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1. Introduction.

Let M be a (2n+2)-dimensional even dimensional contact Riemannian
manifold with structure tensors %, g and ¢, where % is a 1l-form, g is a
Riemannian metric and ¢ is an almost complex structure with the following

properties:
(1.1) d7(X, V)=g(¢X, V)
1.2 g (¢, $7)=g(X, V),

where X and Y are tangent vectors of M (S. Sasaki [5]). Let ¥ be the
associated vector field of » and let ¢ be the square of the length of %¥, which

is a non-negative function on M:
(1.3) o=g(»¥, »*).

Throughout this note, we assume that ¢>>0 holds on M. Let ¢* be a vector
field, defined by

(1.4) EF=¢y*,

and let & be the associated 1-form of &%. Then we get

(1.5) g(&¥%, £9)=0
(1.6 g(»%, £5)=0
(1.7 PEF=—9*.

In this note, we study hypersurfaces of even dimensional contact Rieman-
nian manifolds. In §2, we study a hypersurface M with a normal vector
field ¢# of the form
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(1.8) CF=26%+4 un*,

where 2 and z are scalar functions on M such that 2+z*=1. In §3 and §4,
we study hypersurfaces M with €% and 7% as their affine normal vector fields,
respectively.

2. Hypersurfaces with (#=1§%+ pp*.

Let M be a hypersurface of an even dimensional contact Riemannian
manifold M with the structure tensors y, g, and ¢ such that

2.1 CF=28%4 1%, Pt pt=1
is a normal vector field. For a tangent vector X of M, put
(2.2 dX=AX+a(X)(*,

where AX and a(X)(¥ are respectively tangential part and normal part of ¢X.
Operating ¢ to the both sides of (2.2), we get

(2.3) A’ X=—X+a(X)C*
(2.4 a(AX)=0,

where we have put

(2.5) [F=—gr*.
Putting ¥ in (2.2), we get

(2.6) AC#=0

@.n a(f®)=1.

Consequently, (2.3) and (2.7) imply that (A4, ¥ a) is an almost contact
structure of M (cf. S. Sasaki [2], [4]).
Taking account of (1.2), (2.2) and (2.5), we get

(2.8) g(AX, AY )=g(X, Y)—a(XDE(Y)—-L(X)a(Y )+ oa(X)al(Y ),
where £ is a 1-form of M, defined by
2.9 (XD)=g(X, I™.

Since we have g(X, {F)=g(X,—¢H)=g(pX, (N=g(AX+a(X)* (F)=0a(X),
we get
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(2.10) {=oa.
Hence (2.8) becomes
(2.1 g(AX, AY))=g(X, Y)—oca(X)a(Y).
Thus, if we put
1
(2.12) r=_ 8

7 is a Riemannian metric of M and satisfies the followings:

(2.13) 7(AX, AY )=7r( XY )—a(X)a(Y)
(2.14) r(Z# =1
(2.15) (%, X)=a(X).

Hence (A, # «, r) is an almost contact Riemannian structure of M (cf. S.
Sasaki [2], [3D.

THEOREM 2.1. Let M be an even dimensional contact Riemannian manifold
with structure tensors 3, g and ¢. We suppose thai 570 holds everywhere.
Let 7% be the associated vector field of 7 and let E¥=¢y¥. Let M be a
hypersurface of M with a normal vector field (¥ of the form

CF=26%+ un¥, 24 pi=1.
Then (A, C*%, a, v), defined by (2.2), (2.5) and (2.12), is an almost contact

Riemannian structure of M.

For tangent vector fields X and Y of M, we have the equations of Gauss
and Weingarten:

(2.16) VY =VzY+ (X, Y)*

(2.17) VilF=—HX+ o(X)C*.

Now, suppose »* is a Killing vector field. Then (1.1) implies
(2.18) Vir*=¢X

for a tangent vector X of M. Suppose, moreover, M is a Kihlerian manifold.
Then (2.18) implies
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(2.19) Vee¥=—X.
In this case, for a tangent vector X of M, we get

(2.20) Vl# =V (A% + pp*)
=(XDEF+ (X ) 9p¥— 21X+ pAX+ pna(X)CE.

LEMMA 2.2. (XDEF+(Xu)7* is tangent to M and satisfies

(2.21) A{XDEF+ (X p)9p*}=0.

PROOF. Since 2+ =1, we get
(2.22) XD+ p(Xp)=0.

Hence g((XD&F+(Xp)7*, (F)={A(X)+u(Xu)}s=0 holds good, that is, (X)&F
+(Xup)9* is tangent to M.
By the definition of A, applying (2.10), we get

A{XDEF+ (X )n*)
=P{(XDEF+ (X ) 7*} — al(XDEF+ (X ) p*)CF
={(1—2) X+ 2u(XD} ¥ {(A— 1) XD+ 22X} 9*
=p{u(Xp)+ (XD} e# = 2{2( XD+ u(X )} 7*
=0. Q.E.D.

