EVEN DIMENSIONAL K-CONTACT RIEMANNIAN MANIFOLDS ISOMETRICALLY IMMERSED IN A SPACE OF CONSTANT CURVATURE

Toshio TAKAHASHI

(Received Sept. 10, 1973)

1. Introduction.

An even dimensional K-contact Riemannian manifold $(M, \eta^{\sharp}, g, \phi)$ is an almost Hermitian manifold (M, g, ϕ) admitting a Killing vector field η^{\sharp} satisfying

$$(1.1) d\eta(X, Y) = g(\phi X, Y),$$

where η is the associated 1-form of η^{\sharp} . In this case, (M,g,ϕ) is automatically an almost Kählerian manifold, and

$$(1.2) \qquad \nabla_X \eta^{\#} = \phi X$$

holds good (Y. Ogawa [1] and T. Takahashi [5]).

In the preceding paper [3], the present auther and S. Tanno studied (odd dimensional) K-contact Riemannian manifolds which are hypersurfaces of a space of constant curvature. In this paper, we study even dimensional K-contact Riemannian manifolds which are hypersurfaces of a space of constant curvature.

2. A lemma.

Let $(M, \eta^{\sharp}, g, \phi)$ be an even dimensional K-contact Riemannian manifold. Let η be the associated 1-form of η^{\sharp} and let σ be a non-negative function on M defined by

(2.1)
$$\sigma = g(\eta^{\sharp}, \eta^{\sharp}).$$

Throughout this paper, we assume $\sigma > 0$ on M. Since $\eta^{\#}$ is a Killing vector field satisfying (1.2), we get

$$(2.2) R(X, \eta^{\sharp})Y = (\nabla_X \phi)Y,$$

where R is the curvature tensor of (M, g). Since (g, ϕ) is an almost Kählerian structure, we get

$$(2.3) \qquad \sum (\nabla_{e_i} \phi)_{e_i} = 0,$$

where $\{e_1, e_2, \dots, e_m\}$ is an orthonormal basis of a tangent space. Hence, we get

(2.4)
$$S(X, \eta^{\sharp}) = 0$$
,

where S is the Ricci tensor of (M, g).

Now, suppose (M,g) is a hypersurface of a space (\tilde{M},\tilde{g}) of constant curvature \tilde{c} . The equations of Gauss and Codazzi are

(2.5)
$$R(X,Y)Z = \tilde{c}\{g(Y,Z)X - g(X,Z)Y\} + g(AY,Z)AX - g(AX,Z)AY,$$

$$(2.6) \qquad (\nabla_X A) Y = (\nabla_Y A) X,$$

where A denotes the operator defined by the second fundamental form with respect to some (local) field of unit normals. By (2.5), we see that the Ricci tensor S is given by

(2.7)
$$S(X, Y) = (m-1)\tilde{c}g(X, Y) + \theta g(AX, Y) - g(AAX, Y),$$

where θ =trace A and m=dim M. By (2.4) and (2.7), we get

(2.8)
$$g(AAX, \eta^{\sharp}) - \theta g(AX, \eta^{\sharp}) - (m-1)\tilde{c}g(X, \eta^{\sharp}) = 0.$$

Suppose, moreover, that a sectional curvature of any 2-dimensional section of (M, g) containing $\eta^{\#}$ is zero:

(2.9)
$$g(R(X, \eta^{\sharp})\eta^{\sharp}, X) = 0.$$

This is equivalent to the following (2.10):

(2.10)
$$g(R(X, \eta^{\sharp})\eta^{\sharp}, Y) = 0,$$

that is,

(2.11)
$$R(X, \eta^{\sharp})\eta^{\sharp} = 0.$$

In (2.5), we put $Y=Z=\eta^{\#}$ and use (2.11), we get

(2.12)
$$\tilde{c}\left\{\sigma X - g(X, \eta^{\sharp})\eta^{\sharp}\right\} + g(A\eta^{\sharp}, \eta^{\sharp})AX - g(AX, \eta^{\sharp})A\eta^{\sharp} = 0.$$

LEMMA 2.1. If $\eta^{\#}$ is not an eigen vector of A at a point p of M, then $\tilde{c}=0$ and $\eta^{\#}=ae_1+be_2$ at p, where $Ae_1=\lambda e_1$ ($\lambda\neq 0$) and $Ae_2=0$.

