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Introduction

We know that nonabelian p—groups of order p" which contains a cyclic
subgroup of order p"~' are completely classified (See Theorem 2). In this
paper we study nonabelian p—groups of order p* (#=>4) which contain a cyclic
subgroup of order p"Z.

In section 1 we shall determine the p—groups with a self-centralizing,
normal cyclic subgroup and in section 2 the p-groups with a non-self-centra-
lizing, normal cyclic subgroup are studied. Since [P:P’]>p’ for any nonabelian
p-group P, we have cI(P)<rn—1 if P is of order p” (n>>2). p-group of class
(n—1) is said to be of maximal class. Blackburn studied in [1], [2] maximal
class of p-groups. We define p-group P of order p" (#>2), as of second
maximal class if cl(P)=n—2.

In section 3 we deal with the 2-groups of second maximal class with the
cyclic commutator subgroup.

Now, we use the following standard notations. When H is a subset of a
group G, |H| denotes its cardinal number, and we denote by <H> the sub-
group of G generated by the whole elements in H: in particular the cyclic
subgroup of G generated by an element x in G is denoted by <x>. Also we
shall use the exponential notation H” for the image of H under the mapping
f. In particular, for an element x in G we denote by H* the subset x™! H x.
If H is a normal subgroup of G, we write H<«G. If H is a subgroup of G,
then we write H<G, while if H is a proper subgroup of G, then we write
H<G. If H is a subset of G, Cs(H) and Ny (H) denote the centralizer and
the normalizer of H in G, respectively. Also Z(G), G’ and @#(G) denote the
center, the commutator subgroup and Frattini subgroup of G, respectively.
If G is nilpotent, then the class of G is denoted by c/(G). The automorphism
group of G is denoted by Aut(G). For a p-group P, 2°(P) denotes the subg-
roup of P generated by its elements of order dividing p* and &“P) denotes
the subgroup of P generated by the whole elements x* for x in P. For a
subset H of G, we denote by I(G) the number of elements of order 2 in G.
Finally, if p-group P possesses cyclic subgroup of index p° in P, but if P
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does not possess any normal cyclic subgroups of index p° in P, then we say
that P has the property (%,.)

Now we know the following theorem about the automorphism group of a
cyclic p-group.

THEOREM 1. Let A be the automorphism group of a cyclic group of order
p” generated by x, where p is a prime and n=2. Then the followings hold:
(D) If p=n=2, then A=<o; x"=x">, i.e. |A|=2,
(2) If p=2 and n>2, then A is an abelian 2-group of type (2% 2) gemerated
by two elements o, = with the relations x°=x° and x"=x"'.
(8 If p is odd, then an S,-subgroup of A is a cyclic group of order p"*
generated by o, where x"=x""

By using this theorem, we can kow the existence of the following parti-
cular p-groups of order p", for p=2, »>>3 and for p odd, n>2.

M.(p)=<x,y; x?"_1=_y1’=1’ xV=x1+pﬂ-Z>’
S,=<x,y; " '=yP=1, a¥=x"1T2"70>,

The latter group S, is called a semidihedral group of order 2*. The dihedral
group and the generalized quaternion group of order 2° are denoted by D,
and Q,, respectively. Each of M.(p), D,, @, and S, possesses a cyclic subg-
roup of order p""'. However, this property characterizes these groups among
nonabelian p-groups, that is, we have

THEOREM 2. Let P be a nonabelian p-group of orvder p™ which contains a
cyclic subgroup of order p" " *(n=3). Then
1) If p is odd, then P is isomorphic to M.(p).
(2) If p=2 and n=3, then P is isomorphic to D; or Q.
(3) If p=2 and n>3, then P is isomorphic to M.(2), D,, Q, or S..

§1. p-groups with a self-centralizing, normal cyclic subgroup of index p2.

With the aid of Theorem 1 we can construct several p-groups. Let H be
a cyclic group of order p""? generated by x and for o, = defined in Theorem
1 we denote by K; the group <o¢*" "> for p odd, #>>5, the group <o*" > for
p=2, n=6, by K, the group <¢*""°+z> for #>6. and by K; the group <o*" >
X<z> for #n=5. Then in consideration of the semidirect product of H by K;
(1=1,2,3), we can define the following groups;

Fvachua
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pn—5_-1

=2 2 - P71 -3
N(p)=<z,9; 27" "=pP=1, gl=x'+P" T Hep TS,

Simy=<x,y; &' =yi=1, at=yTITN RIS,

1+27m-3 1

S:(m)=<x, y,z; " '=y’=2t=1, x¥=x , X'=x"1, y=y>,

where ¢, is defined in the following:

=0 for all primes p if » takes its smallest value,
(1.1 p—1

e2=1, e3=—1 and e,= 5

(p#2,3) otherwise.

Moreover, by using the property of partial semidirect product we shall
define another 2-group of order 2" than the above ones. A group G is called
a partial semidirect product of H by K with respect to M if G=KH with
H<G and K is a proper subgroup of G and KNH=M. Then we have the
following proposition for the proof of which we can refer to [3]:

From the groups H, K, M with M<H we can construct a partial semidirect
product of H by K with respect to M if and only if there exist a homomo-
rphism ¢ of K into Aut(H) and an isomorphism f of M into K which satisfy
the following conditions for all x,y,z in H, K, M, respectively;

1.2 2= x7 (DY =),

Assume n=>5. Let H be a cyclic group of order 2% generated by an
element v and M be a subgroup of H generated by #2"”°. Let K be an abelian

2-group of type (4,2), 7.e. we put
K=y, z; y’=z'=1, yz=zy>.

We put (#2"%)=z*. Let (')’ be the automorphism of H which maps #*
Fa+27HY-D/ for 4% in K. Then ¢ determines a homomorphism of K
into Aut(H) and it is easily verified that (1.2) is satisfied. Hence the partial

semidirect product Si(#), exists and is given by the following defining rela-

into x

tions;

-3 1+27-8 .z

Sa(m=<x,y,z; y'=z'=1, 22=x"""", x'=x , #°=x"", yz=zy>.

Before we study the properties of p-groups defined above, we must have
the following two lemmas.

LEMMA 1.1. For x,y in a group G, assume [x, yl=z commutes with x
and y. Then the next two relations hold for all i, j.
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(D [x% y'I=zY.

1
(2) (yx)i=z7i(i—1)yixi.

PROOF: [x,y]=2z implies xY=xz. Since x and z commute, (x%)'=(x*)’=
(x2)'=x"2", and so ()V=(x"2)Y=x()zi=x2". Replacing this argument j times,
we obtain (x9)¥ =x2%. Hence [x%, ' 1=zY. For i=1, (2) holds clearly. If

. ol . X X 5 3 1. X X ;

(yx)z—1=22 (Z—l)(Z—Z)y‘L—lx‘l,—l’ then (yx)’=(yx)1"1 yx=22 G@E-1DE-2) yz—l x‘l.—lyx. By (1)

i-—1 i-1

270 y=z""" 2’7", and so (2) holds.

LEMMA 1.2. Let P be a p-group with cl(P)X2, where p is odd. If P/Z(P)
is of exponent at most p, then (xy)”i=x”iy”i for all x,y in P and for dll i.

