‘x ﬁ’ Ts = =0, 1)-
ou“auf # ax® 3xP Ba g

We can consider that x (u R ul ) are homogeneous analytic functions of first degree
in #®, These differential equations of paths were defined by D. van Dantig. We can easily
find that under the transformation of the paraméter u”, ]’7 are transformed like coefficients
of projective connexion. Moreover we can see from (2.2) ]1r o = FBa’ 38 B u* = Q.

According to J. Hantjes, under a suitable transformation of ths coefficients of the

projective connexion

T, =1}, +de +de +o 1,
where ?, =0, ¢+ Py x” = 0, it is possible to make the contracted curvature tensor
7 - with respect to 7 fw identically zero. Moreover he proved that the curvature tensor
R‘f‘ﬁﬁ with respect to 1“(7;‘9 is identically zero. Therefore the differential equations (2.2) are
reduced to the following form:
2% xt 2 9x”2x¥

—_— e —

(2.3) + =
ouuP M 50 auP

We know by simple calculation that (2.8) are reduced to the following differential
equations:

af“’x’I dx” gy
dp *‘“(1 P dp dp

1 .
where p = %0. Furthermore, by (1.1), we can transform (2.3) into

2.8)

.0’

9 ol k i
d 62_ + fz a’EJ dg” <1)/1 )d&
dpb dp dp ds'/ dp
Therefore if we transform the parameter p into s by the equation
ap
(2.4 _d_xf = ds*
ds
we get
Z) i ] k
(2.5) S de L _o.

—+ I
ds* * ds ds A
We can see from (2.5) that s is an affine parameter.  Moreover we get from (1.6)

the following equations;
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aop

Vi o __ 2] A .
_E'uE{Zijk— u—plﬂ/w—i—p/ipu
Therefore the above equations are reduced, by differentiating (2.4) with respect to s, to the

following equation:

de d&k
2.7 , —9 I
4 12, s} = M gs ds’

where {p,s} is the Schwarzian derivative. From this we conclude that p is a projective
parameter.

On the other hand, we can find that the curvature tensor 1]’1 o with respect to 17 i ,

is related by the following relation to the curvature tensor R-jk " with respect to .P T -
y ) 7 AL AT} A
(2.8) E,E"E E"I@,,

_ -0 o T of o1 = -

=R, + T, 0, — T3 0 — & (T, — T

Since 17, (= {1 ?ur/l): 0, we get from (2.8) the following relation:
D __ 1 _ pi

Tk =— =1 R (Bjp= R jpi)-

Hence from (1.12) the following relation holds good.

(2.9) Ry =— (n—1) &.

We can formulate the above results as follows. .

Theorem 2. When the group holonomy of a projectively connectid space with homogeneous
coordinate fixes a non .degenerate hyperquadric, this space is a projectively connected space with
corvesponding paths including an Einstein space with non vanishing scalar curvature.

3. The differential equations of a path in the Riemann space with the fundamental
tensor g;; are given by .

d'é 7, de de*
ds ds ds

where the parameter s is the arclengh of the path, and is an affine parameter.

This facts imply that there is a relation between s and s in (2.5) such that
3.1 s=as+ b (a¥Fo0),

where @, b are constants.
Hence. we know from (2.7), (2.9), (3.1) the following result:

(3.25 . {p,s}=K
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where K is a constant and is negative or positive in accordance with &; being a positive
definite or a negative definite tensor.
i) K<0. If we put K= —2 E? then we find the following solution from (8.2)

my eks 1, e——ks
— )
mef +n e

(8.3) b=

where m,, m., 7., ¥, are arbitrary constants with s —my 1y F0.

Hence we get from (3.3)

. 1 _ _
(3.4 5= log(l’ b1, Po 1’1)
2k pz_p p:‘:—po 2
where p; = 2 D, = M and P, are constants such that Do— D e TR
N2 » 4 22— Do Ny

But by the assumption the tangential point 2% does not lie on Qn—l' Accordingly we
can not apply the Klein’s representation of non Euclidean geometry.
'92) K>0. By putting K=2k* we get similarily

1 ! v — D1 ) -
s=awls (5. 5=p) =D
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