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1. Introduction.

An even dimensional K-contact Riemannian manifold (M, ¥, g,¢) is an

almost Hermitian manifold (M, g, ¢) admitting a Killing vector field #*¥
satisfying
(1.1 An(X, Y)=g(¢X,Y),

where 7 is the associated I-form of %% In this case, (M, g, ¢) is automati-

cally' an almost Kihlerian manifold, and
(1.2 VX7#=¢X

holds good (Y. Ogawa [1] and T. Takahashi [5]).

In the preceding paper [3], the present auther and S. Tanno studied (odd
dimensional) K-contact Riemannian manifolds which are hypersurfaces of a
space of constant curvature. In this paper, we study even dimensional K-con-
tact Riemannian manifolds which are hypersurfaces of a space of constant

curvature.

2. A lemma.

Let (M, 7%, g, ¢) be an even dimensional K-contact Riemannian manifold.
Let » be the associated 1-form of »* and let s be a non-negative function on
M defined by

2.1 a=g (¥, 7%).
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Throughoutb this paper, we assume s>0 on M. Since 7* is a Killing vector
field satisfying (1.2), we get

2.2) R(X, 7)Y =(V )Y,

where R is the curvature tensor of (M, g). Since (g, ¢) is an almost Kih-
lerian structure, we get

2.3 2V ). =0,

where {e, €5, -+, em} is an orthonormal basis of a tangent space. Hence, we
get

2.4 S(X, »")=0,

where S is the Ricci tensor of (M, g).
Now, suppose (M, g) is a hypersurface of a space (M, ) of constant

curvature ¢. The equations of Gauss and Codazzi are

(2.5) R(X, Y)Z=¢{g(¥, Z)X—g(X, Z)Y}+g(AY, Z)AX—g(AX, Z)AY,
(2.6) (VAY=(V7AX,

where A denotes the operator defined by the second fundamental form with
respect to some (local) field of unit normals. By (2.5), we see that the
Ricci tensor S is given by

2.7 SX, Y)=(m—1)eg(X,Y)+0g(AX,Y)—g(AAX, V),
where 6=trace A and m=dim M. By (2.4) and (2.7), we get
2.8) g(AAX, ) —0g(AX, v*)—(m—1Dig(X, v*)=0.

Suppose, moreover, that a sectional curvature of any 2-dimensional section
of (M, g) containing % is zero:

(2.9) g(R(X, )%, X)=0.

This is equivalent to the following (2.10):
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(2.10) g(R(X, v¥)9%, Y)=0,
that is,
(2.1D) R(X, »)pF=0.

In (2.5), we put Y=Z=»* and use (2.11), we get
(2.12) c{oX—g(X, 77"} + g(A7*, 79 AX—g(AX, »*)Ap*=0.

LEMMA 2.1. If %% is not an eigen vector of A at a point p of M, then
t=0 and y*=ae,+be, at p, where Ae,=ie;, (370) and Ae,=0.

PROOF. Let {e;, e, -",en} be an orthonormal basis of a tangent space at
p such that each e; is an eigen vector of A: Ae;=1e;. Put 77#=Zaeiei, where
o' are constant. Since %* is not an eigen vector of A by the assumption, at
least two of & are non-zero. Assume o, & -, & are non-zero. If we put
X=e; in (2.8), we get

(2.13) B—02,—(m—1)e=0, §=1,2 =, s.

Hence, 4, 4, ---, 2, take at most two values. Since »* is not an eigen vector
of A, at least two of 2; (j=1,2, -, s) are different. Thus there are exactly

two values, say 2 and g, in A3, 45, -, ;. We may assume A== =2,=2,
Ars1=Arpo=""=2A=p, 27 p. According to (2.13), 2 and u satisfy
(2.14) Ap=—(m—1)¢.

By a change of eigen vectors, we may assume
(2.15) p¥=ae,+ be,, Aei=le,, Ae,=pe,,

where a@’+b°=s, @70 and b7#0. In (2.12), we put X=e, and consider the
inner product with ¢;. Then we get

(2.16) c(o—a®)+b*au=0.
Since @’+b*=g, (2.14) and (2.16) imply

(2.17) (m—2)eb*=0.
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Hence we get ¢=0 and hence 2x=0.

REMARK 1. Since we have
(2.18) R(X, 7*)n*=V £+ X
by (2.2), where £ =¢7*, (2.11) is equivalent to
(2.19) Vx§¥=—X.

On the other hand, if the almost Kahlerian structure (g, ¢) in consideration
is a Kihlerian structure, we get (2.19), and hence (2.11) holds good (cf. T.
Takahashi [4D).

REMARK 2. The statement and proof of Lemma 2.1 are analogous to
those of Lemma 2.1 in [3].

3. The case ¢=0.

THEOREM 3.1. Let (M™ 7% g, ¢) be an even dimensional K-contact Rie-
mannian manifold, m<A. If a sectional curvature of any 2-dimensional section
of (M™, g) containing 7% is zero and if (M ™ @) is isometrically immersed in a
space (M™%, &) of constant curvature c=0, then(M™ g,¢) is a Kihlerian mani-
fold.

PROOF. Let ey, ey =+, em be orthonormal eigen vectors of A at a point
» of M™ such that Ae;=2e; Suppose »% is an eigen vector of A at 2.
We may assume y%=1/se. Then (2. 12) implies that 2;2;=0 holds for j=2,3,
coo,m. If 470, then Z=2%==2n=0 and hence M™ is flat at p. Thus (2.2)
implies that (Vx$)Y =0 holds at p. If 2=0. Then (2.5) implies R(X, 75 Y
—0 and hence (2.2) implies that (Vx¢) ¥Y'=0 holds at p.