PROOF: Put [y, x]=z for x,y in P. Since P is of class at most 2, 2 is
contained in Z(P), whence by Lemma 1.1

: 4
(1.3) Ly, #']=2", (xy)/=2270"0g, o

hold for all j. Sicce P/Z(P) is of exponent at most 2" and p is odd, by
putting j=p’ in (1.3) we have

1___[3,’ xp’]=zp’, (x;y)"z=z7”1("l")x"1 y’z=x”1 yp’.

REMARK. The conclusion of this lemma does not hold for p=2.

For any integer a, there exists an integer B satisfying the congruence
(1.4 at+pB (142" D=0 (mod. 2"

if i+1<n.
Now we shall study the properties of N,.(p) and S,(»), i=1,2,3.

THEOREM 1.1. The followings hold.

(1) If P=N,(p), then
(@ cl(P)=3 for p odd, n=5 and cl(P)=2 for n=6. Z(P) is cyclic of
order p*~* and P' is cyclic of order p*
(b)  @(P) is abelian of type (p"73, p).
(© &(P) is abelian of type (p, p)
(2) If P=S.(n), then
(@) c(P)=n—2, P' is cyclic of order 2°° and |Z(P)|=2.
() O(P) is abelian of type (273, 2).
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(©) 2(P) is abelian of type (2,2).
3 If P=S,(n) or P=S;(n), then
(@) cl(P)=n—2, P'=0(P) is cyclic of order 2°7% and | Z(P)|=2.
(b &(P)=P.
€)) I(Sy(n))=3+27"3Lgn—2 and I1(Ss(n))=3+2""3,
(4) No two of the groups N,(p), S,(n), S,(n) and S:(n) are isomorphic.

PROOF: Put P=N,(p) or S,(n), 1=1,2,3, as the case may be and let P be
‘generated by x and y, or by x, y and z satisfying the appropriate relations.
In the first case (#”)'=(x")"”=%" whence 1 is contained in Z(P). On the
other hand, if x° 3’ is contained in Z(P), after an elementary calculation we
have i=0 and j=0 (mod. ?p). Therefore Z(P)=<x"> is cyclic of order p"~4.
Since P/0(P) is elementary abelian, both x” and y® are contained in o(P),
whence @(P) contains a subgroup of order p"°? generated by x” and y”.
However, since P is nonabelian and [x®, y?]=1, we have [P: 0(P)]=p% whence
O(P)=<x">X<y"> is abelian of type ("% p). Since D(P)=<a">Xy">

n—5_,

P
and Z(P)=<a">=g(0(P)), P/Z(P) is of exponent g [x, y]=x?" Pz ons
and so P’ is cyclic of order ?° generated by x?"7* Therefore, if p is odd
and #=5, we have cl(P)=3, while if 726, then we fhave cl(P)=2. Since

(»" xf)"=yi"]‘lfl @DTPB=y® 4t for some integer /, the order of y° %' does
not divide p i} :%0 (mod. p). First assume that p is odd. If n=5, x¥=gl+r
and x*"=x'*"| whence
(57 xYP=y? T (xy?PD
7=1
ipfl(wzzz)f
=x jZo
=P
since x”=1. If 726, [z, yl=u is of order p* and is contained in Z(P),
whence by Lemma 1.1 [ y*]=2%" and (y? 5)P=g? 3 P@-D y”xP=x"%_ In either
case (»” x)°=x", and so we have the fact that y” x* is of order p if and
only if i=0 (»*"%. Hence &(P) is generated by x*""° and %, and is abelian
of type (p, ). On the other hand, if p=2, then (y? Y =yl(x ) gi= griC+2m Y
whence we obtain the same result as p is odd. Therefore (1) holds.
Now consider (2). Since =y ~1-8"" a0 Pl eontains %%, On the other
hand, for all 7 and j [, y/]=yxi-1-2n"4r2n=3epyi ) is contained in a group <x%>.
Therefore P’ is a cyclic group of order 2"7° with a generator xZ If x°
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commutes with y, then i=0 (mod. 2°~%). However 2" ° is contained in Z(P),
whence Z(P) is a cyclic group of order 2 generated by x°""°. Since x*
commutes with y? and since both x? and y® are contained in @(P), O(P)
contains an abelian group <#2>X<y*> of order 2"7°. But P is nonabelian,
and so we have [P: 0(P)]=4. Therefore 0(P)=<x*>X<y*> is abelian of
type (273, 2). Since [x%, y]=x‘z“”(‘l‘zn_"*2”—3'52)=x“("1’1"—5+"‘"—4'52), by the
induction on 7 we shall obtain PY9*P=[P?® P]=<x¥"">. Thus cI (P)=n—2.
Since %1, we have (y¥'x9)?=y*2 (#)"" x'£1 and (y® 2)’=y*(xDH* x'=x70*2""5,
Hence y® x* is an involution in P if and only if =0 (mod. 2"7%). Therefore
we obtain that £2; (P) is an abelian group of type (2,2) generated by P
and y°.

2n—3.4 27

Next consider (3). Since, in this case, [x%, yl=x and [#% z]=x"%,

Z(P) is a cyclic group of order 2 generated by #*"° and P’ contains %

However, both [«%, y] and [#% z] are contained in the subgroup <x*>, and
so the factor group P/<x*> is an elementary abelian group, whence we
conclude that P'=@(P)=<x*> is cyclic of order 2*7% Since x* commutes
with y and [2%, z2]=x"%, by the induction on j we shall have PY*’=[P?, P]
=<#¥"">, whence, in particular, we obtain ¢l (P)=n—2. An elementary
calculation will show that the full set of elements of order 2 in S,(#) and

Ss(n) are {xzn-a, y,y;cz""a an—2_1 2n—2—2}

. 2, 2%,2x%, ..., , 2% , ¥z, 92%%, ..., y2%
and {x*"7°, y, yx®"7°, yzx, yzx®, ..., yzx*"°7'}, respectively. Thus we have
2,(P)=P in either case, and I(S,(#))=3+2""3+2""2 and I(Ss(n))=3+2"">.
By comparing with the order of P/, Z(P) and O(P), or with the number
of involutions in P, immediately we obtain (4). Thus the proof is completed.
Each of N,(p), Si(n), S:(n) and Ss(n) possesses a self-centraling, normal
cyclic subgroup of order p" % However, this property characterizes these

groups among all nonabelian p-groups of order p".

THEOREM 1.2. Let P be a nonabelian p-group of order p" which contains
a self-centralizing, normal cyclic subgroup H of order p"~°. Then n=5 and
(1) If p is odd, then P is isomorphic to N,(p).
(2) If p=2, n=5, then P is isomorphic to S:(5) or S3(5).
(3) If p=2, n>5, then P is isomorphic to N,(2), S:(n), S:(n) or S;(n).

