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Introduction

The purpose of this article is to present a general way for proving the
convergence of the finite element method of mixed type in linear elastic prob-
lems and as an application of this general theory, to prove the convergence of
a mixed method applied to certain shell problems.

One can indicate the method of Rayleigh-Ritz and of Trefftz as the tradi-
tional variational methods to the solutions of partial differential equations.
Corresponding to these methods the finite element methods are also classified
as the displacement and the forced method. Since both methods are regarded,
if the trial functions are conforming, as least square approximation to the exact
solution, the problems concerning the accuracy are reduced to the approximation
theory of functions.

13

So far as one treats the second order equations, these ‘‘classical” finite
element methods serve the purpose sufficiently, but for higher order equations
the situation becomes different. Hence various new finite element models have
been proposed to overcome the difficulties. For the details of these develop-
ments one can refer to the survey paper of Pian and Tong [7].

However, it is not necessarily correct to say that these models were pro-
posed always with sufficient theoretical justifications. For convenience’ sake let

3

us classify these finite element methods based on the ‘“‘nonclassical” variational
principles as follows.
[a]l Methods of classical type using non-conforming trial functions.
[b] Methods of hyblid type.
[c] Methods of mixed type.

The first important theoretical problem is the convergence of these methods.
Concerning the first methods some convergence proofs are given by the author
[5] and Strang [8]. But their results can not necessarily cover all elements

of non-conforming type, and more unified theory is expected. A paper of Tong
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and Pian [9] is known as a pioneering work which studied the convergence of
the hyblid methods. But, as well known, their convergence proof is based on
an unproved assertion and not necessarily complete (see the proof in p. 469 of
[9]). A work of Kikuchi and Ando [4] is another recent result of this field.

The author’s previous paper [6] deals with the convergence of a mixed
method applied to plate bending problem, although his motivation comes from
the coupled equations approach to bi-harmonic equations. He proves the con-
vergence and gives the order of convergence of several approximating schemes,
and proposes some stability criterions of the schemes for dynamic problems.

Although it is to be desired that some comparison theorems concerning
the accuracy of each individual method are established, but as the first step
of this study it will be also important to know which method is convergent
or not and how the order of convergence is estimated.

The present paper is an extension of the author’s results in [6] to shell
problems. First we generalize the convergence proof of [6] in terms of three
dimensional elasticity theory, and then apply the result to the convergence
proof in linear shell problems taking cylindricall shell problem as an example.
It is not difficult to apply our method to more general shells. Although our
results do not cover all methods of mixed type, we expect that our method
of proof used in this paper will be applied to the other mixed finite element
methods too.

1. A characterization of the mixed method

The mixed method is based on Hellinger-Reissner’s principle. The func-
tional II in this principle is expressed as

1 =
(o, )= [eCo)—Grous (st s, )+ P 1AV
(1.D
-+ S Tiuids + S Tt(ul —ﬁ,,)dS,
S, Su

where, the summation convention is employed and
g;;. stress tensor component o¢;;=0dj;,
¢(0): complimentally energy density,
u;. displacement component,
w;,;: Oui/0x;,
F: prescribed body force component,
V: volume,
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S: surface of V,
S,: portion of S over which the surface tractions are prescribed,
Su: portion of S over which the displacements are prescribed,
T,;: surface traction component, i.e.,

Ti=o.v; v;=cos(n, x;), n: outward normal to S,
T;: prescribed surface traction component,
#;: prescribed displacement component.

The strain-displacement and strain-stress relations are given as follows.
1
1.2 Eij=7<ui,j+uj,i)’
(1.3 &= Cr11j0%1
Hence the complimental energy density c¢(¢) is written, by the symmetry of
Criij, @S

1 1
1.4 C(‘7>=76ijsij= Z_Cijkﬂij”kz

One may easily prove that the stationary condition of the functional II(s,z)

with respect to o;; and #; is

%?=%(Mi,j+“j,i)
05,5+ F;=0 in V
=T, on S,
{ %;=1u; ON Sue

We use this functional in a little modified form as shown below.

I ()= [eCo)+aus s+ FiaeiJAV

(1.5)
—{ . (T:—ToudS—| T.ads
g U

As easily seen, this functional is obtained by the integration by part for the
second term of II(s, #). In the present paper we assume, for the convenience
of the description, that the boundary condition is homogeneous, that is, #;=
Ti=0'

In the mixed finite element method, the stress and the displacement are
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assumed separately for each individual element. Suppose that these quantities
are written by a suitable system of functions {¢} as

(1.6) 615= 21 6:;;(PIP?, =X 4 (pIP™
PEN PEN

where N is the set of grid points in ¥V and N’ in V—S,. Here 4, have to
vanish on S,. The unknowns {4,;;(p)} and {a;(p)} are determined by the
system of equations obtained by putting the first derivatives of II'(4,4) with
respect to these unknowns equal zero.