PROOF. Let $\{e_1, e_2, \dots, e_m\}$ be an orthonormal basis of a tangent space at p such that each e_i is an eigen vector of A: $Ae_i = \lambda_i e_i$. Put $\eta^{\#} = \sum_i \alpha^i e_i$, where α^i are constant. Since $\eta^{\#}$ is not an eigen vector of A by the assumption, at least two of α^i are non-zero. Assume α^1 , α^2 , ..., α^s are non-zero. If we put $X=e_i$ in (2.8), we get

(2.13)
$$\lambda_j^2 - \theta \lambda_j - (m-1)\tilde{c} = 0, \quad j=1, 2, \dots, s.$$

Hence, $\lambda_1, \lambda_2, \dots, \lambda_s$ take at most two values. Since $\eta^{\#}$ is not an eigen vector of A, at least two of λ_j $(j=1,2,\dots,s)$ are different. Thus there are exactly two values, say λ and μ , in $\lambda_1, \lambda_2, \dots, \lambda_s$. We may assume $\lambda_1 = \lambda_2 = \dots = \lambda_r = \lambda$, $\lambda_{r+1} = \lambda_{r+2} = \dots = \lambda_s = \mu, \lambda \neq \mu$. According to (2.13), λ and μ satisfy

$$(2.14) \lambda \mu = -(m-1)\tilde{c}.$$

By a change of eigen vectors, we may assume

(2.15)
$$\eta^{\#} = ae_1 + be_2, \qquad Ae_1 = \lambda e_1, \quad Ae_2 = \mu e_2,$$

where $a^2+b^2=\sigma$, $a\neq 0$ and $b\neq 0$. In (2.12), we put $X=e_1$ and consider the inner product with e_1 . Then we get

(2.16)
$$\tilde{c}(\sigma-a^2)+b^2\lambda\mu=0.$$

Since $a^2+b^2=\sigma$, (2.14) and (2.16) imply

$$(2.17) (m-2)\tilde{c}b^2 = 0.$$

Hence we get $\tilde{c}=0$ and hence $\lambda \mu=0$.

REMARK 1. Since we have

(2.18)
$$R(X, \eta^{\sharp})\eta^{\sharp} = \nabla_X \xi^{\sharp} + X$$

by (2.2), where $\xi^{\#}=\phi\eta^{\#}$, (2.11) is equivalent to

(2.19)
$$\nabla_{X} \xi^{\#} = -X.$$

On the other hand, if the almost Kählerian structure (g, ϕ) in consideration is a Kählerian structure, we get (2.19), and hence (2.11) holds good (cf. T. Takahashi [4]).

REMARK 2. The statement and proof of Lemma 2.1 are analogous to those of Lemma 2.1 in [3].

3. The case $\tilde{c}=0$.

THEOREM 3.1. Let $(M^m, \eta^{\sharp}, g, \phi)$ be an even dimensional K-contact Riemannian manifold, $m \leq 4$. If a sectional curvature of any 2-dimensional section of (M^m, g) containing η^{\sharp} is zero and if (M^m, g) is isometrically immersed in a space $(\tilde{M}^{m+1}, \tilde{g})$ of constant curvature $\tilde{c} = 0$, then (M^m, g, ϕ) is a Kählerian manifold.

PROOF. Let e_1, e_2, \dots, e_m be orthonormal eigen vectors of A at a point p of M^m such that $Ae_i=\lambda_ie_i$. Suppose $\eta^{\#}$ is an eigen vector of A at p. We may assume $\eta^{\#}=\sqrt{\sigma}e_1$. Then (2.12) implies that $\lambda_1\lambda_j=0$ holds for $j=2,3,\ldots,m$. If $\lambda_1\neq 0$, then $\lambda_2=\lambda_3=\dots=\lambda_m=0$ and hence M^m is flat at p. Thus (2.2) implies that $(\nabla_X\phi)Y=0$ holds at p. If $\lambda_1=0$. Then (2.5) implies $R(X,\eta^{\#})Y=0$ and hence (2.2) implies that $(\nabla_X\phi)Y=0$ holds at p.

Suppose now, $\eta^{\#}$ is not an eigen vector of A at p. Then, by Lemma 2.1, we can write $\eta^{\#}=ae_1+be_2$, $a^2+b^2=\sigma$, $ab\neq 0$, $\lambda_1\neq 0$ and $\lambda_2=0$, Applying this to (2.12), we get $AX=(1/a)g(AX,\eta^{\#})$ e_1 . Hence the rank of A is 1 and hence (M^m,g) is flat at p. Thus (2.2) implies that $(\nabla_X\phi)Y=0$ holds at p.