PROOF: Let x be a generator of a cyclic group H of ordes p"°. Since
H is a self-centralizing normal subgroup of P, the factor group P/H is
isomorphic to a subgroup of order p* of the automorphism group of H whose

.g;
A
4
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Sp,-subgroup is of order p"”3. Therefore we have #>5. First consider the
case that p is odd. By Theorem 1, P/H is cyclic and there exists an element
# in P—H such that P is generated by x and # with the relations x"=
x M_TLI"’"_3, where ¢, is defined as in (1.1). Since (#™)"=(x")""=x",
(#P)#% x® and 5%, it follows that Z(P) is generated by x”. From the
manner of the conjugation of x by # and from the fact that P is generated

1+pn~dtep.

by x and %, we conclude that P’ is generated by x?"*. Therefore we have
cl(P)=3 if n=5 and ¢/ (P)=2 if »>5. Since #” is contained in H, #* is also

contained in Z (P). Hence for some integer a we have #”=x". If n=5,

then x“=x'*?. If we put y=ux"% then P=<x,y> and x¥=x"=x'"?, and
yP=(ux™ )"
5 L i
=u” II (x7")".
=0
p2—1 5
=xP g% O
However
1+ A+p)+ ... + A+ PP '=p* (mod. p*)
since p is odd. Therefore we have jy**=1. Consequently P is isomorphic to

Ns(p). If n>5, then ¢/ (P)=2. Let v be any element in P—H. If »” is not
contained in H, then »” is contained in Z (P), because two elements x and v
generate P. If ¢” is contained in H, then the group P, generated by x and v
is isomorphic to M,_.(p), and so o” is contained in its center Z (P,). However,
Z (P)) is generated by x”, whence »” is also contained in Z (P)=<x">. In
either case, v” is contained in Z (P). Therefore, it follows that the factor

a

group P/Z (P) is of exponent p°. If we put y=ux"% then P is generated by

n=5_1

1+p"—4+5p-p 5 pn—3

x and y with the retalion x'=x"=x By Lemma 1.2 we have
YPP=(ux")P=u" x~*"=1. Thus P is isomorphic to N,(p).

Next suppose p=2. Since [P : H]l=4, P/H is cyclic of order 4 or abelian
of type (2,2).

Case 1. P/H is cyclic of order 4. In this case, by Theorem 1 we must
have =6, and there exists an element # in P—H such that P is generated
by x and # with the relation x“=x'T2"7'*2" 7 op g pm1TITRRITTERE  Tf g
TR then (x*)“=x%, whence x* is contained in Z (P). Since [x, #]=
x2" TR e have P'=<x?""">. It follows that P’ is contained in Z (P),

in particular we have ¢/ (P)=2. In our case it is easily verified that Z (P)=
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<x*>. Since #' is contained in H, %' is also contained in Z (P). Therefore
we can put #'=x" for some integer a. Since #>>6, for 8 in (1.4) with i=4

we put y=ux?. Then P is generated by x and y with the relations xY=x" and

y4=(ux5)4=u4 (xB)u3 (xB)uz (xﬁ)uxﬁ
— g, xﬁ((1—2"‘4+2"—3~32)+(1+2"'—3) +(1+2n 427~ 3uep) +1}

@ +2m =5
=yt +4B1+2 bl

=1.

—1-27~442m=3.g, 2¢(—1

Hence P is isomorphic to N,(2). If x"=x , then [«%, u]l=x

TanTEranThey  Therefor x° commutes with # if and only if i=0 (mod. 2*~%).
Hence we have Z (P)=<x*""">. On the other hand, since #* is contained in

-3 on—3

H, u' is also contained in Z (P), whence #u'=1 or #'=x%" If u*=x"""", then
P is generated by two elements x and ux with the relations x“=x" and
(ux)*=1. Hence we may assume #'=1. Then P is isomorphic to S;(#).

Case 2. P/H is abelian of type (2,2). By Theorem 1 we have #>5 and
there exist two elements %, v in P—H with the relations x"=x'"?""% and x’=x""!
such that P is generated by x, # and v, and such that all of [#, v], #* and ?°
are contained in H. Let K and L be the subgroups of P generated by x and
u, and by x and v, respectively. Then by using Theorem 2 we obtain that L
is isomorphic to D,_; or @,_; (in particular v is of order 2 or of order 4
not contained in Z (L)). Since K is nonabelian and [#%, #]=1, Z (K) Iis
generated by x°. Therefore we may put #’=x?* for some integer a, since %’

is in Z (K) Since n>5, we put y=ux® for B in (1.4) with /=3. Then we

2m—2 1+27—3 2m—3

have K=<x,y ; x*" "=y’=1, x¥=x >. Also we have vY=v or /=vux
Because, since L is normal in P generated by y and elements in L, if we put
v'=vx* (if L is isomorphicto D,_;, {vx*; i=1, ..., 2"} is the full set of
involutions in L—H, while if L is isomorphic to Q,_;, {vx%; i=1, ..., 2"7%}
is the full set of elements of order 4 in L—H), then v=1"=(px")?=pxZ¢+2"7H,
which implies /=0 (mod. 2*7%). First assume ¢vY=v. If L is isomorphic to
D._1, 7. e. v*=1, then P is isomorphic to S,(#). On the other hand, if L is
isomorphic to @,_;, then P is isomorphic to Si(#), since »*=x*""°. Next
assume vY=vx?""". If we put z=vx, then P is generated by x, y and z with

the following relations:

—=3
Z=(vx)?=v’x"5=1 or 22",

2m=3 14273

ZV=(vx)=vx

z v

xX'=x

x vx=z,

=X.
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Therefore P is isomorphic to S;(#) or Si;(n). Thus the proof is completed.

§ 2. p-groups with a non-self-centralizing, normal cyclic subgroup of index p?®.

In this section we treat the p-groups with a non-self-centralizing, normal
cyclic subgroup of index p° First, by using Theorem 1 we construct some
particular p-groups. Let H be an abelian p-group of order p""' (n=4) gene-
rated by two elements x and y with the following defining relations

2P P=yP=[x, y]=1

Let K, be a cyclic group of order p* (I=1,2,3) generated by z,. For elements
z° (¢G=1, ..., p) in K;, the mappings ()% and (z;°)* defined the relations

(xiyk)(zl‘)<’1=xi(1+p”-3)1 y", (% yk) z’l)‘f’z=xi(1+p"‘3)’(yxi-p"“3)k

are cleary automorphisms of H and both ¢, and ¢, are homomorphisms of X,
into Aut(H) Hence the following two semidirect products of H by K; with
respect to ¢, and ¢, exist for p odd, =4 and for p=2, n=>5;

1+pn—3

L (p)=<x,y,2; 27" '=yP=2"=1, x'=3x, x"=x , Y=y >,
Jn(D)=<x,9,2; 87" =yP=2P=1, x¥=2x, x*°=x'""""" y=yxP" ">,

Also for zi(i=1, ..., p?) in K,, it is easily verified that the mappings (25
defined the relation

(xj)(zgiw:xm +pn =3t

are automorphisms of the group generated by x and that ¢ is a homomorphism
of K, into Aut(<x>). Therefore the semidirect product of the group <x>
by K, with respect to ¢ exists for p odd, =4 and for p=2, n=>5;

K.(p)=<x, y; x”"_2=y1’2=1’ x!l_____x1+p7‘—3>.
Next assume p=2. For z’ (:=1,2) in K, if we define
(xf yk)(zli)‘/’_:x(—l)i.j yk’ (xj yk)(:li)¢z=x(_1+2n—3)i,]- y",

i Y EHDP -1t 3Nk
(%7 y)(l) 3_ 4~ D J(yxz‘" ok

then the mapping(zf)"q’" (z=1,2; m=1,2,3) is an automorphism of H and each
of ¢n is a homomorphism of K; into Aut (H). Hence also we obtain the
following three groups;

1

P(m)=<x,y,2z; " '=y'=2=1, x¥=x, #*=x"", y=y>,
Py (m)=<x,y,2; 22" ‘=yt=2t=1, x¥=x, #'=x"1""7", y=y>,
Pi(m)=<1x,9,2; 27" "=y=2"=1, a¥=x, 2*=x"", y=yz*" ">,
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where Py(#) and Py(n) are defined for #>4 and P,(n) is defined for #=5.
Also for z’(G=1, ..., 4) in K,, we can verify that the mappings (z")* and
(257 defined

v(xi)(zz")%:xi-(—z)"’ (xj)(zzi)‘Pz___xj(—Hz"'a)i

are automorphisms of the group generated by x and that both ¢; and ¢, are
homomorphisms of K, into Awuf (<x>). Hence we have the following two
semidirect products of the group <{x>> by K, with respect to ¢, and ¢,;

PL =<, ; ¥ imyiml, wma,
P (n)=<x, y; 2" '=yi=1, x¥=x"112""">

where P;(n) and Ps(») are defined for »=>4 and #>5, respectively.
Now we denote by M a group generated by x%""°. Let f,(I=2,3) be the
isomorphism of M into K, determined by

(xzn‘a)fz':Zzz, (xzn-3>f3=zs4.