AR RN A R At i et e e e

T YT vy

We introduce some new bilinear forms to describe these system of equa-
tions briefly. Define

ST

.7 Ky G, ¢7) = 84,7aV = | t010PdsS
v S5

1.8 Cr.(a, ¢(p)>=S Cijribe; AV .
14

Then the equations by which the unknowns in mixed method are determined
can be written as follows.

1.9 %EK;(% ")+ Ki(i, )1+ Crulo, $7)=0 : pEN

(1.10) E($7, 6u)+ | Fip®dV=0 : pEN.

s
i

Note that these equations are satisfied also by the exact displacements and
stresses #; and o;;, since

R S

Kz(¢(p), dkl)=§yaklyl¢(p)dv'— SS Tk¢(p)ds-

Hellinger-Reissner’s principle is not a minimum principle. But it can be
called a conditional minimum principle. Although this is suggested in the
previous paper [6] for bi-harmonic problems, we state below in a general form.

THEOREM 1.1. The mixed method formulated above is equivalent to the fol-
lowing algorithm: Seek the minimizing displacements of the functional

(1.1D) B~ SV[c@ —F,5,3dV
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when é;; are determined by the system of equations (1.9).

PROOF. We show that the derivatives of F(#) coincide with the left side of
the equations (1.10). Since 4;; is a function of #.(8), the first derivatives of
G;; with respect to #,(B) satisfy

—;—EKz(aak/aaa(B), P+ K (04,/04,(8), ¢
+ Cr(06/02,(8), p¥)=0.

Multiplying by 6:,(p) and summing up first on p and then on % and / we have

L K(0/01.(8), 620+ Ka(0i/03,(8), )]
+C1,(05/01.(B), 61)=0.

Substituting (1.7) into the first term of this equation we have

—C1:(06/04.(B), 611)
=%S V<6ak/ 09.(B) 11,1+ 00/ 00.(B)Gis, 1 )AV

1
~5) , @01/08.(Bv+0%/04,()v)5udS

= GuupPdv—{ T.g”ds
14 So

=K, (¢?, ..
Therefore by (1.4) and (1.8) we have

aaaa(@ F(a)=SV[cuu(aéﬁ/aaa(@)&”_paqu)]dv

=Ciu(05/03.(B), 6u)—{ F.p”dV

——K(¢?, 6.0~ | FpPav.
14
This completes the proof. (Q.E.D.)

REMARK (1). Strictly speaking the functional F(4) has no minimizing point
unless the system (1.9), (1.10) has a unique solution. A necessary and suffi-
cient condition in order that this system has a unique solution is given by
“if SVC(&)dV=0 then #,=0, when G;; are determined by the equations (1.9)”.
This condition has to make sure in the practical application of the mixed
method.



40 Tetsuhiko MIYOSHI

The mixed method can not be regarded as any least square method in the
rigorous sense. But approximately we may call it a least square method to

the exact solution. This assertion is based on the following fact. Define

(1.12) C(o, 0')=%ck1<ﬂ, o'51)
1
=——2—Svcijkldijo"mdv
THEOREM 1.2. Let u; and o;; be the exact displacements and stresses respective-
ly. Then for any ¢;; represented by the basis {¢F°} holds
(1.13) F(#)=C(o—¢,0—¢)—C(a, 6)—2C(06—36, 6—06)
—K;(u;—1s, 01;—0d45),

where 4, and G;; are connected by the equations (1.9).

PROOF. Since the exact solution #;, o;; satisfies the equations (1.9) and (1.10)

we see

Kj(ui, Uij>+ Cij(d, Uij)=0,

K;(u;, 64)+ Cy5(a, dij)=l0,

K;(dy, 6;5)+ C;;(3, 6;;)=0,

Kj(‘ﬁi, dij)‘l'g FlﬁldV=0.
v

We have the desired identity by substituting these relations into the right
side of (1.13). (Q.E.D.)

The importance of the identity (1.13) will be clear. Since 6;; 1s arbitrary
we can expect that

(1.14) [2C(s—3, 0—0)+ K;(uy—14,055— 645 |
<const. ¢||o—d,

for some small constant ¢ depending on the quantity [o—d|.

If this is correct, the dominate variable term in F(#) is C(¢—é, 6—¢) and thus
it will be reasonable to say that the approximate solution is determined, rough-
ly speaking, so as to minimize the quantity C(s—é, o—é) under the con-
straint (1.9). In such case, if {¢} is complete, the approximate solutions will
converge to the exact solution in a suitable norm. Therefore, the convergence
depends on whether the second term of the left side of (1.14) becomes small
relatively or not, as the element size tends to zero.
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For bi-harmonic problems it is alreadyv demonstrated that a estimate like
(1.14) holds indeed, and by using this fact the order of covergence is also
obtained [6]. The differential equations governing the deformation of shell
is, unlike the plate case, a system of second and fourth order equations, and
thus one can choose various shape functions of different orders for the differ-
ent unknown functions. But what kind of shape functions is necessary for
the convergence? In what follows we study this problem taking the equations
of cylindrical shells as examples.

