ON HYPERSURFACES OF EVEN DIMENSIONAL CONTACT RIEMANNIAN MANIFOLDS

Dedicated to Professor S. Sasaki on his 60th birthday

Toshio TAKAHASHI

(Received May 16, 1973)

1. Introduction.

Let \tilde{M} be a (2n+2)-dimensional even dimensional contact Riemannian manifold with structure tensors η , g and ϕ , where η is a 1-form, g is a Riemannian metric and ϕ is an almost complex structure with the following properties:

(1.1)
$$d \eta(\widetilde{X}, \ \widetilde{Y}) = g(\phi \widetilde{X}, \ \widetilde{Y})$$

(1.2)
$$g(\phi \widetilde{X}, \phi \widetilde{Y}) = g(\widetilde{X}, \widetilde{Y}),$$

where \widetilde{X} and \widetilde{Y} are tangent vectors of \widetilde{M} (S. Sasaki [5]). Let $\eta^{\#}$ be the associated vector field of η and let σ be the square of the length of $\eta^{\#}$, which is a non-negative function on \widetilde{M} :

(1.3)
$$\sigma = g(\eta^{\sharp}, \eta^{\sharp}).$$

Throughout this note, we assume that $\sigma>0$ holds on \tilde{M} . Let $\xi^{\#}$ be a vector field, defined by

$$\xi^{\sharp} = \phi \eta^{\sharp},$$

and let ξ be the associated 1-form of $\xi^{\#}$. Then we get

(1.5)
$$g(\xi^{\sharp}, \xi^{\sharp}) = \sigma$$

(1.6)
$$g(\eta^{\sharp}, \xi^{\sharp}) = 0$$

$$\phi \xi^{\sharp} = -\eta^{\sharp}.$$

In this note, we study hypersurfaces of even dimensional contact Riemannian manifolds. In § 2, we study a hypersurface M with a normal vector field $\zeta^{\#}$ of the form

$$\zeta^{\sharp} = \lambda \xi^{\sharp} + \mu \eta^{\sharp},$$

where λ and μ are scalar functions on M such that $\lambda^2 + \mu^2 = 1$. In § 3 and § 4, we study hypersurfaces M with $\xi^{\#}$ and $\eta^{\#}$ as their affine normal vector fields, respectively.

2. Hypersurfaces with $\zeta^{\#}=\lambda \xi^{\#}+\mu \eta^{\#}$.

Let M be a hypersurface of an even dimensional contact Riemannian manifold \tilde{M} with the structure tensors η , g, and ϕ such that

(2.1)
$$\zeta^{\#} = \lambda \xi^{\#} + \mu \eta^{\#}, \qquad \lambda^2 + \mu^2 = 1$$

is a normal vector field. For a tangent vector X of M, put

$$\phi X = AX + \alpha(X)\zeta^{\sharp},$$

where AX and $\alpha(X)\zeta^{\#}$ are respectively tangential part and normal part of ϕX . Operating ϕ to the both sides of (2.2), we get

$$(2.3) A^2X = -X + \alpha(X)\zeta^{\sharp}$$

$$(2.4) \alpha(AX) = 0.$$

where we have put

$$\zeta^{\sharp} = -\phi \zeta^{\sharp}.$$

Putting $\zeta^{\#}$ in (2.2), we get

(2.7)
$$\alpha(\bar{\zeta}^{\sharp})=1.$$

Consequently, (2.3) and (2.7) imply that $(A, \zeta^{\sharp}, \alpha)$ is an almost contact structure of M (cf. S. Sasaki [2], [4]).