Suppose now, 7" is not an eigen vector of A at p. Then, by Lemma 2.1,
we can write 7¥=ae,+be, @+b’=q, ab#0, 4,70 and =0, Applying this to
(2.12), we get AX=(1/a)g(AX, »¥) e.. Hence the rank of A is 1 and hence
(M™, g is flat at p. Thus (2.2) implies that (V x¢)Y'=0 holds at p.

Consequently, (Vx$)Y =0 holds on M™, and hence (g, ¢) is a Ksihlerian
structure of M™
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4. The case ¢7#0.

THEOREM 4.1. Let (M™, 7%, g, ¢) be an even dimensional K-comtact Rie-
mannian manifold, m=4. Suppose a sectional curvature of any 2-dimensional
section of (M™, g) containing %* is zero and suppose (M™, g) is a hypersurface
of a space of constant curvature t70. Then <0 and (M™, g, d) is a flat
Kihlerian manifold.

PROOF. By Lemma 2.1, »* is an eigen vector of A. Let {e}, &, -, en}
be an orthonormal basis of a tangent space such that Ae;=2,e; and 7% =7"se.
By(2.12), we get (¢+a2)(oe;—g(e,7)7*)=0. Hence we get l;=—¢/2y, i=2,3,
~-,m. Thus, if e is any (local) vector field which is orthogonal to %% then
we get

4.1 - Ae=vye, y=—¢/2,.
In (2.6), we put X=e and Y=4*. Then, by Ay*=27* and (1.2), we get
4.2) (V eaDd7*+ hpe—Ade=(V #)e+vV 2e— AV se.

On the other hand, we have N ge=[9%, e]+ < 5% =[7%e]+¢pe and g([7%, el,7%)
=g (V,2e—N 4%, 7)) =g (V #e, 15) —g (V a*, v) =—g (¢, V #7%) — g (pe, p*)=—
gle, pn¥)—g(de, ¥)=0. Thus, (4.2) becomes

(4.3) (V2% 4+ ipe=(V ,#)e+uope.

If we take e to be orthogonal to »* and £¥=¢y*, then %% e and ¢e are line-
arly independent and hence (4.3) implies 4,=». Hence, by (4.1), we get ¢<0
and 4=2==1,=1 —¢. Thus (M", g) is totally umbilic and flat, and hence
(2.2) implies that (g,¢) is a Kihlerian structure.

5. The case when 7¥ may vanish at some points.

In the preceding sections, we have assumed that 7*30 holds everywhere.
In this section, we treat the general case.

Let (M™ %%, g,¢) be an even dimensional K-contact Riemannian manifold.

LEMMA 5.1.
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Ge1) do(X)=—2g(X, &%)

holds good, where £% is a vector field defined by £%=¢y*.
PROOF. Since »* is a Killing vector field, we have (1.2) and hence, by
a direct calculation, we get (5.1).

LEMMA 5.2. If a sectional curvature of any 2-plane containing 4% is zero,
then the set of vanishing points of 3»* is discrete.

PROOF. Let O be a vanishing point of %% Take a normal coordinate
neighborhood U around O. Consider a unit speed geodesic 7(s) through the
point O such that y(0)=0. Put f(s)=g(&% #(s)). By Remark 1 of section 2,
we have Vyi¥=—X. Hence we get

D) —g(738% H=—1.

Thus, since f(0)=0, we get f(s)=—s. Hence there is no vanishing point of
€%, and hence of %%, in U except O.

THEOREM 5.3. Theorems 3.1 and 4.1 hold good without the assumption
that »¥#0 holds everywhere.

PROOF. If we denote the set of the vanishing points by V and put
M'=M"—V and denote the restrictions of the structure tensors of M™ to M’
by the same letters, we see, by Theorems 3.1 and 4.1, that (M, g, ¢) is a
Kzhlerian manifold and hence, since V is discrete, (g, ¢) is a Kdhlerian struc-
ture of M™.

According to Y. Ogawa [1], if an even dimensional K-contact complete
Riemannian manifold is Kihlerian, then it is flat. Thus, if the Riemannian

manifold in Theorem 5.3 is complete, then it is flat. We state this as follows:

THEOREM 5.4. Let (M™ 7%, g, ¢) be an even dimensional K-contact Rie-
mannian manifold, m=4. (9% may vanish at some point.) If a sectional curva-
ture of any 2-dimensional section containing 7% is zero and if (M™, g) is com-
plete and isometrically immersed in a space (M™*', §) of constant curvature ¢,
then ¢<0 and (M™, g, ¢) is a flat Kiihleriqn manifold.

REMARK. Lemma 4.1 in [1] seems to be incomplete. The following Lem-
ma 5.6 gives a proof for that Lemma under the additional condition that a
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sectional curvature of any 2-plane containing 7% is zero.

LEMMA 5.5. If (M™,g) is complete, then 4% has at least one vanishing
point.

PROOF. Suppose ¢70 holds everywhere. Then we can consider a maxi-
mal orbit ¢(#),—cc<i<+cc, of unit vector field (1/7/ ¢)&%. Put o(8)=0(c(®).
Then, by Lemma 5.2, we get

do(t . —

—d(tl=—2g(c(t), £9)=—-217%.
Hence we get 1/0(f)=—t+a for some constant @ and hence we get ¢(@)=0,
which is a contradiction.

LEMMA 5.6. If (M™, g) is complete and if a sectional curvature of any
2-plane containing 7* is zero, them 7% has only one vanishing point.

PROOF. According to Lemma 5.5, there exist at least one vanishing
point, say O, of »*. Modifying the proof of Lemma 5.2, we see that there
is no vanishing point of 7»* except O.
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