2. Governing equations of cylindrical shells

The deformation of a cylindrical shell is prescribed by a right-handed
coordinate system (x;, %2, x3) Wwhich is taken on the middle surface of the
undeformed shell as shown in Fig.1, where x; is along the generating line of

the shell and x. is along the paralell ring.

X3

Fig. 1

Let © be the domain in (#,, %2)-plane occupied by the middle surface of
the undeformed shell and #; be the displacement along the x; coordinate. The
strain-displacement and stress-strain relations of this shell are usually given
by the following equations [10].

€11=U1,1— X33, 11

T S S
2.1 2=z, o Us T X3(Us, 22 T U,

1
2e15=1us,1t 1y, 2—2353(”3, 2T p Uz, »)
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ou=T7_ 2 (et ves),

E
(2.2) O22 ="ijy—2<V511+ €22),
E

O12="7, . ¢
1 1+V 125

where
R: radious of the undeformed middle surface,

E: Young’s modulus,

y: Poisson’s ratio.

In this article we assume, for the simplicity of the description, that the

boundary condition is homogeneous and the geometrical boundary condition is

given as
U1= U= on ]—'1,
du
(2. 3) U3= d}’j =0 on I,
#3;=0 on I3,

where I'; is a non-empty portion of the edge which may possibly be overlapp-
ing. Other boundary condition is the natural boundary condition given later.
Let ¢ be the plate thickness. Then the strain energy of the shell is given

by
tl2
(2.4) Ea=7508 _sziﬁijdx

Let us define E,, and E, as follows.

En(uy, s, us; b, ¢, &)

1

=S 9[%1, 1By1t 242,20 2+ ;y (2, 1+ 11,2) (¥, 1+ d,2) +v(uy, 1%, 2 by 10t2,2)
1 . 1
-+ —RT{(W/LI, 1+, )0+ (v, 1+ L2 ) Uzt _R—usfl’} ldx

E(ata, us; ¢*a )

1 1
= ga[ua. un$nt (us, 22 }‘uz,z) (Qb,zz—?(ﬁ*,z) +
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1 1
+ V{“a,u(%zz—F(ﬁ*,z)*‘ &1 (o, 22"?”2,2)}

1 1
+2(1—v) (”3, 12"?“2, v (¢, 12—f¢*,1)]dx

As easily seen the quantities

En(u;u)=Eq,(tts, ths, Us; W1, tho, Us),
2

¢ £2
Tz—Eb(u;u)=—12-Eb(uz, Us; U, Us)

correspond to the membrane and the bending energy respectively and

Bom—riors L 1) + 5 B 0]

Hereafter we assume, without loss of generality, that

Et
(2.5) m=1.

Now let us define

1
Wiu=us,11, Wi=us 12— R_uz,l s
(2.6)
War=w3,20— R U2,2 ,

and
Bi(us, v, tts; ¢>)=S’a[(u1,1+ Vuz,z‘{‘%us)(f),l

1—v
2

+ (o, 1+ 21,2) ¢, 2 1dx,

By(utq, %2, us; ¢*)=Sa[ 1;1} (uz,1+u1,z)¢*,1

1
+ (ot 0+ vy, 1+ —R_ua)(f)*, 2
2
- 12R {(VW11+W22)¢*;2+2<1—'V)W12¢*;1}jdxr
1 il
B3(uy, %, us; ¢)=Sa[‘f(1’u1,1+uz,z+‘R—us)¢

t2
+1—2 (W u+yWaddut+ OWit Waadd, o
+2(1—-v) Wiz, 12} ldx.

Further define
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Bi(u; §)=B;(us, s, us; ).

Then the principle of minimum potential energy yields a system of equations
which are written as follows.

Biw; 9)=| fipdz
@7 By(u; "= fug*dx
Bs(u; ¢)=faf_a¢dx,.

where £, corresponds to the component of the given body forces and ¢,¢* and
¢ have to satisfy the geometrical boundary conditions imposed on #;,u, and 3
respectively. The explicit form of the differential equations and the natural
boundary conditions of this shell are obtained by the integration by part of
these equations. But we treat the equations in the ahove weak form, since
the differential equations themselves are not necessary for our discussion.