Taking account of (1.2), (2.2) and (2.5), we get

$$(2.8) g(AX, AY) = g(X, Y) - \alpha(X)\overline{\zeta}(Y) - \overline{\zeta}(X)\alpha(Y) + \sigma\alpha(X)\alpha(Y),$$

where ζ is a 1-form of M, defined by

(2.9)
$$\bar{\zeta}(X) = g(X, \bar{\zeta}^{\sharp}).$$

Since we have $g(X, \zeta^{\sharp}) = g(X, -\phi\zeta^{\sharp}) = g(\phi X, \zeta^{\sharp}) = g(AX + \alpha(X)\zeta^{\sharp}, \zeta^{\sharp}) = \sigma\alpha(X)$, we get

$$(2.10) \bar{\zeta} = \sigma \alpha.$$

Hence (2.8) becomes

$$(2.11) g(AX, AY) = g(X, Y) - \sigma \alpha(X) \alpha(Y).$$

Thus, if we put

$$(2.12) \gamma = \frac{1}{\sigma} g,$$

au is a Riemannian metric of M and satisfies the followings:

(2.13)
$$\gamma(AX, AY) = \gamma(X,Y) - \alpha(X)\alpha(Y)$$

(2.14)
$$\gamma(\bar{\zeta}^{\sharp}, \bar{\zeta}^{\sharp}) = 1$$

(2.15)
$$\gamma(\bar{\zeta}^{\sharp}, X) = \alpha(X).$$

Hence $(A, \zeta^{\sharp}, \alpha, \gamma)$ is an almost contact Riemannian structure of M (cf. S. Sasaki [2], [3]).

THEOREM 2.1. Let \tilde{M} be an even dimensional contact Riemannian manifold with structure tensors η , g and φ . We suppose that $\eta \neq 0$ holds everywhere. Let $\eta^{\#}$ be the associated vector field of η and let $\xi^{\#} = \varphi \eta^{\#}$. Let M be a hypersurface of \tilde{M} with a normal vector field $\zeta^{\#}$ of the form

$$\zeta^{\#} = \lambda \xi^{\#} + \mu \eta^{\#}, \qquad \lambda^{2} + \mu^{2} = 1.$$

Then $(A, \bar{\zeta}^{\sharp}, \alpha, \gamma)$, defined by (2.2), (2.5) and (2.12), is an almost contact Riemannian structure of M.

For tangent vector fields X and Y of M, we have the equations of Gauss and Weingarten:

$$(2.16) \tilde{\nabla}_{X}Y = \nabla_{X}Y + h(X, Y)\zeta^{\#}$$

(2.17)
$$\tilde{\nabla}_{X}\zeta^{\#} = -HX + \omega(X)\zeta^{\#}.$$

Now, suppose $\eta^{\#}$ is a Killing vector field. Then (1.1) implies

$$(2.18) \tilde{\nabla}_{\widetilde{r}} n^{\sharp} = \phi \widetilde{X}$$

for a tangent vector \tilde{X} of \tilde{M} . Suppose, moreover, \tilde{M} is a Kählerian manifold. Then (2.18) implies

$$(2.19) \tilde{\nabla}_{\widetilde{X}} \xi^{\sharp} = -\widetilde{X}.$$

In this case, for a tangent vector X of M, we get

(2.20)
$$\tilde{\nabla}_{X} \zeta^{\sharp} = \tilde{\nabla}_{X} (\lambda \xi^{\sharp} + \mu \eta^{\sharp})$$

$$= (X\lambda) \xi^{\sharp} + (X\mu) \eta^{\sharp} - \lambda X + \mu A X + \mu \alpha (X) \zeta^{\sharp}.$$

LEMMA 2.2. $(X\lambda)\xi^{\sharp}+(X\mu)\eta^{\sharp}$ is tangent to M and satisfies

(2.21)
$$A\{(X\lambda)\xi^{\#}+(X\mu)\eta^{\#}\}=0.$$

PROOF. Since $\lambda^2 + \mu^2 = 1$, we get

$$(2.22) \lambda(X\lambda) + \mu(X\mu) = 0.$$

Hence $g((X\lambda)\xi^{\sharp}+(X\mu)\eta^{\sharp}, \zeta^{\sharp})=\{\lambda(X\lambda)+\mu(X\mu)\}\sigma=0$ holds good, that is, $(X\lambda)\xi^{\sharp}+(X\mu)\eta^{\sharp}$ is tangent to M.