Also let 2% (I=2,3) be an automorphism of H which inverts all its elements.
Then each ¢, determines a homomorphism of K, into Awut(H) and we can
easily verified that (1.2) is satisfied. Therefore there are the following two
partial semidirect products of H and the group <x> by K, and K, with
respect to ¢, and the restriction of ¢; to the group <x> <p3|<z>, respectively;

P (m)=<x,y,z; 22" °=2, y’=z'=1, x¥=x, x°=x"", y'=y>,
P (m)=<x,y; 52" "=y, y*=1, x¥=x"1>,

where both P¢(#) and P,(n#) are defined for #n>4.
First of all, we study the properties of p-groups defined above.

THEOREM 2.1. The followings hold;

(1) (@ If P is one of the groups I,(p), J.(p) and K,(p), then cl(P)=2 and
P’ is cyclic of order ».
(b) If P=L.(p), then Z(P) is abelian of type (p""°, p) and O(P) is cyclic
of order p"7°.
(c) If P=].(9p), then Z(P) is cyclic of order p"~* and O(P) is cyclic of
order p*3.
(d) If P=K,(p), then Z(P)=0(P) is abelian of type (p""°, p).
(2 (@) cd(P(n))=n—2 and the commutator subgroup P.(n) of P.n) is cyclic

RWPERCWST P S ISR LITIeT 4 RSN
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of order 2°7% for i=1, ..., 7.

(D) Z(P;(n)) is abelian of type (2,2) for i=1,2,4,5,6, while Z(P;(n)) is
cyclic of order 4 for i=3,7.

(©) O0P:(n))=P(n) for i=1,2,3,6 and O(P;(n)) is abelian of type (2" °,2)
for i=4,5,7.

(@) I(P(m))=3+2""3, I(Py(n))=3+2""3, I(Ps(n))=3,
I((Pi(m)))=2 and I((Ps(n))")=3.

(3) No two of the groups L.(p), J.(p), K.(p) and P,(n) for i=1, ..., 7 are
isomorphic.

PROOF: Put P=IL.(p), J.(p), K.(p) and P.(#%) for i=1, ..., 7 as the
case may be and let P be generated by or by x, y and z satisfying the
appropriate relations. In the first case, we can easily verify that Z(I.(p)),
Z(J.(p)) and Z(K.(p)) cantains the subgroup <a?>X<y>, <yx? > and
< xp,>X<y"> of order p" 7%, respectively. On the other hand, P is nonabelian,
and the order of Z(P) is less than p"7', whence Z(L.(p))=<x">X<y>, Z(J,
(PN=<yx?7'> and Z(K.(p))=<xP>X<y*>. By the defining relations of the
generators of P, we can easily verify that P’ is generated by x?"° in all
cases. Therefore, in particular, it follows ¢cI(P)=2 in each case. Since K,(p)
is nonabelian and #(XK,(p)) contains x? and y*, we conclude O(K,(p))=Z(K.(p)).
Let P be either of I.(p) or J.(p), then the factor group P/<x> is elementary
abelian. Therefore we have the series of the subgroups of P: <4?><@(P)<
<x>. Since the subgroup of P generated by y and z is abelian of type (p, p)
for P=I.(p), P is not to be generated by y and z. Therefore 0(Z,(p))=<x"> is
cyclic of order p"7% Since two factor groups J.(p)/<x> and J.(p)/Z(J.($))
are both elementary abelian and Z(/J.(p))=<yx?"1>, the group <x">=<x>
NZ(J.(p)) contains @(J.(p)). Hence we obtain @(J.(p))=<x">.

Now consider (2). We can directly verify the following equations by an
elementary calculation:

LS X <> if i=1,2,6,
<Lyx > if §=3,
ZPm)= s> X<y if i=4,5,
<y> if =7,
(P(m)P= <x¥> for i=1, ..., 7 and for all j.
<x%> if 1=1,2,3,6
O(PL(m))= LH>XY*> if i=4,5

<> Xy x> if §=7.
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Let. H, be the subgroup of P,(n) generated by.the element x for ¢=1, ..., 7.
Then zH, U yzH; consists. of only involutions and z&*(Hz)\Uyz&" (H,) is the full
set of involutions in zH;\UyzH,, while zH;\UzyH; consists of elements of
order 4. Therefore we have

I(P.(m))=3+2""%, I(P,(n))=3+2""*, I(Ps(n))=3.

After an easy calculation we have (yH\Uy H)*={3"}, (98" (H)Uy 0" (H:))*={"}
and (yx 5*(Hs) Uy* x 5 (Hs)={y* 7"}, whence it follows that (yH;Uy'Hs)'=
{y?, 5 2*"°}. Hence I((Py(m)))=2 and I((Ps(n))*)=3, that is, we obtain .
(3) follows from (1) and (2) immediately.
Now we shall determine the p-groups of order p"(#=4) with a non-self-

centralizing, normal cyclic subgroup of index p°.

THEOREM 2.2. Let P be a nonabelian p-group of order p"(n=4) which
contains a non-self-centralizing, normal cyclic subgroup of order p*~*. -Then the
followings hold:

(1) If p is odd, then P is isomorphic to L,(p), J.(9), K.(p) or M,(p).
(2) If p=2, then P is isomorphic t0 D,, Qu., S, M.(2), I.(2), J.(2),K,(2) or

P(n) =1, ..., D.