3. Ecxistence and uniqueness of the exact solution

Let W(2) be the Sobolev space of functions. The norm in this space is
denoted by [j[[x. For k=0 this space is regarded as the space L,(2) and hence

lelli=Cu, = wax

By W,(2; I) we denote the space consisting of all #€ Wi(Q) vanishing on I,
and by W:(2; Iys) all uEWi(Q) satisfying the boundary conditions imposed
in #; in (2.3).
We call the triple (u;, s, %5)(u,, € Wo(2; ), us EWX2; Iy, 5)) a weak solution
of the system (2.7) if the equations (2. 7) are satisfied by any ¢, ¢*EWi(Q; )
and any ¢€Wi(Q2;03,s).

The weak solution of the system (2.7) exists and is unique, if R is suffi-
ciently large. This is a immediate consequence of Riesz’ representation theo-
rem if the following theorem is pr'dved. Let us define

E (s, s, us; ¢, %, 9)=B,(u; D)+ Bo(ue; ™)+ Bs(u; ¢),
Es(u; w)=E (ur, ws, w53 101, us, us).

3
b
2
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THEOREM 3.1.

@Y E=E(u; u),

@ E(uy, w5, us; ¢, &%, O=E (b, &, ¢; w1, s, t3),
3) If R is sufficiently large holds

3.1 Ey(u; w)2CL w34 [losaf3+ [[a |37,

where C is a constant independent of u;.
PROOF. It is easy to prove (1) and (2), hence we prove (3). Let us define

Y (o1t u,5)%)dx

E;(uy, u2)=Sn[u?,1+ ug,z"" 2011, 1%82,5 + 1;
Eo(us)=SQ[“§,11’*‘“5,22‘*’2Vu3,11”3,zz+2(1_V)u§,12]dx
for w, u,€W,(2; I't) and us € Wi(Q; I3,3) respectively and put

(3.2 C,= mfl L2ACHRLY) 4s)

Talta o Comint .

The existence of the constant C,(C0) comes form the Korn’s inequality [2],
as well known. Now for any positive constants « and B(<{1) we have

2 1
E3=Ei<u1, u2>+-ﬁs (uz,z‘f' V%1,1)u/5dx+'fz—5 u§ dx
+ E o(us) — S [(uf_:, 22t Vit 11)742 2 +2(1— V)Ms,lzuz 1ldx

' +W§g[u§,z+2(l—u)u§,1]dx

2>FE; (o, us) _afSa(uz, 2+ Vg, Didx

. . A
+EtRT(1_—B—)Sﬂ[ug,z+2(l V)uz,de—I- E (u3>

2

8] [Cua, b wate, 1) +2(1 =)0, . Jdx

RN
R? a- pr )Saz@dx

z{(l—a)éﬁ%‘z(l—%)}{HmHHHqu?}

+{(Hra-pr—=tra-1) B,

CR2

(¥) We use C as generic constant depending only on £ and I:;, which is not necessarily
the same each time used in this paper.
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Therefore if R is sufficiently large we can choose « and S so that the ine-
quality (3.1) holds. For example, choose a=f8=1/2. In this case the condition
required for R and ¢ are

. i RZ: 24 coRz

(Q.E.D.)

We remark that the conditions (8.3) are not so peculiar in practical ap-
plication, since C, and C; depend only on £ and I3 and not on { or R and
further ¢{/R is assumed to be small in linear shell theory. Through the pres-
ent article we assume that R is sufficiently large so that the inequalities (3.3)
hold. Thus an exact (weak) solution of our problem exists and is unique.

4. Hellinger-Reissner’s, functional

In this section we derive the explicit form of the system of equations
associated with the Hellinger-Reissner’s functional in cylindrical shell problem.
This will make clear the difference between the system of equations (2.7)
which is the Euler’s equation of the total potential energy functional and the
system of equations derived from Hellinger-Reissner’s functional which is em-
ployed in our mixed method.

Let TI(W,u) be the functional II(s,#) represented by W;; and #;. Substi-
tuting (2.1), (2.2) and (2.6) into (1.1) we have

(W, u) =E,(u; u)+1t—;Eb(W; w)
~2{EnCat; 0| [ st W st W o+ Wt
+2(1—u)leug,12-—%(1/W11+W22)u2,2—%(1——V)leuz,l]dx}
+259 Fousdz,
where #°/12.E,(W; W) is the bending energy represented by W,;. Note that

we assumed Et/2(1—y®)=1. The functional II' necessary for our mixed method
takes the following form.

|
‘|
|
3
|

TR

Eagaccn
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(W, u) =—E(u; u)+ E,,(W W)

+—’ S (W v Waz), 14,1 + Wi+ Was),otts,2
+ (1—V)(W1z, 13,2+ W12,zu3,1)

1 2
+_R‘<VW11 +Wa) %z,z‘l"R_(l — V)W 1202, 11dx

2
6
4+ Q=) (uz, 201+ s, W) Wialds

Zgg Foudzx,

Srg[(W11+ YW a2 vites, 1+ Wt sz)Vzua,z

where IS denotes the complement of I3 in the boundary of £. In order to

express this functional briefly let us introduce bilinear form Kj; as follows.