By the definition of A, applying (2.10), we get

$$\begin{split} &A\big\{(X\lambda)\xi^{\sharp} + (X\mu)\eta^{\sharp}\big\} \\ =& \phi\big\{(X\lambda)\xi^{\sharp} + (X\mu)\eta^{\sharp}\big\} - \alpha((X\lambda)\xi^{\sharp} + (X\mu)\eta^{\sharp})\zeta^{\sharp} \\ &= \big\{(1-\lambda^{2})(X\mu) + \lambda\mu(X\lambda)\big\}\xi^{\sharp} - \big\{(1-\mu^{2})(X\lambda) + \lambda\mu(X\mu)\big\}\eta^{\sharp} \\ &= \mu\big\{\mu(X\mu) + \lambda(X\lambda)\big\}\xi^{\sharp} - \lambda\big\{\lambda(X\lambda) + \mu(X\mu)\big\}\eta^{\sharp} \\ &= 0. \end{split}$$
 $Q. E. D.$

According to Lemma 2.2, (2.17) and (2.20) imply

$$(2.24) \qquad \qquad \omega(X) = \mu \alpha(X).$$

LEMMA 2.3. If X is orthogonal to $\bar{\zeta}^{\#}$, then $(X\lambda)\xi^{\#}+(X\mu)\eta^{\#}=0$ holds good.

PROOF. Lemma 2.2 and (2.23) imply that $\bar{\zeta}^{\#}$ is an eigenvector of H. Hence, if X is orthogonal to $\bar{\zeta}^{\#}$, then HX is also orthogonal to $\bar{\zeta}^{\#}$. Thus (2.23) implies $HX - \lambda X + \mu AX = -\{(X\lambda)\xi^{\#} + (X\mu)\eta^{\#}\} = 0$. Q. E. D.

From (2.2), (2.16) and (2.17), we get

$$(2.25) \qquad \tilde{\nabla}_{X}(\phi Y) = (\nabla_{X}A)Y + A\nabla_{X}Y + h(X, AY)\zeta^{\sharp} \\ + \{(\nabla_{X}\alpha)(Y) + \alpha(\nabla_{X}Y)\}\zeta^{\sharp} + \alpha(Y)\{-HX + \omega(X)\zeta^{\sharp}\}.$$

On the other hand, we get

(2.26)
$$\tilde{\nabla}_{X}(\phi Y) = \phi \tilde{\nabla}_{X} Y$$

$$= A \nabla_{X} Y + \alpha (\nabla_{X} Y) \zeta^{\sharp} + h(X, Y) \phi \zeta^{\sharp}.$$

Comparing (2.25) and (2.26), we get

$$(2.27) \qquad (\nabla_X A) Y - \alpha(Y) H X = -h(X, Y) \zeta^{\sharp}$$

(2.28)
$$h(X,AY) + (\nabla_X \alpha)(Y) + \mu \alpha(X)\alpha(Y) = 0,$$

where we have used (2.24).

Now, we calculate the torsion tensor N of the almost contact structure $(A, \zeta^{\sharp}, \alpha)$. Using (2.27), we get

$$(2.29) N(X,Y) = [AX,AY] - A[AX,Y] - A[X,AY] + A^{2}[X,Y] + 2d\alpha(X,Y)\zeta^{\sharp}$$

$$= (\nabla_{AX}A)Y - (\nabla_{AY}A)X + A(\nabla_{Y}A)X - A(\nabla_{X}A)Y + 2d\alpha(X,Y)\zeta^{\sharp}$$

$$= \alpha(Y) (HAX - AHX) - \alpha(X) (HAY - AHY)$$

$$- \{h(AX,Y) - h(X,AY) - 2d\alpha(X,Y)\}\zeta^{\sharp}.$$

According to (2.28), we get $h(AX, Y) - h(X, AY) = 2d\alpha(X, Y)$. Hence (2.29) becomes