PROOF: Let H be a non-self-centralizing, normal cyclic subgroup of order
"% of P with its generator x and let K be the centralizer of H in P. If
K=P, then H is contained in Z(P). Since P is nonabelian, H is the center
of P, whence, in particular. we obtain ¢/ (P)=2. If P contains a cyclic
subgroup of order p™', by Theorem 2 and Theorem 3 in section 3, P is
isomorphic to M,(p). Assume that P does not contain any cyclic subgroups
of order p""'. Then, by the nonabelian property of P, the factor group
P/H=P/Z(P) is not cyclic of order p° and so this factor group is abelian
of type (p, p). Moreover, any proper subgroup L of P containing H properly
is abelian of type (p"fz, p), since H is a maximal cyclic subgroup in L.
Therefore we can find two elements y and z of order p in P-H such that

P=<1x,y,z; x7" '=yP=2P=1, sV=x"=x, y'=yx"" >,

If 7=0 (mod. ), i.e. y¥=»', then i=1 (mod. p), since the subgroup generated
by vy and z is of order p°. Consequently P is abelian, which is contrary to
the assumption to P. Therefore =0 (mod. p). Then, by replacing % by =,
we have y*=y" x""°. Since the subgroup L generated by x and z is also
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normal in P and since £(L) is generated by z and x*""°, for some integers

pr—3.

k and I we can put 2'=z" x Then, from two relations y*=y° #*"° and

pn=38.2

2V=2" x , we have

i—1 =1

y z xp'n-—s:z..k x_pn—-a.z

In particular, it follows 7=1 (mod. p). In this case, we may choose the
appropriate generators of P as follows;

P=<y7'xP"y, z; (37 2P =yP=g"=1, (y7F 2" D=y~ 277},
(57t PT=( B S,

Therefore P is isomorphic to J,(p). Hence we may assume K<P. Then by
the assumption [P : K]=[K : H]=p and P/K is isomorphic to a subgroup of
order p of Awut(H). Since H<Z(K), and since [K: H]=p, K is abelian.
If K is cyclic, then by Theorem 2 P is isomorphic to D,, @, or S.. Hence
also we may assume that P does not contain any cyclic subgroups of order
p*~!. Then since H is a maximal cyclic subgroup of K, there exists an
element y in K—H such that K=HX<y>. In this case, by Theorem 1 we
must have #>>4 and there exists an element % in P—K such that P is generated
by the elements x, ¥y and # with the following relations:

(2.1) X =x'"P"7° yi=y? P (1<i<p—1, 0ZXj<p—1) for p odd, and for p=2
yi=y or y“=yx*""" and
il

xu___x—

if n=4,
(2.2) 1 14273

x=x"1 x =x or xt=x"1t2"7¢ if n>5.

First assume p odd and denote by P,; the group generated by x, y and
u with the relation (2.1). Since [P : K]=p and K is abelian, any element v
in P-K generates the factor group P/K and »” is contained in K, whence v”
is contained in Z(P). On the other hand, (x®)*=(x")?’=x”. Therefore, for
every element w in K, w® is contained in Z(P). We conclude at once that
the factor group P/Z(P) is of exponent p. If j#O0, then in P,; by replacing
%’ by & P,; is isomorphic to P;,. Next assume i7#1. Then we may choose
an integer ¢’ satisfying the congruence

i'(G—1)=1 (mod. p).

For such integer i’ we have (px¥?" )‘=y* x¥P"P=y' xP"7° . gVP" T = (yg P
in P,,, whence P,, is isomorphic to P;, if we replace yx"*"™* by 3. On the
other hand, in P;, two elemens # and y generate the subgroup of order 2%
and so we have i=1. Therefore we may assume that P=P;, or P=P,,;. If
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P=P,,, then Z(P) contains an abelian subgroup <x”>X<y> of order p" %
On the other hand, since P is nonabelian, [P: Z(P)]=p’. Hence Z(P)=<x">
X<y>. In particular ¢/ (P)=2. Since #” is contained in Z (P), for some
integers « and § we can put #’=x"? y°.
P is generated by three elements x, y and z, and we have two relations ==
$ "=x"*P""°  4*—y  Moreover by Lemma 1.2 2P=(ux"*)P=uPx"**=y® since
P/Z(P) is of exponent p and cl/(P)=2. Therefore, if =0 (mod. p), P is
isomorphic to I.(p), while if 80 (mod. p), P is isomorphic to K,(p). If
P=P, ., then (x° y)"=xC?"") i xP" iyt yi. xEAP"72 Hence x° 5’ is conta-
ined in Z(P) if and only if i+7=0 (mod. ). Consequently Z(P) is a cyclic
group of order p"~? generated by an element yx?~'. Since #” is contained in
K, u* is also contained in Z(P). u does not generate Z(P), since otherwise
P would possess a cyclic subgroup of order p"~', which is contrary to our

In this case we put z=wx"“ Then

assumption. Therefore we can write #’=x"*®"? for some integer a. In this
case, if we put z=ux"*®"Y then we may easily verify that P is generated by
%, y and z and that P is isomorphic to J.(p).

Next assume p=2. We denote by @ the 2-group generated by x, y and #
with y“=y and one of the relations (2.2), wihle we denote by Q* the 2-group
generated by x, ¥y and # with y“=yx*""° and one of the relations (2.2). First
suppose x“=x'*?""°", By the similar method used in the case that p is odd
we have Z(@Q)=<x*>xX<y> and Z(Q*)=<xy>. On the other hand, since
% is contained in K, #* is also contained in Z(P) (where P denotes one of

the groups @ and Q*), whence for some integer a we can put

wW=x" or ¥=x""% if P=Q,

w=x>* if P=Q*
since by our assumption P does not contain any cyclic subgroups of order
2"~1, Assume #*=x%* Since n>5, for B in (1.3) with i=3 we put z=ux".

—4_g

Then we obtain z>=1. Also assume #*=x**y. If we put z=ux*" in case «

2m—3—q

odd, while if we put z=ux in case « even, then we have z’=y in either

case. Thus @ is isomorphic to I,(2) or K,(2), while @* is isomorphic to

. - = -3 . . . .
J.(2). Next consider x“=x"! or z"=x"'*"""". In either case, it is easily

verified that Z(Q)=<x*""">X<y>> is an abelian group of type (2,2) and that
Z(Q*)=<yx*"""> is a cyclic group of order 4. First assume P=Q. Since %’

is contained in Z(P), one of the following four relations holds; #*=1, #’=

278 W=y or w’=x"""y. If «’=1, then P is isomorphic to Pi(#) or P.(n).

X

If #*=x%""°, and x“=x"", then P is isomorphic to Pg(%), while if W=x"""" and
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x"=x"1"2""°  then P is isomorphic to P,(n) since by putting z=wux P is

~1+27-3

generated by the elements x, y and z with the relations x°=x"=x and

2’=1. Suppose #’=x*"""y. If x“=x"!, then we replace x>"° y and ux by »

-1+27-3

and #, respectively, while if x"=x , then we replace #x by #. Then we

shall have the relation #’=y. In this case P is generated by the elements x

1 —1+27-3

and # with the relations #‘=1 and x“=x"! or x"=x , and so P is isomo-

rphic to P,(#n) or Ps(n). Next assume P=Q%* If x"=x"'"?""° then (xy)"=

_1+2'n—-3. 2m—3 i

X yx*""=(xy)7', whence by replacing x by xy we may assume x“=x"".

In this case we may put #*=(yx*"""? for «=0,1,2 or 3 since z® is contained
in Z(Q*)=<yx**>. If a=2 i.e. #’=x"""°, then for the element z=uy, we
have y’=y"=yx*""° and z’=1. Hence if a=0 or a=2, then P is isomorphic to
P;(n). If a=1 or a=3, then it is easily verified that P is isomorphic to P;(s).

Thus the proof is completed.

§3. 2-groups of second maximal class

In this section we deal with the 2-groups with the property (%;). More-
over, we determine the 2-groups of second maximal class with the cyclic
commutator subgroup.

Now we know the following theorem about the 2-groups of maximal class.

THEOREM 3. Let P be a nonabelian 2-group of order 2, of maximal class
or with [P: P']l=4. Then P is isomorphic to D, Q» or S,.

We begin with the construction of some particular 2-groups with the
property (B,). Let N; and N, be M,_(2) and an abelian group of type
(2"7%,2), respectively, that is

_ L oa2mT2_ 2 __ . 1+2m3
Ni=<x1, y1; % =y’=1, x,'=x >,

. 271.—2__ Do _—
No=<t3, ¥2; %20 =y°=1, % 2=x,>.