Ki1(uo, us; ¢) = Sgus. 19, Wdx— Spgua, 1V1¢d3,

Koo(tto, ts; [ﬁ):_gﬂus,z(i’, 2dx— g U3, 2V2¢>d5+ 3‘ Uz, 2¢dx,
4.1 1
Kio(tto, w3 ¢)=—2_{Sg(ua,1¢,2+u3,z¢; 1)dx

2
o Spg(u;g’ 1V2 +u3,2V1)¢ds+?S guz, 1¢dx} .

Further define

(OD(%3, ¢)=K11(“2, U3; d’),
(4.2) K@ (us; ¢)=Kz:(tt2, t43; P) _'I_S U2, 2AX,

(O)Cus, (}5) Kio(tta, us; ¢) S Us, 1¢>dx,

and
(4.3) Kby, us; W)=Ki1(t4s, 3; Wiit+vWaz)

+ Koo (thg, %633y Win+ Wan) +2(1— 1) Kio(ttz, #s; Wiz,
) K(O’(ug' W)=K®(us; Wi +vWa)

m(“s 5 vy Wi+ W22)+2(1 V)K(O)(us; Wiz).

THEOREM 4.1.
(1) The functional TI'(W,u) is represented also as follows.
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(4.5) (W, u)=—E.(u; u)+7§‘Eb(W; W)-i-——G—K(uz, us; W)

+2( fi, #s).

(2) The stationary condition of TI'(W,u) with respect to {Wy;} and {u;} is

given by the following system of equations.

(4.6) Ky ; (o, 135 w)+ (Wi, W)=6,
Bl(u; ¢)=(fb d>>:
4.7 By(u; ¢N)=(Ffo ¢,

1 1 ? _
—R—(Vu1,1+uz,z+—RTu3, (b)“_lE"K(O)((P? W)’:(fs, o,

where w is arbitrary smooth function.

Proof of this theorem is easy. Note that the third equation in (4.7) is

obtained by the integration by part for Bi(u; ¢) defined in the previous sec-
tion. This is the only difference between the Euler’s equations of total poten-

tial energy functional and the one of Hellinger-Reissner’s functional.

5. Approximating schemes
Hereafter we assume, for simplicity, that £ is a closed polygon. Let 25
be a triangulation of £. We assume that 2, is a regular triangulation of £
in the sense defined in the previous paper [6]. Roughly speaking, this means
that no triangle in 2, is crushed as the triangulation becomes fine.
In this article we employ two kinds of basis {¢P} (p runs all vertexes
of 2,) and {¢*®} (p runs all vertexes and midpoints of the sides of 2,). {7}
is a system of functions such that (i) linear in each triangle and continuous
(ii) ¢® vanishes at any vertexes except p and assumes unity at p.

(¢} is (i) perfectly quadratic in each triangle and continuous on
y at p. We call

on 2,
Similarly,
2, (i) ¢ vanishes at any nodes except p and assumes unit
(¢®} and {¢®} the first and the second order basis respectively.

Although there are several combinations of these bases we consider the

following two algorithms.

|
;
|
B |
&
: |

N r




FINITE ELEMENT METHOD OF MIXED TYPE 49

Algorithm Cii: The approximate solution is sought in the following form.
5.1 V()= 2 WP (%),
PEQR
2= 3 _aP¢P(x) (=1,2)
(5.2) i
()= 3 _ afP¢P(x)
PEQL-T2,3

The unknowns are determined by the following equations.

(5.3) Kij(io, 233 ¢P)+(Wyj, ¢P)=0 pELa,
Bi(#, @la, Uis; qﬁ(p’):(f_l,cﬁ‘p’) pE‘Qh—flr
By(ih, e, ils; Qb(m):(f_z., 95@)) PE-Qh—f'x,

1 1 £ A
f(w%,ri' ﬁz,z_’"i‘ﬁs, ‘i’w))—TQ—K(O)(Sﬁ(D; W)
=(fa ) PE2n—Tbs.

GBG.4H

Algorithm Cpp:  #; and Wij are sought by the same basis as in the Algorithm
C,, but #; and %, by the second order basis {¢*”}. The unknowns are deter-

mined by the following equations.

(5.5) Kij(ﬁz, i3} ¢<p))+(Wij, ¢(p))=0 Pegh:
Bl(al; 172: 123; ¢(p))=(fh d}(P)') pE‘Qh—fl
By(#11, %z, 1s; ¢EY=(fo ¢ PELL—T,

1, 1. £ :
f(l/m,rf-uz,g-l-fug, q&‘”)—E—K“”((ﬁp); W)
=(.f3: ¢)(:p)) j)E.Qh—fg,s.