$$(2.30) N(X,Y) = \alpha(Y) (HAX - AHX) - \alpha(X) (HAY - AHY).$$

On the other hand, (2.23), Lemma 2.2 and Lemma 2.3 imply that

$$(2.31) AHX = \lambda AX - \mu A^2X = HAX$$

holds good. Thus we get N=0; i. e., the almost contact structure $(A, \zeta^{\sharp}, \alpha)$ is normal (cf. S. Sasaki and Y. Hatakeyama [3]). Furthermore, (2.23) and Lemma 2.3 imply that, for tangent vectors X and Y which are orthogonal to ζ^{\sharp} , $\lambda g(X,Y)-\mu g(AX,Y)=g(HX,Y)=g(X,HY)=\lambda g(X,Y)-\mu g(X,AY)$ holds good. Hence, since A is skew symmetric with respect to g, we get $\mu=0$ and hence $\lambda=\pm 1$. Thus we get $\zeta^{\sharp}=\varepsilon\xi^{\sharp}$, where $\varepsilon=\pm 1$, and hence $X\sigma=2g(\tilde{\nabla}_X\eta^{\sharp},\eta^{\sharp})=2g(\phi X,\eta^{\sharp})=-2g(X,\xi^{\sharp})=0$ holds for any tangent vector X to M, i. e., σ is constant along M. Thus the Levi-Civita connections for $\gamma=(1/\sigma)g|M$ and g|M are coincide. On the other hand, (2.23) implies $H=\varepsilon I$, where I is the identity transformation of tangent spaces. Thus (2.27) and $h(X,Y)=(1/\sigma)g(HX,Y)$ imply

(2.32)
$$(\overline{\nabla}_{X}A)Y = \varepsilon \{\alpha(Y)X - \gamma(X,Y)\overline{\zeta}^{\#}\},$$

where \overline{V} is the Levi-Civita connection for γ . In general, it is known that an

almost contact Riemannian structure $(A, \zeta^{\sharp}, \alpha, \gamma)$ is a Sasakian structure, i.e., a normal contact Riemannian structure, it is necessary and sufficient that

$$(2.33) \qquad (\overline{\nabla}_{X}A)Y = \alpha(Y)X - \gamma(X,Y)\overline{\zeta}^{\sharp}$$

holds good (cf. S. Sasaki [4]). Hence if $\varepsilon=1$ (resp. $\varepsilon=-1$) holds, then (A, $\zeta^{\#}$, α , γ) (resp. $(-A, \zeta^{\#}, \alpha, \gamma)$) is a Sasakian structure. To sum up, we get the following:

THEOREM 2.4. Under the same notations and assumptions of Theorem 2.1, if, furthermore, η^{\sharp} is a Killing vector field and if \tilde{M} is a Kählerian manifold, then the almost contact Riemannian structure $(A, \zeta^{\sharp}, \alpha, \gamma)$ is normal and $\zeta^{\sharp}=\varepsilon\xi^{\sharp}$ holds good, where $\varepsilon=\pm 1$. Furthermore, if $\varepsilon=1$ (resp. $\varepsilon=-1$), then $(A, \zeta^{\sharp}, \alpha, \gamma)$ (resp. $(-A, \zeta^{\sharp}, \alpha, \gamma)$) is a Sasakian structure, and vice versa.

REMARK. In the case when $\zeta^{\#}=\xi^{\#}$, H. Taketa [7] has shown that $(A, \zeta^{\#}, \alpha, \gamma)$ is a Sasakian structure.