For I=1,2 let K, be a cyclic group of order 2' generated by z,. Then we
may define the homomorphisms ¢; and ¢, of K; into the automorphism group
of N; and the homomorphisms ¢; and ¢, of K; into the automorphism group
of N, as follows:

For element z; in K; and for v/ x* in N, (:=1,2),

(J’lj x1k)=‘¢l=(y1 x12n~a)j (J’1x1_1)k
(ylj x1k>:1¢2=y1j (_3’1751_1-"2‘"—4),c
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(yzj xzk)ﬁ%:yzj (yzxz—l)k

i ¢ - _ —4
(yd %)™ =3, 2T (a2, )E.

Therefore we have the following four semidirect products of N; or N, by K.

1+27-3 1
’

Qm)=<x,y,z; 2" '=y’=2*=1, xV=2x 2=yx7, yP=yx2" ">,
=Z2=1’ xy=x1+2"‘_3, xz=yx—1+2"’4’ yz=y>,
L y=y>,

Q4(n)=<x,y,z; x2n—2=yz=zz=1, xy=x, xz=yx—1+zﬂ—4’ y;___yxz-n-4>.

2

Q:(m)=<x,y,2; x*" =y
Q:(m)=<x,y,z; 1" '=yP=2"=1, xV=x, x°=yx"

Next, let M; be a subgroup of N, generated by x>’ and let M; be a
subgroup of N, generated by 3. For z, in K, and for y/ #x* in N,(G=1,2),
we may define the homomorphism ¢; of K, into the automorphism group of N;
and the isomorphism f; of M, into K, such that

(o 2,5 =y iy PR (2,27 ) =20,

(97 %5)2%2=9/(y, %D 9=z

Then it is easily verified that (1.2) is satisfied. It follows that the partial
semidirect products Qs(n), Qs(n) exist.

1+27-3 —1+27—4
’

xF=yx , Y=y>,

L, y=y>.

Qs(m)=<x,y,2; x*"'=2, y'=zt=1, x¥=x
Qs(m)=<x,y,2z; 22" =2, yP=z'=1, xV=2x, x°=yx"

If we replace zx™! by y in Q,(»), while if we replace zx by y in Q;(n) for

=2, ..., 6, then we can rewrite the groups @.(») in the followings;
QIn=<x, y; " '=y'=1, x¥=y*x"", V=gt
Q(m)=<x, y; £ "=y, =1, a¥=y? &7V, (=g TS,
Qm=<x, y; 2" *=yi=1, xV=y" 27}, 2¥=1x>,
Qm=<x, y; 2" "=y, y’=1, z¥V=y" 17, xV=1>,
Qsm=<x, y; 22" =y, y¥=1, 2=y 57}, $F=x""""">,
Qm)=<x, y; 2" =y'=1, V=9 7", F¥=x>

Now we study the properties of six 2-groups defined above.

THEOREM 3.1. The followings hold:

(1) If P is one of the groups Q:(n) (i=1, ..., 6), then P' is cyclic of order
"%, | Z(P)| =2, 0(P) is abelian of type (2"7%, 2) and cl (P)=n—2.

(2) If P is one of the groups Q(n), Q.,(n) or Qs(n), then a maximal abelian
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subgroup of P is of order 2"7%, while if P is one of the groups Qs;(n),
Q.(n) or Qs(n), then a maximal subgroup of P is of order 2"\
(8) No two of the groups Q:(n), Q,(n), Q:(n), Q(n), Q(n) or Q«n) are

isomorphic.

PROOF: Put P=Q;(n) (=1, ..., 6) and let P is generated by x and y
satisfying the appropriate relations . Then we can directly obtain

Z(P)=<x"">, o(P)=<x% y">,
P'=<4 x*>, PP=[PU~D pPl=<x¥> for j=2,3, ...,

whence (1) holds. By the definition of Q%) (=1, ..., 6) we can easily
verified that (2) holds. The full set of involutions in @:(%), Q.(n), Q:(n), Qs(n),

2. 2n—3 9 n—3 - - 7
Qs(n) and Qs(m) are {y°, x77°, ¥ 2"7° yx, yxS, ..., y7i&%, oy, L.},
2m—3 2 1274 3 -1 -1,3 2 2n—3 2 2738 3
(£, 9% x AT R g NV N SR L e e A . A
-1 -1 .3 2n—3 2,274 3 7 -1 .3 -1 7 2m—3
ylx, oyt xS L), (5P, v , 2%, yxT, L,y a7t a7, L, {5

¥ 2277} and {y%, 2*"7°, »° 2"}, respectively. Therefore I(Q.(n))=3+2""".
1(Q.(n))=3+2""? and I(Qs(n))=3, whence no two of @;(n), Q.(n) or Qs(n) are
isomorphic. Since elements of order 8 of Qs;(#) or Qs(») are contained in the
subgroup generated by two elements x and 3%, and since I(Q;(#))=3+2""? and
I(Qs(n))=3, no two of Q:(n), Qs(n) or Q¢(n) are isomorphic. Thus (3) holds.

Each Q.»n) (=1, ..., 6) possesses the property (;). However, we
show in the following lemma that this property (%) characterizes these
groups among 2-groups of order 2"(#=6) if the class number is more than 3.

LEMMA 3.1. Let P be a nonabelian 2-group of order 2"(n=6) with the
property (L.). Then we have that cl (P)X3 or that P is isomorphic to one of
the groups Q,(n) for i=I, ..., 6. »

PROOF: Let H be a cyclic subgroup of order 2*7® generated by x and
let X be the normalizer of H in P. By the assumption we have [P: K]=2.

Case 1. H is a self-centralizing subgroup of P. Then by Theorem 2 K
is isomorphic to M,_1(2), Dn_y Q.1 or S,_;. If K is isomorphic to one of
D, 1, Q._1, or S,_,, then a cyclic subgroup H of order 2°°* of K is a chara-
cteristic one since #>6. Therefore H is normal in P, which is contrary to
the assumption. Hence K must be isomorphic to M,_:(2).. Let K be generated
by two elements x and y.
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K=<x, y; 87" '=y’=1, ZV=x1T2 TS,

In this case the center of K which is generated by x? is normal in P and
2,(K) is an abelian group of type (2,2). Moreover, H is not normal in P
and [P: K]=2, and the order of yx* is 9»~% if and only if 7 is odd. These
facts imply that there is an element % in P—K such that P is generated by
three eélements %, ¥ and # with the relations

y'=y or y'=yx*""°, x"=yx* for i odd.
Since (yx9)?=x"®**""" for i odd

. <yxi>i=yxi . xi(2+zﬂ—3)-f_;l=yxi(i(1+zn—4)-zn—4)’
whence we have the following equations

(i1 +2n—H—2n "4}

(6.1 =y =y (a)i=y" (yx)'=y"y - %

5 i . . 12 2 -3
hold. However, since #* is contained in K, we have x?=x or x“=x'"""".

Hence by (3.1) one of the congruences

i {i(+20H—2""*}=1 or 1+2"° (mod. 27=%)
holds. Since 7 is odd, the following congruences are obtained from (3.1)

(3.2) i?=1 or i*=1+2""% (mod. 2"7%).