(5.6

We note that these system of equations can be derived by putting the
first derivatives of H’(W, 7) equal zero after substituting (5.1) and (5.2), &
G s

The unique solvability of these systems are not necessarily evident. To

ensure this we put

ASSUMPTION: Let W” be determined by the equations (5.3) (in Algorithm Ciy)
or (5.5) (in Algorithm Ci2). Then holds

.7 sl E<CCE W W+ |l Cin Algorithm Cu),
or

(5.8) (|22 CCELW; W)"";_z_”%”?) (in Algorithm C.).
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In many cases this assumption is fulfilled. See [6]. If this assumption
is filfilled then the system which is proposed above is uniquely solvable for
sufficiently large R. To prove this consider, for instance, the system (5.3),
(5.4). Assume that (f;, $®)=0. Then, by (5.7) and (3.2) we have

0=B1(ﬁ1, 1y, U3} ﬁl)'*'Bz(fﬂ, g, U3} )
o1 . 1. . ' L
+f(uu1,1+uz,z+—R—u3, ug)—lTK@)(ua; w)
2 “ A
= En(a; 0+ Eo(W; W)

L 2 .. L 1.
ZEi(ul, uz)“‘?(“z,z-i-uul,b u3)+—1§7|[u3||§

t2

1 0.0 1 .
+EE?HMSHWFHWH§]

2[(1—a) o~ i+ 1213

2 1 1
e T e =00l (0<a<D),

where C is the constant appearing in (5.7). Therefore, if R is sufficiently
large we can take « so that
~ £
(=a) C;—7557 >0,

tz
12C

+L

5.9
1 1
+ Rz (1_.__0{ )>0

Hence ai=W”= 0, which proves the unique solvability of (5.3), (5.4). Ine-
qualities (5.9) are realized, for example, by putting @=1/2 and assuming that
R satisfies the following inequalities.

_ 2 12 A
(5.10) 6C>or, 5 <gT

Note that this condition is similar to that of (3.3) which is a sufficient con-
dition for the unique existence of the exact solution. We assume that R is
sufficiently large so that the inequalities of (5.10) hold together with those of
(3.3)

Now corresponding to the Theorem 1.1 in the general theory we have

THEOREM 5.1. Algorithm Cy and Algorithm C., are equivalent to the follow-
ing algorithms respectively.
(Ci): Seek the minimizing functions of the functional
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(5.11) Fi()=E,(i; u)-l- Eb(W W)Y—2(f;, ),

where Wz-j are determined by the equations (5.3).
(Ci2): Seek the minimizing functions of the functional

(5.12) Fo(0)=E, (&1, s, s} 1, Ha, u3)+ Eb(W 110)
—2( fy, #)—=2( fo, %) —2(fo, us),
where Wu are determined by the equations (5.5).
Similarly, corresponding to Theorem 1.2 we have
THEOREM 5.2. F1(&) and F.(4) in Theorem 5.1 are represented also as follows.
(5.13) Fi()=E(u—i; u—i)—E,(u; u)
LB W W)+ KCate—ta, =105 W—T)]

(5.14) Fo()=E;(uy—11, ho—Th2, hs—Ta; U1—1, Up—T2, Us—1l3)
—E(u; u)

o W—=W; W—=W)+K(tts—iis, us—1its; W—W)],

where {Wij, u;} is the exact solution and Wij are arbitrary functions repre-
sented by the basis {¢®}.

PROOF. We first prove (5.13). The second one is then obvious. By (4.3),
(4.2) and (4.7) we see

2
“%E—K(ﬁz, s; W)— K(m(u% WH+-5% [(VW11+ sz, 1lg, 2)

12R
+2(1_V)( Wi, 1, )]

R (Vu1,1+u2,z+ R U3, 3)— (fa, )

IZRECVWH'*‘ Was, g, 2)+2(1— V)(Wm uZ,l)]

Therefore it holds that
12 .
12 K(“z_ﬂz, u3_ﬁ3; W—W)

~ L EW WI—E W W+ B W)
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R — (v, 17 %, R o U3, u3)+(f3, i3)
“ﬁ[(VWu‘i' W, #i2,2) +2(1—v)(Wys, 12,1)],
and this implies the following identity.
2 A~
12 £W; W)
(5.15) = E,,(W W, w— W)— K(uz dts, us—itz; W—W)
—E‘(Wf‘m‘f‘ ﬂz,z‘l'Te‘ua: ﬁ3)+(f-3, i3)
tZ
—ﬁ[(}’wn"‘ Waa, ﬁ2,2)+2(1*V)<W12~ ﬁz,l)]-
On the other hand, by (2.7) we have

(f 20+ f2, 92)
=Bl(u' ‘ﬁl)'f'Bz(u' i2)