According to Lemma 2.2, (2.17) and (2.20) imply
(2.23) HX=21X—pAX—(XDEF—(Xp)np*

(2.24) o(X)=pa(X).
LEMMA 2.3. If X is orthogonal to C¥%, then (X)EF+ (Xu)y®=0 holds good.

PROOF. Lemma 2.2 and (2.23) imply that ¥ is an eigenvector of H.
Hence, if X is orthogonal to ¥ then HX is also orthogonal to Z¥. Thus
(2.23) implies HX— X+ pAX=— {(XDEF+(Xu)y*}=0. Q. E.D.

From (2.2), (2.16) and (2.17), we get

2.25)  Vx(pY)=(VzAY+AVY+h(X, AY)C*
+{(Vza) (V) +a(VzY)}F+ a(Y) {— HX+ o(X)C¥}.

On the other hand, we get
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(2.26) V2 (¢pY)=¢VsY
=AV:Y +a(VzY ), F+ (X, Y)PC*.

Comparing (2.25) and (2.26), we get
.20 (VzA)Y —a(Y)HX=—h(X, Y)I*
(2.28) WMX,AY )+ (V) (Y )+ pa(X)a(Y )=0,

where we have used (2.24).
Now, we calculate the torsion tensor N of the almost contact structure
(A, &* a). Using (2.27), we get

(2.29) N(X,Y)=[AX,AY ]—A[AX,Y]-A[X,AY ]+ A [ X,Y ]+ 2da(X, Y )C*
=(V,1zA)Y — (V7 A)X+ AV A X— A(VxA)Y +2da(X,Y )T*
=a(Y) (HAX—AHX)—a(X) (HAY—AHY)
—{(h(AX,Y)—n(X,AY )—2da(X,Y)} ¥,

According to (2.28), we get h(AX,Y)—h(X, AY)=2da(X,Y). Hence (2.29)

becomes

(2.30 NX,Y)=a(Y) (HAX—AHX)—a(X) (HAY —AHY).
On the other hand, (2.23), Lemma 2.2 and Lemma 2.3 imply that
(2.3D) AHX=2AX—puA’X=HAX

holds good. Thus we get N=0; i.e., the almost contact structure (4, % @)
is normal (cf. S. Sasaki and Y. Hatakeyama [3]). Furthermore, (2.23) and
Lemma 2.3 imply that, for tangent vectors X and Y which are orthogonal to
C*, 2g(X, Y)—pug(AX, Y)=g(HX, Y)=g(X, HY )=21g(X, Y)—ug(X, AY) holds
good. Hence, since A is skew symmetric with respect to g, we get #=0 and
hence 2=+1. Thus we get (¥=e¢£% where e=+1, and hence Xo=2g(Vzy¥, %)
=2g(¢pX, »¥)=—2g(X, £¥)=0 holds for any tangent vector X to M, i.e., ¢ is
constant along M. Thus the Levi-Civita connections for r=(1/¢)g|M and
g[M are coincide. On the other hand, (2.23) implies H=el, where I is the
identity transformation of tangent spaces. Thus (2.27) and (X, Y)=(1/0)
g(HX,Y) imply

(2.32) (VA =e {a(Y )X —r(X ,Y)E¥},

where V is the Levi-Civita connection for y. In general, it is known that an
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almost contact Riemannian structure (A4, {¥, @, 7) is a Sasakian structure, i.e.,
a normal contact Riemannian structure, it is necessary and sufficient that

(2.33) (VzA)Y=a(Y)X—7(X, Y )C*

holds good (cf. S. Sasaki [4]). Hence if e=1 (resp. e=—1) holds, then (A,
£*, a,r) (resp. (—A, % &, 1)) is a Sasakian structure. To sum up, we get
the following:

THEOREM 2.4. Under the same mnotations and assumptions of Theorem
2.1, if, furthermore, %% is a Killing vector field and if M is a Kihlerian
manifold, then the almost contact Riemannian structure (A, %, a, ) iS normal
and [#=e&* holds good, where e==+1. Furthermore, if e=1 (resp. e=—1),
then (A, L% a, v) (resp. (—A,L* a, 1)) is a Sasakian structure, and vice versa.

REMARK. In the case when (¥=¢¥ H.Taketa [7] has shown that (4, Z¥,

a, v) is a Sasakian structure.