Consequently, $(\nabla_X \phi)Y = 0$ holds on M^m , and hence (g, ϕ) is a Kählerian structure of M^m .

4. The case $\tilde{c}\neq 0$.

THEOREM 4.1. Let $(M^m, \eta^{\sharp}, g, \phi)$ be an even dimensional K-contact Riemannian manifold, $m \ge 4$. Suppose a sectional curvature of any 2-dimensional section of (M^m, g) containing η^{\sharp} is zero and suppose (M^m, g) is a hypersurface of a space of constant curvature $\bar{c} \ne 0$. Then $\bar{c} < 0$ and (M^m, g, ϕ) is a flat Kählerian manifold.

PROOF. By Lemma 2.1, $\eta^{\#}$ is an eigen vector of A. Let $\{e_1, e_2, \cdots, e_m\}$ be an orthonormal basis of a tangent space such that $Ae_i=\lambda_i e_i$ and $\eta^{\#}=\sqrt{\sigma}e_1$. By (2.12), we get $(\tilde{c}+\lambda_1\lambda_i)(\sigma e_i-g(e_i,\eta^{\#})\eta^{\#})=0$. Hence we get $\lambda_i=-\tilde{c}/\lambda_1$, $i=2,3,\cdots,m$. Thus, if e is any (local) vector field which is orthogonal to $\eta^{\#}$, then we get

(4.1)
$$Ae=\nu e, \nu=-\tilde{c}/\lambda_1$$

In (2.6), we put X=e and $Y=\eta^{\#}$. Then, by $A\eta^{\#}=\lambda_1\eta^{\#}$ and (1.2), we get

$$(4.2) \qquad (\nabla_e \lambda_1) \eta^{\sharp} + \lambda_1 \phi e - A \phi e = (\nabla_{\eta} \sharp \nu) e + \nu \nabla_{\eta} \sharp e - A \nabla_{\eta} \sharp e.$$

On the other hand, we have $\nabla_{\eta} # e = [\eta^{\#}, e] + \nabla_{e} \eta^{\#} = [\eta^{\#}, e] + \phi e$ and $g([\eta^{\#}, e], \eta^{\#}) = g(\nabla_{\eta} # e - \nabla_{e} \eta^{\#}, \eta^{\#}) = g(\nabla_{\eta} # e, \eta^{\#}) - g(\nabla_{e} \eta^{\#}, \eta^{\#}) = -g(e, \nabla_{\eta} # \eta^{\#}) - g(\phi e, \eta^{\#}) = 0$. Thus, (4.2) becomes

$$(4.3) \qquad (\nabla_e \lambda_1) \eta^{\sharp} + \lambda_1 \phi e = (\nabla_{\pi} \psi) e + \nu \phi e.$$

If we take e to be orthogonal to $\eta^{\#}$ and $\xi^{\#} = \phi \eta^{\#}$, then $\eta^{\#}$, e and ϕe are linearly independent and hence (4.3) implies $\lambda_1 = \nu$. Hence, by (4.1), we get $\bar{c} < 0$ and $\lambda_1 = \lambda_2 = \cdots = \lambda_m = \sqrt{-\bar{c}}$. Thus (M^m, g) is totally umbilic and flat, and hence (2.2) implies that (g,ϕ) is a Kählerian structure.

5. The case when $\eta^{\#}$ may vanish at some points.

In the preceding sections, we have assumed that $\eta^{\#} \neq 0$ holds everywhere. In this section, we treat the general case.

Let $(M^m, \eta^{\sharp}, g, \phi)$ be an even dimensional K-contact Riemannian manifold.

LEMMA 5.1.

(5.1)
$$d_{\sigma}(X) = -2g(X, \xi^{\sharp})$$

holds good, where $\xi^{\#}$ is a vector field defined by $\xi^{\#} = \phi \eta^{\#}$.

PROOF. Since $\eta^{\#}$ is a Killing vector field, we have (1.2) and hence, by a direct calculation, we get (5.1).

LEMMA 5.2. If a sectional curvature of any 2-plane containing $\eta^{\#}$ is zero, then the set of vanishing points of $\eta^{\#}$ is discrete.