=En(u; 4)——0 R (vu1,1+uz,z+ R % 1)
_'I_ZE[(VWH'F Waa, i2,2) +2(1—v)(Wha, 115,1)],

and hence by (5.15)

E(u—it; u—a)=E(u; u)—2E,(u; #)+E,(it; 4)
=E(u; w)+E(it; %)

1 1
"‘2[(f1, 111)+(f2, ﬁz)‘l‘f(wﬁ,l‘i‘ uz,z+‘1?ua, 1)

2
+ 12R{<VW11+ W, 1a,2) +2(1—)( W, ﬁz,l)}
12 =
715 Ex(W; W)]
=E(u; u)+E;(; 2)—2(f;, @)

— g, us—is; W—W)],

which proves the equality (5.13). (Q.E.D.)
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6. Convergence of the approximate solutions

In this section we first prove the convergence of Algorithm C;;. The
proof for Algorithm C,» is almost the same.

DEFINITION 6.1. Let %2 be the length of the largest side of the triangles in
2,. We say a sequence of triangulations {£2,} (or briefly, the triangulation
23) is nearly consistent triangulation of £, if the triangulation £, is regular
and there exists a closed subdomain 2; of 2, such that

(i) (the number of vertexes in £2,—2,)< Ch~!, (ii) for any sufficiently
smooth function w satisfying the same boundary condition as is required for
i3 holds

—w,i;| (L, ¢P)+CH  p S

6.1) KW, pP)=
) CH* pEL2,—2h,

where % is the interpolating function of w represented by the basis {¢‘®’},
and C is a constant depending only on w.

We remark that if 2, is nearly consistent then the difference operator
K{‘}’(W@‘”)(pE.Q,’,) is consistent in the ordinary sense used in finite difference
method. Hence there are several triangulations of the above property (see,
for instance, [3]). We assume in this section that the triangulation £, is

nearly consistent.

Now let us determine W,;=3W,;(p)p,(p€ 2,) by the following system of
equations. '

(6.2) K ;Cita, 135 dp)+ (Wi, pp)=0 pE 2y,

where #; is the interpolating function of the exact solution #%; by the basis

{d)(P)} .

LEMMA 6.1. Let i; and Wij be the solution of the system (5.3), (5.4). Suppose
that the exact solution is sufficiently smooth in 2,. Then holds

= - N 1
(6.3) lles—as|3<Ch+CLE, (W —W; W—W)+F|]u2—ﬁ2

%](*)

# In what follows, C is a generic constant depending on the exact solution, which is
not necessarily the same each time used.
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PROOF. Since

K; ;G —1s, 43—l ¢(p))+(Wij_Wij’ $)=0,
we have by (5.7)

_ . - . - 1 .
(6.4) llits— s [i<C (B (W =W W=W) + oz [|ira—[|2.
On the other hand, by (6.1) we see, for instance if i=j=2,
K; (e —1tts, 03—t ¢
=Ki(§)(u3—123; ¢(p))_‘%(uz,z“i'lz,2, qb(p))
1
Cha""ﬁ‘(“z,z—uz,z, ¢(p)) jJEQ;’I

1 .
Chz—'f(uz,z"ﬂz,z, ) otherwise.

Taking account of the fact that
(6.5) 3 We (=W DPRSC| W= Wi

P h
(see [6], p./97) and the well known interpolation theorem we have

I(Wij_Wij: Wij_Wij)l

SCIR 3 W= Wi(pd)|+h° 3 |[Wi(p)—Wi ()]

PEQ/ PEQR—-Q%h
1 ; ’
+Tl(uz,2_fl2,z, Wij—Wij)l

SCHEW ;=W lo,
and thus
(6.6) W= W lle<Ch¥2
Inequality (6.3) follows from (6.4) and (6.6). (Q.E.D.)
LEMMA 6.2. Let v;EWi(R). Then holds

©.7 ol o2 <A 2B a0 0>+ o]

PROOF. For a>0 we have

2 1
E,.(v; v)=E;(v,, 02>+—R_(02,2+yvl,1: Ua_)‘l’?”va“:
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1 1
=E;(vy, 112)—a”vz,z‘*'VUlJHg‘l'?(l“:)Hvallg
>(1—a)E +—1—(1 -1—)|| |I2
2>A—a)E; (v, v2) RZV T, D
‘Therefore, taking a=1/2 we obtain the inequality (6.7). (Q.E.D.)
LEMMA 6.3. If R is sufficiently large hold the following inequalities.
h _
(6.8) lloes— a2+ | o= |P< C—oz + CLEm(u—a5 e —10)
1 3 &
+T2‘Eb(W—W; w—-w)1,
6.9) Jota— s B O C T Eom (s u— )+ Es (W =W W11,

These inequalities are the direct consequence of the previous two lemmas.
The condition required for R is

1 G
(6.10) <&

where C; and C appearing in this inequality are the constants defined by (3.2)
and (5.7) respectively.