If i=1(mod. 4), then (3.2) implies one of the three equations =1, j=1+4+2""3
or i=1+2""% [If i=1 or i=14+2""% then P’ is contained in a group <y>X
< x**> of order 4, whence ¢/ (P)<3. If j=1+2""% then P’ is contained in
a group <yx*"""> of order 4.

Hence also ¢l (P)X3. If i=—1 (mod. 4), then from (3.2) we have i=—1,
j=—1+492""% or i=—1x2""% [If i=—1+2""° then by replacing 2" by y we
may assume i=-—1. If j=—1—2""* then by replacing x~! by x we may
assume i=—1+2""% Therefore we can assume j=—1 or i=—1+2""% First
assume z=—1, that is, x“=yx~'. Since Z(K) is generated by x?, obtain that
%% is contained in Z(P) if and only if (Y=g V=g, i e, 45(1+2"7H=0
(mod. 2"7%). We conclude from this that Z(P) is generated by %" since
7n>6. Since [x, u]l=yx~2**""°, P' contains a group < yx*> of order 2"7% Since
P is nonabelian, we have [P: P']=4, whence P’ is of order 2% or 2"7% If
P’ is of order 2*°%, then by Theorem 3 P is isomorphic to D,, Q. or S, which
is contrary to the property (%:) of P. Therefore P’ is of order 2"7% and so
P’ is generated by yz’. Moreover, we obtain PW=[PU-Y P] is generated by
%Y for 7=2,3, ... . We have the same results for 1=—1+27"* as for i=—1;
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that is, Z(P)=<x2""">, P'=<yx®> and PP?=[PY~?, P]=<"> for j=2,3, ... .

Since @ is contained in K, #' is contained in F'(K)=Z(K), whence #' is
also contained in Z(P). Since the element of K whose square is contained
in Z(P)=<x""""> is only an element in the group <x*" “>X<y>, we have

2 2n—3 -2 +on—4

-
w=1, B’'=x"""", W=yx*" ke

, W=yx , W=x or u’=y

+om—4

#* does not coinside with x Because, if #*=x**""" then by #>>6 #® is

contained in Z(K), and so #* is also contained in Z(P), whence the order of

# is at most 4. However, since #*=x*"""*1is of order 4, u is of order 8,
e . o & -4 — —4
which is impossible. If #’=yx*""", then we have #°=yx~?""* whence we may
2 —an—4

assume #’=yx .

If #* is contained in H, then by (3.1) we have

.=_1 27;—4 f e
3.3 P A
i=-—1 if y'=yx®
Suppose that #* is contained in K—H. Then, since x%=x'*""° by (3.1)
we have
] o
(3'4) Z. 1 y y om—3
i=—142""4 if y'=yx

If w’=1 or #’=x*""", then by (3.3) y“=yx*""° for i=—1 and y“=y for i=—1+
2"7'. First assume i=—1. If #*=1, then P is isomorphic to Q:(%). In case

#=x"""" we put z=yu and replace y¥*"° by y. Then P is generated by %, y and
1

z with the relations x¥V=x'"2""° x*=yx!, y*=yx*""° and y*=2z’=1. Hence P is
isomorphic to @,;(#). Next assume {=—1+2""% If #*=1, then P is isomorphic
to Q,(n). If #’=x*""°) then P is isomorphic to Qs(n).

If w’=y or u*=yx?""°, then y“=y, whence by (3.4) i=—1. If u#*=y, then
P is isomorphic to @,(#) since P is generated by x and « If #*=yx*""°, then
by replacing #x® by z we can easily verify that P is isomorphic to Q(#).
If w?=yx7%""", then yx 2" '=(yx7 2" ")=9"x*""". Therefore we obtain y*=yx*"*
Hence by (3.4) ¢=—14+2""% In this case, if we replace ux® by z, then we
have z'=x%""°, x*=22x"1**""" and x®=x'"*""°. Hence we have that P is isomo-

rphic to @Q.(%).

Case 2. H is a non-self-centralizing subgroup of P. In this case, K=Cp(H),
and so H is contained in Z(K), whence K is abelian. If K is cyclic, then
H is normal in P, which is contrary to our assumption. Therefore H is a
maximal cyclic subgroup of K, and we may find an involution y in K—H such
that K is generated by two elements x and y. Since both F'(K)=<«*> and
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2.(K)=<x""">x<y> are normal in P, there is an element % in P—K such
that P is generatéd by %, ¥ and # with the relations

y'=y or y‘=yx?" "%, y“=yx* for i odd.

Since #* is contained in K, we have x“=x, whence again (3.2) is obtained.
By the same argument as in case 1, we can easily verify that ¢/ (P)<3

if i=1 (mod. 4), While for i=—1 (mod. 4), we may assume f=-—1 or i=—1
2n—3

+277% and if y“=y, then Z(P) is generated by £*"™" and y, while if y*=yx*"",
then Z(P) is generated by x*""°. Therefore, if y“=y, then we have i=—1 and

2m =3 2m—3

one of the four relations #*=1, «*=x*""", u’=y or w’=yx holds since #* is

contained in Z(P) and x=x"=(yx")"=y"(x™)'=y(yx")'=y""
odd). If #*=1 or #*=x>""°, then P is isomorphic to Qs(#) or Qs(n), respectively.

2"7°  then by replacing

x%=x" (because i is

If #’=y, then P is isomorphic to Qs(#), while if #=yx

ux by z, P is generated by x, y and z with the relations xi=x"=yx"!, Y=y
and z2=x2""". Hence P is isomorphic to Qs(n). If y“=yx*""°, then we have
j=—1+2""* and one of the two relations #*=1 or #’=x>""" holds. If «’=1,

then P is isomorphic to Q.(z). If u*=x?""°, then, by replacing uy by z, P is
generated by x, y and z with the relations x*=x"=yx~***""" and 2’=1. The-
refore P is isomorphic to Q4(n#). Thus the proof is completed.

By Theorem 1.1, Theorem 2.1 and Theorem 3.1, each of P;(») (:=1, ..., 7),
Q.(n) G=1, ..., 6), S:(n) (G=1,2,3) is a 2-group of class (#—2) with the
cyclic commutator subgroup. By using Lemma 3.1 we show that they are
characterized among all 2-groups of order 2" by these properties.

THEOREM 3.2. Let P be a nonabelian 2-group of order 2", where n=6.
If its commutator subgroup is cyclic and cl(P)=n—2, then P is isomorphic to
Pi(n), ..., Pi(m), @), ..., Q(n), Si(n), S:2(n) or Ss(n).

For proving this theorem we need the next lemma.