3. Hypersurfaces with an affine normal vector field \$\frac{\pi}{\pi}\$.

Let M be a hypersurface of an even dimensional contact Riemannian manifold \tilde{M} with the structure tensors η , g and ϕ such that $\xi^{\#}$ is never tangent to M and $\eta^{\#}$ is tangent to M. The restriction of $\eta^{\#}$ to M is also denoted by $\eta^{\#}$. We put

$$\phi X = BX + \beta(X)\xi^{\sharp}$$

for a tangent vector X of M, where BX and $\beta(X)\xi^{\#}$ are respectively tangential and (affine) normal components of ϕX with respect to $\xi^{\#}$. Applying ϕ to the both sides of (3.1), we get

(3.2)
$$B^2X = -X + \beta(X)\eta^{\#}$$

$$\beta(BX) = 0.$$

Putting $\eta^{\#}$ in (3.1), and noticing $\phi\eta^{\#}=\xi^{\#}$, we get

(3.4)
$$B_{\eta}^{\#}=0$$

$$\beta(\eta^{\#})=1.$$

Hence $(B, \eta^{\sharp}, \beta)$ is an almost contact structure of M. By the definition of B, we get

$$(3.6) g(BX, BY) = g(X, Y) - \beta(X)\eta(Y) - \beta(Y)\eta(X) + \sigma\beta(X)\beta(Y)$$

(3.7)
$$\xi(BX) = \eta(X) - \sigma\beta(X)$$

(3.8)
$$\eta(BX) = -\xi(X).$$

Thus, if we put

 γ is a Riemannian metric of M and

(3.10)
$$\gamma(BX, BY) = \gamma(X, Y) - \beta(X)\beta(Y)$$

$$(3.11) \gamma(\eta^{\sharp}, X) = \beta(X)$$

(3.12)
$$\gamma(\eta^{\sharp}, \eta^{\sharp}) = 1$$

hold good. Hence $(B, \eta^{\sharp}, \beta, \gamma)$ is an almost contact Riemannian structure of M.

THEOREM 3.1. Let \tilde{M} be an even dimensional contact Riemannian manifold with structure tensors η , g and ϕ . We suppose $\eta \neq 0$ everywhere. Let $\eta^{\#}$ be the associated vector field of η and let $\xi^{\#} = \phi \eta^{\#}$. Let M be a hypersurface of \tilde{M} with an affine normal vector field $\xi^{\#}$. Then, if $\eta^{\#}$ is tangent to M, the structure $(B, \eta^{\#}, \beta, \gamma)$, defined by (3.1) and (3.9), is an almost contact Riemannian structure of M.

Now, suppose $\eta^{\#}$ is a Killing vector field. Then (2.18) and (3.1) imply

$$\tilde{\nabla}_{X} \eta^{\#} = BX + \beta(X) \xi^{\#},$$

where \tilde{V} is the Levi-Civita connection for g of \tilde{M} . On the other hand, we have the equation of Gauss:

(3.14)
$$\tilde{\nabla}_{X}\eta^{\#} = \nabla_{X}\eta^{\#} + h(X, \eta^{\#})\xi^{\#},$$

where $\nabla_X \eta^{\#}$ and $h(X, \eta^{\#}) \xi^{\#}$ are tangential and normal parts of $\tilde{\nabla}_X \eta^{\#}$ with respect to the affine normal $\xi^{\#}$, respectively. Comparing (3.13) and (3.14), we get

$$(3.15) \qquad \nabla_X \eta^{\sharp} = BX,$$

(3.16)
$$h(X, \eta^{\#}) = \beta(X).$$

Suppose, furthermore, \tilde{M} is a Kählerian manifold. Then (3.1) and (2.19) imply

(3.17)
$$\tilde{\nabla}_{X}(\phi Y) = (\nabla_{X}B)Y + B\nabla_{X}Y + h(X, BY)\xi^{\sharp} + \{(\nabla_{X}\beta)(Y) + \beta(\nabla_{X}Y)\}\xi^{\sharp} - \beta(Y)X.$$