Now let us estimate the quantity E;(x—#;u—#). Theorem 5.2 implies

2 -~ - -
E\(u—1; u—0)——LEo(W =W W =W+ K=t us— it W—W)]

2 . . 2 . .
61 SEn(u—it; u—ii) 4 Es(W — W5 W= W)= ==L E,(W —W; W=

+ K (1o —tt, tt3—13; W“W)l
where {W,;} are the functions defined by the equations (6.2) and {#;} and
{W,»j} are arbitrary functions, where #; satisfies the boundary conditions re-

quired for #;. We take the interpolating function of the exact solution as
these dotted functions. Now rewrite (6.11) as follows.

2 s °
E(u—i; u—i)XE (u—i; u—ﬂ)—i—%—Eb(W—W; w—-Ww)

2 - . ° .
(6.12) - 2 [—E,(W—=W: W—W)+E,(W—W: W—W)

+ K(tts—1tig, tt3—ita; W—W)1.

Estimation of K(#:—,, tts—1is; W—W): This term can be written as follows.
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2(01—v)
R

: =K (tt3—iis; W—W) + (tha,1— s, 5, le_le)
(6.13) .

1 . .
+F(f¢2, e~ a2, VWit W —W i+ W, ]).

Since £, is nearly consistent, there is 2,((C#2,) such that
Kz —a; W—W)
SC2{ 3 Rla(p~a(p) |+ 3 1P|us(p)—s(p)|}
&Ld  peEQ/y PEQL-Q/p
<CvV I hy 3 Wap)— ()]’

pEQ/), PEQ/)

TCV. 3 Ry S Rus(p)—m(p) ]

PECR-Q/p PEQR-Q,

SCR[ it~ 1| |y < CHPCh>+ [ — s )
A P 1/2
SCLA+R E,(W—W; W—W)2 +hTEm(u—ﬂ; u—a)V].

Since the second and third terms of (6.13) are estimated, with the aid of
(6.8), as

2 1/2 1
gChT[h+£R—+Em(u—ﬁ; =)

Ey(W—W; W—W)e],

we have
| Kt — 15, th3— 2, W — W) |
SCLA+REy (W —W ; W —W)H2 +%Emcu—a; u—a)'].
The remaining terms of the right side of (6.12) are estimated by (6.6) as
SCul®+CHTh+WE(W —W; W—W)H'2],
where we estimated En(u—#u; u—2)<C,h’ Hence we obtain

E(u—10; u—n)
(6.14) SCuh®+ CER R+ E (W —W 3 W —W )

1 e
+REm(u—u,u A,

which proves the following theorem.

THEOREM 6.1.  Assume that the lriangulation is nearly conmsistent and R is
sufficiently large so that the conditions (3.3), (5.10) and (6.10) are satisfied. If
the exact solution {Wij, w;} is sufficiently smooth, then the approximate solution
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{Wij,ai} obtained by Algorithm Ci, converges to the exact one in the following

sense.

E(u—u; u—)ZCrLh*+ Cth,

3 o=l S Co o+ DI+ C o+,
R [z —as[i<Cnn tlz h*+Ch,

Es(W —W; W—W) <Chgrh*+ Ch.

According to this result the accuracy of WU and #; appears to be con-
siderably lower than those of #; and #, since in practical applications the ratio
h/t is not so small. This unbalance of accuracy between the in-plane and
normal approximations will occur indeed unless the rate of in-plane deforma-
tion is considerably lower than that of normal deformation, since Cj, and C
in (6.15) depend, roughly speaking, upon the higher derivatives of #;,u%, and
of u; respectively.

For Algolithm C,, we have

THEOREM 6.2. Under the same assumptions as in Theorem 6.1, the approximate
solution obtained by Algorithm Ci, comverges to the exact solution in the follow-

ing sense.

E(uy—,, ts—1is, Us—1il3; Ur—Th1, Up—Ths, Us—1il3)
<Crh*+Cth,

2 . 77 1 1
>) ”ui—ﬁi 1SCn(—zpr+ DR+ C(—z+tDh,
i=1 t°R R

(6.16) 1
|Iu3~—ﬁs|[§§C;l 2 h*+Ch,
Ey(W—W;W—-W)<CL tlz 1+ Ch.

Proof is almost the same for the previous theorem and hence we omit this.

These two theorems indicate that one must employ higher order basis
first for “in-plane” if he wants to increase the accuracy of Algorithm C,; and
that second order in-plane approximation will give satisfactory results. We
are thus very interested in the results of numerical test by Connor and Will
[1], in which they report the merits of their Model 2 (a mixed method using
quadratic basis for #;,, #, and linear basis for us and moments) for shallow
shell problems.
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