LEMMA 3.2. Let P be a nonabelian 2-group of order 2" of second maximal
class and led H be a normal abelian subgroup of P such that P/H is abelian
of type (2,2). If P’ is cyclic, then P contains a cyclic subgroup of order 2"~

PROOF: Suppose ¢l (P)=n—2. Since P is nonabelian, we have [P: 0(P)]
>4. It follows that [P: P'1>4. If [P: P']=4, then by Theorem 3 P is
isomorphic to D,, Q. or S,, which is contrary to ¢/ (P)=n—2. Therefore
[P: P']>=8. If this equality were strict, then the lower central series of P
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would necessarily terminate in less than (z—2) steps, whence ¢! (P)<n—2.
Hence we must have [P: P']=8. Since by the assumption the factor group
P/H is abelian of type (2,2), we have the series of subgroups of P; H>op(P)
>P'. Let x be a generator of a cyclic commutator subgroup P’ of P. If
H is cyclic, the result follows immediately. If H is not cyclic, then P’ is a
maximal cyclic subgroup of an abelian group H, whence there exists an
involution y in H—P' such that H is generated by x and y. Since P/H is
abelian of type (2,2) and O(P) contains P/, we can find two elements % and
v in P—H such that both #* and ¢® are contained in H and such that P is
generated by #, v and y. If 4’ or v is of order 2773, then the result follows.
Therefore we may assume that neither z° nor »* is of order 2°%. In this
case we shall show that at least one of up or vu is of order 2"7%. First
assume that P is generated by only # and v, i.e. H=0(P). In this case both
#® and »* are contained in a group <x*>X<y>. Hence we can put for some
integers 7, 7, 2 and [

(3.5) W= ¥, =g 9,
Also for all integers 7/ and 7' we can find integers 7" and 7"’ such that

i1 24!

(38.6) 2%y =y ', x?

24717

4 7
Yy v=vx ¥

since P’ generated by x is normal in P. Since P is generated by # and v,
and since P’ is contained in H, we can put

@D a ... a=x,

where each a; denotes either of % or ». The number of » and » which appear
in the left side of (3.7) are both even, since otherwise, by using (3.5) and
(3.6), (3.7) would be equivalent to one of the following congruences for some
integers « and B

B8 8
ux® y'=x, vx® y°=x or uvx® y°=x (mod. P,

that is, u, v, or uv would be contained in H, which is contrary to the choice
of # and ». If u's (resp. v's) arrange successively in the left side of (3.7),
then we replace #° (resp. +°) by x* yi (resp. ™ y%). After these process, we
may rewrite (3.7) for some integers @, B and 7 in the followings

(3.8) (uv)®® 2** y'=x or (pu)*® x*f y=x.

Then « is a positive integer, since it is clear that @ is not equal to 0 in
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(3.8). Therefore (3.8) implies that even power of wy or vu generates P’ or a
cyclic group <yx>, whence #v or vu is of order IR,

Next assume that P is not generated by # and v, but that P is generated
by #, v and y. In this case we have o(P)=P'. Therefore both %’ and V* are
contained in P’, but neither # nor v is of order 2"7% by our assumption,
whence both #? and »* are contained in gl (P)=<x*> Hence we can put for

some integers i and '
3.9 wW=x", vV’'=x

Since at least one of the elements #, v and #v cnmmutes with y, we can put

for j=0or 1

10 yu=uy, yp=vyx"""", yuv=uvyx®" 7
or

(3112 yu=uyx>" ", yo=vyx*" ", yuv=uvy.

Since P is generated by #, v and y, and since P’ is contained in H, we can

also put
(3. 12) ay ... a,.—x,

where each a; denotes one of #, v or . Again, the number of %, v and y
which appear in the left side of (3.12) ere all even since the number of z
and v which appear in the left side of (3.12) are both even by the same
argument as above, and since for the number B of y appearing in the left
side of (3.12), (3.12) implies

x*® y’=x (mod. P").

However, when each 5,(I=1, ..., s) denotes # or v, We€ denote by @ and b
the cardinality of the sets {I: p'=p} and {I: b=u}, respectively. Then by
using (3.10) or (3.11) we have

(3- 13) yb‘ . bsy=b1 . bs xz‘ﬂ—d.aj
or
(3.14) yby ... by y=by ... b, xz‘"—d.(na-b)j.

since x2"* is contained in Z(P). Hence by (3.9) and (3.13) or by (3.9) and
(3.14) we can rewrite (3. 12) as follows for some integers a and f8

(uw)?® 52" "P=x or (vu)* £ P=g,
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In this case, @ is a positive integer for the same reason as above. Hence one
of (uv)? or (vu)® generates P’, whence uv or vux is of order 2"~

PROOF of THEOREM 3.2: We argue by induction on the order of P.

Since ¢/ (P)=n—2, from the way of the proof of Lemma 3.2 we have [P: P']
=8. First assume #»=6. Then P’ is cyclic of order 8 If we put P,=Cp(P"),
then the factor group P/P; is abelian of order 2 or abelian of type (2,2) since
cl (P)=4 and Aut (P') is abelian of type (2,2). Since both [P;, P, P,] and
[P, P,, P,] are contained in [P/, P,]=1, by Three-Subgroup-Lemma [P,, P;, P]
=1. Hence P, is contained in the group Z(P)NP'.
However, Z(P)NP' is of order 2 since ¢/ (P)=4. In order to prove the theorem
for n=6, by Theorem 1.2, Theorem 2.2 and Lemma 3.1 we have only to show
the existence of a cyclic subgroup of order 16 of P. Let x be a generator of
P,

Case 1. [P: P,J=2. For an element % in P—P,, P is generated by # and
the elements in P;. Since P’ is a cyclic . group generated by x, we can find
two elements v and w in P whose commutator is an odd power of x. Assume
both » and w are contained in P—P,, that is, for two elements y; and z in

P, v=wuy, and w=uz,. Then for some odd integer ¢ we have

x'=[uy,, uzi]=lu, uz;]" [y, uz]
=([u, z1] [u, ul)n [yl, z1] [yl, u]™
=[u, 2,7* [y, z1] [y, ul™

However, since each of [«, z;], [y, 2] and [y, %] is contained in P'=<x>,
at least one of the three commutators is an odd power of x. Hence we may
assume that for some element y in P, and z in P we have Ly, z]l=x, i.e.
y'=yx. Since x is of order 8 and since y commutes with x, y must be of not
less order than 8 However, if ¥ is of order 8, then the subgroup generated
by y possesses a nontrivial intersection to P’ since P, is of order 32. Then
we have y*=x*, whence (yx)'=y'x*=1 contrary to the fact that yx is of order
8. Therefore order of y is at least 16. Thus P contains a cyclic subgroup
of order 16.

Case 2. [P: P,J=4. In this case, since P’ is contained in Z(P,) and
since [P,: P']=2, P, is abelian. Hence by Lemma 3.2 P contains a cyclic
subgroup of order 16. Therefore for =6 Theorem 3.2 holds.

Assume #>6. Since P’ is a nontrivial normal subgroup of P, we may
choose the group Z of order 2 in P'NZ(P). Let P be the factor group P/Z.
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Then PP=[P% Y P]=P® for i=1, ..., n is cyclic and we have cl(P)=
n—3 since ¢l (P)=n—2. Hence by the inductive hypothesis P is isomorphic
to P.(n—1) G=1, .., 7)), Q:(»n—1) G=1, ..., 6) or S:(n—1) (:=1,2,3). The-
refore P contains a cyclic subgroup H of order 2"°%. Let H be the inverse
image of H in P. Then since H is the central extension of a cyclic group,
H is abelian. If H is not cyclic, then for a cyclic group H; we must have
H=H,XZ. However, P’ is cyclic and Z is contained in P’, whence we have
P'N\H,=1. Hence the order of H is at most 2 since P’ is of order 2"7°.
Therefore we have the inequality 2" %< 2% that is, <6, which is contrary to
#>6. Hence H is cyclic of order 2*72. Therefore by Theorem 1.2, Theorem

2.2 and Lemma 3.1 P is isomorphic to one of the groups P.(n) (G=1, ..., 7),
Q:(n) (G=1, ..., 6) or S:(») (=1,2,3).
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