PROOF. Let O be a vanishing point of η^{\sharp} . Take a normal coordinate neighborhood U around O. Consider a unit speed geodesic $\gamma(s)$ through the point O such that $\gamma(0)=O$. Put $f(s)=g(\xi^{\sharp},\dot{\gamma}(s))$. By Remark 1 of section 2, we have $\nabla_X\xi^{\sharp}=-X$. Hence we get

$$\frac{df(s)}{ds} = g(\nabla_{\dot{\gamma}} \xi^{\sharp}, \dot{\gamma}) = -1.$$

Thus, since f(0)=0, we get f(s)=-s. Hence there is no vanishing point of $\xi^{\#}$, and hence of $\eta^{\#}$, in U except O.

THEOREM 5.3. Theorems 3.1 and 4.1 hold good without the assumption that $\eta^{\#}\neq 0$ holds everywhere.

PROOF. If we denote the set of the vanishing points by V and put $M'=M^m-V$ and denote the restrictions of the structure tensors of M^m to M' by the same letters, we see, by Theorems 3.1 and 4.1, that (M',g,ϕ) is a Kählerian manifold and hence, since V is discrete, (g,ϕ) is a Kählerian structure of M^m .

According to Y. Ogawa [1], if an even dimensional K-contact complete Riemannian manifold is Kählerian, then it is flat. Thus, if the Riemannian manifold in Theorem 5.3 is complete, then it is flat. We state this as follows:

THEOREM 5.4. Let $(M^m, \eta^{\sharp}, g, \phi)$ be an even dimensional K-contact Riemannian manifold, $m \ge 4$. $(\eta^{\sharp} \text{ may vanish at some point.})$ If a sectional curvature of any 2-dimensional section containing η^{\sharp} is zero and if (M^m, g) is complete and isometrically immersed in a space $(\tilde{M}^{m+1}, \tilde{g})$ of constant curvature \tilde{c} , then $\tilde{c} \le 0$ and (M^m, g, ϕ) is a flat Kählerian manifold.

REMARK. Lemma 4.1 in [1] seems to be incomplete. The following Lemma 5.6 gives a proof for that Lemma under the additional condition that a

sectional curvature of any 2-plane containing $\eta^{\#}$ is zero.

LEMMA 5.5. If (M^m,g) is complete, then $\eta^{\#}$ has at least one vanishing point.

PROOF. Suppose $\sigma\neq 0$ holds everywhere. Then we can consider a maximal orbit $c(t), -\infty < t < +\infty$, of unit vector field $(1/\sqrt{\sigma})\xi^{\sharp}$. Put $\sigma(t) = \sigma(c(t))$. Then, by Lemma 5.2, we get

$$\frac{d\sigma(t)}{dt} = -2g(\dot{c}(t), \xi^{\sharp}) = -2\sqrt{\sigma}.$$

Hence we get $\sqrt{\sigma(t)} = -t + a$ for some constant a, and hence we get $\sigma(a) = 0$, which is a contradiction.

LEMMA 5.6. If (M^m, g) is complete and if a sectional curvature of any 2-plane containing $\eta^{\#}$ is zero, then $\eta^{\#}$ has only one vanishing point.

PROOF. According to Lemma 5.5, there exist at least one vanishing point, say O, of $\eta^{\#}$. Modifying the proof of Lemma 5.2, we see that there is no vanishing point of $\eta^{\#}$ except O.

REFERENCES

- [1] Y. Ogawa, On special almost Kählerian spaces, Natural Sci. Rep. Ochanomizu Univ., 23(1973), 49-60.
- [2] S. Sasaki, On even dimensional contact Riemannian manifolds, Diff. Geom., in honor of K. Yano, Kinokuniya (1972), 423-436.
- [3] T. Takahashi and S. Tanno, K-contact Riemannian manifolds isometrically immersed in a space of constant curvature, Tôhoku Math. J., 23(1971), 535-539.
- [4] T. Takahashi, A note on Kählerian hypersurfaces of spaces of constant curvature, Kumamoto J. Sci. (Math.), 9(1972), 21-24.
- [5] T. Takahashi, On hypersurfaces of even dimensional contact Riemannian manifolds, Kumamoto J. Sci. (Math.), 10(1973), 25-33.

Department of Mathematics Faculty of Science Kumamoto University