3. Hypersurfaces with an affine normal vector field £%.

Let M be a hypersurface of an even dimensional contact Riemannian
manifold M with the structure tensors », & and ¢ such that &% is never
tangent to M and »* is tangent to M. The restriction of »¥ to M is also
denoted by »*. We put

3.1 ¢X=BX+B(X)E*

for a tangent vector X of M, where BX and B(X)&* are respectively tangential
and (affine) normal components of ¢X with respect to £¥. Applying ¢ to the
both sides of (3.1), we get

(3.2) B’X=—X+[(X)7*

B2 B(BX)=0.

Putting »* in (3.1), and noticing ¢p¥=£%, we get
3.4 By#=0

(3.5 B(»*)=1.

Hence (B,7¥%, 8) is an almost contact structure of M.
By the definition of B, we get




HYPERSURFACES OF EVEN DIMENSIONAL CONTACT MANIFOLDS 31

(8.6) g(BX, BY )=g(X, Y)—B(X)79(Y)— (Y )np(XD+sB(XDA(Y)
3.7 E(BX)=y9(X)—ap(X)
(3.8) 7(BX)=—&(X).

Thus, if we put

3.9 r= ‘i‘ (g—BR®n—yRB+2s5RB),

7 is a Riemannian metric of M and

(3.10) 7(BX, BY )=7(X, Y )—pR(X)B(Y)
(3.11) (¥, X)=p(X)
(3.12) r(n¥, »%)=1

hold good. Hence (B ,7%, B, r) is an almost contact Riemannian structure of
M.

THEOREM 3.1. Let M be an even dimensional contact Riemannian manifold
with structure temsors 5, g and ¢. We suppose 770 everywhere. Let 7% be
the associated vector field of v and let £¥=¢3*. Lei M be a hypersurface of
M with an affine normal vector field &¥. Then, if 7% is tangent to M, the
structure (B, 9%, B, r), defined by (3.1) and (3.9), is an almost contact Rieman-
nian Structure of M.

Now, suppose 7% is a Killing vector field. Then (2.18) and (3.1) imply
(3.13) Ven*=BX+p(X)E%,

where V is the Levi-Civita connection for g of M. On the other hand, we
have the equation of Gauss:

(3.14) Vep®=Vep*+ h(X, )&%,

where Vzyp* and h(X, »%)&¥ are tangential and normal parts of Vgy* with
respect to the affine normal &% respectively. Comparing (3.13) and (3.14),
we get

(3.1 Viy*=BX,

(3.16) h(X, »*)=B(X).
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Suppose, furthermore, M is a Kihlerian manifold. Then (3.1) and (2.19)
imply

(3.17) V2 (dY)=(VzB)Y +BV:Y +h(X, BY )é*
+{(V2B (Y )+ B(VY )} ¥ —BYDX.

On the other hand, we get

(3.18) Vr(pY)=¢¥,Y
=BV Y +B8(ViY )e*—h(X, Y)p*.

Combining (3.17) and (3.18), we get
(3.19) (VxB)Y —B(Y)X=—h(X, Y )n*
(8.20) h(X, BY )+(VzB) (Y )=0.

Applying (3.19) and (3.20), we see that the torsion NN of the almost
contact structure (B, %%, B) vanishes:

N(X, Y)=03pxB)Y —(VsyB) X+ B(VyB)X—B(VyB)Y +2dp(X, Y )n*
=0.

Hence we get

THEOREM 3.2. Under the same mnotations and assumptions of T heorem
3.1, if, furthermore, 7% is a Killing vector field and if M is a Kihlerian

manifold, the almost contact Riemannian structure (B, 7%, B, v) is normal.

After a rather long calculation, we see that
(3.21) 7(Vxy®, Y)=da(X, Y)

holds good, where V is the Levi-Civita connection for 7. Thus v#IM is a
Killing vector fleld with respect to y. But it is not known whether (B, %%,
B, r) is a K-contact structure or not. If it is a K-contact structure, it is
automatically a Sasakian structure.

4. Hypersurfaces with an affine normal vector field 7¥.

Let M be an even dimensional contact Riemannian manifold with the
structure tensors 7, g and ¢, and let M be a hypersurface of M with an

i i

i) ot A
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affine normal vector field »¥. We assume that &% is tangent to M and that
770 everywhere. If we put

“4.1D ¢X=BX+B(X)7%,

4.2 r=g—%(8®5+77®77)+8®8,

where BX and B(X)»* are respectively tangential and normal components of
¢X with respect to the (affine) normal 7%, we can see that the structure (B,
—£% B 7) is an almost contact Riemannian structure of M. Now, suppose 7¥
is a Killing vector field of M and suppose M is a Kihlerian manifold. Then
we can see that the almost contact Riemannian structure in consideration is

normal. But, since we have
4.3) (Far) (X, Y)=2B(X)R(Y )—2r(X, Y),

—£% is not a Killing vector field of M with respect to y. Thus the normal

almost contact Riemannian structure (B,—&%, 8, v) is not a K-contact structure.
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