On the other hand, we get

(3.18)
$$\tilde{\nabla}_{X}(\phi Y) = \phi \tilde{\nabla}_{X} Y$$

$$= B \nabla_{X} Y + \beta (\nabla_{X} Y) \xi^{\sharp} - h(X, Y) \eta^{\sharp}.$$

Combining (3.17) and (3.18), we get

$$(3.19) \qquad (\nabla_{x}B)Y - \beta(Y)X = -h(X, Y)\eta^{\sharp}$$

$$(3.20) h(X, BY) + (\nabla_X \beta) (Y) = 0.$$

Applying (3.19) and (3.20), we see that the torsion N of the almost contact structure $(B, \eta^{\sharp}, \beta)$ vanishes:

$$\begin{split} N(X,Y) &= (\nabla_{BX}B)Y - (\nabla_{BY}B)X + B(\nabla_{Y}B)X - B(\nabla_{X}B)Y + 2d\beta(X,Y)\eta^{\#} \\ &= 0. \end{split}$$

Hence we get

THEOREM 3.2. Under the same notations and assumptions of Theorem 3.1, if, furthermore, $\eta^{\#}$ is a Killing vector field and if \tilde{M} is a Kählerian manifold, the almost contact Riemannian structure $(B, \eta^{\#}, \beta, \gamma)$ is normal.

After a rather long calculation, we see that

$$(3.21) \gamma(\overline{\nabla}_X \eta^{\sharp}, Y) = d\alpha(X, Y)$$

holds good, where \overline{V} is the Levi-Civita connection for γ . Thus $\eta^{\#}|M$ is a Killing vector field with respect to γ . But it is not known whether $(B, \eta^{\#}, \beta, \gamma)$ is a K-contact structure or not. If it is a K-contact structure, it is automatically a Sasakian structure.

4. Hypersurfaces with an affine normal vector field $\eta^{\#}$.

Let \widetilde{M} be an even dimensional contact Riemannian manifold with the structure tensors η , g and ϕ , and let M be a hypersurface of \widetilde{M} with an

affine normal vector field $\eta^{\#}$. We assume that $\xi^{\#}$ is tangent to M and that $\eta \neq 0$ everywhere. If we put

$$\phi X = BX + \beta(X)\eta^{\sharp},$$

where BX and $\beta(X)\eta^{\#}$ are respectively tangential and normal components of ϕX with respect to the (affine) normal $\eta^{\#}$, we can see that the structure $(B, -\xi^{\#}, \beta, \gamma)$ is an almost contact Riemannian structure of M. Now, suppose $\eta^{\#}$ is a Killing vector field of \tilde{M} and suppose \tilde{M} is a Kählerian manifold. Then we can see that the almost contact Riemannian structure in consideration is normal. But, since we have

$$(4.3) \qquad (\mathcal{L}_{\xi \# \gamma})(X, Y) = 2\beta(X)\beta(Y) - 2\gamma(X, Y),$$

 $-\xi^{\sharp}$ is not a Killing vector field of M with respect to γ . Thus the normal almost contact Riemannian structure $(B, -\xi^{\sharp}, \beta, \gamma)$ is not a K-contact structure.

Bibliography

- [1] S. I. Goldberg and K. Yano, Noninvariant hypersurfaces of almost contact manifolds, J. Math. Soc. Japan, 22 (1970), 25~34.
- [2] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure, Tôhoku Math. J., 12 (1960), 459~476.
- [3] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure II, Tôhoku Math. J., 13 (1961), 281~294
- [4] S. Sasaki, Almost Contact Manifolds, Part I, Lecture note at Tôhoku University, 1965.
- [5] S. Sasaki, On even dimensional contact Riemannian manifolds, Differential Geometry, in honor of K. Yano, Kinokuniya, 1972.
- [6] T. Takahashi, A note on certain hypersurfaces of Sasakian manifolds, Kōdai Math. Sem. Rep., 21 (1969), 510~516.
- [7] H. Taketa, An example of Sasakian manifold, to appear.

Department of Mathematics Faculty of Science Kumamoto University