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The notion of Killing form plays a fundamental role in the study of Lie
algebras. A similar notion for Lie triple systems was formally introduced by
Yamaguti [9] while considering a ‘Casimir Operator’ associated with represen-
tations of certain types of Lie triple systems. However, an independent
study of the properties of that Killing form was not undertaken in the paper
of Yamaguti. The main object of the present paper is to infroduce and study
a somewhat similar concept of Killing form for a Lie triple system. We show
that this form enjoys some of the nice properties of its classical analogue,
thereby extending some of the results on Lie algebras to Lie triple systems.
As is usual with the case of a Lie triple system (L.t.s.) the technique'mainly
consists of passing on to a suitable enveloping Lie algebra; indeed we relate
the Killing forms of an L.t.s. and of its associated Lie algebra. This relation
enables us to study in detail the structure of an L.t.s. with nondegenerate
Killing form. Our final remarks relate to L.t.s.” viewed in ‘the setting of
symmetric spaces.

1. A Lie triple system (L.t.s.) T over a field F (assumed to be of
characteristic # 2 throughout this paper) is a (finite dimensional) vector
space over F endowed with a trilinear composition [xyz] satisfying (i) [xxy]
=0 (D) [xyz]+[yzx]+[zxy]=0 and (i) [wvlxyz]l=[[uvx]yz]+[x[uvylz]+[xy
Luvz]], for x,y,z,u,v in T (see [3],[9]). For subsets A,B,C of T we denote
by [ABC] the subspace of T generéted by elements of the form [abc] for
a,b,c in A,B,C respectively. Then a subspace B of T is called a subsystem
(ideal) of T if [BBBI<B([BTTICB); B itself is an L.t.s. relative to [ ]
in these cases. For an ideal B of T, define by induction B¥=B, B®=[TB%*"?
B*™]. Then B are ideals of T and B2B®>...2B®>.... B is said to
be solvable if B=0 for some % 7T is said to be semisimple if it has no
solvable ideals other than 0. 7 is said to be simple if [T7T7]%0 and T has
no proper ideals. A linear map D of T into itself is a derivation of T if

* An abstract of this paper was presented at a Symposium on Modern Algebra and
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[xyz]D=[xDyzl+[xyDz]+[xyzD] for x,y,z in T. From (iii) above we have
that the map D(x,9): z—[xyz] is a derivation of T. Derivations of T of the

form X1 D(x;,y:) are called inner derivations of T. For x,y in T we denote
=1

by R(x,y) the linear map: z—[zxy] of T into itself. Clearly a subspace B of

T is an ideal if and o‘nly if it is invariant under all the R(x,%)’s for x,y in

T

DEFINITION 1.1. The symmetric bilinear form a defined on an L.t.s. T
by a(x,y)=% trace (R(x,y)+R(y,x)) is called the Killing form of T.

Following properties of « are clear (see also oM.
() a([wvxl,y)+alx, [uvy]) =0 or more generally a(xD,y)+a(x,yD)=0 for a
derivation D of T.
(i)  a(x0,y9)=alx,y) for an automorphism 6 of T.

REMARK 1. If L be a Lie algebra with multiplication [ , 1 then L
becomes an L.t.s. (denoted by T.) with respect to the composition [xyz]=
[[x,y],z]. Then the Killing form of L as a Lie algebra and the Killing form

of L as an L.t.s. T, are one and the same.

Now let L be a Lie algebra with an involutory automorphism . Let
L=L_+L. be the decomposition of L into eigenspaces corresponding to the
eigenvalues F1 relative to x Then L. =T is a subsystem of the L.t.s. Tj.
Let «, 8 denote the respective Killing forms of T and L. For xin L_ and ¥
in L,, B(xy)=Bxuym)=p(—x3); B(xy)=0. We also have

LEMMA 1.1. For xz,y in T=L_, B(x,3)=2a(x,).

PROOF. Similar to one given by Loos [4] for the case of Malcev algebras.

Given any L.t.s. T, we denote by 2,(T) the Lie algebra of all inner
derivations of 7. Let L¥*=T®2,(T) (vector space direct sum). L* is a Lie
algebra with respect to the multiplication defined by [x+D,, y+D,]=—xD;+
yDi+D(%,9)+[Dy,D;] (5,5 in T and Dy, D, in 20(T)). The linear map u: L*
—I* defined by (x+D)u=—x+D, is an involutory automorphism of L* and
L* is precisely 7. Clearly [T, T1=2,T) and with this identification L*=T
@IT,T]. L* is said to be the Lie algebra obtained from T by standard
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imbedding (see [4]). This construction can be used to prove the following

LEMMA 1.2. If a be the Killing form of an L.t.s. T, then a(xR(z,w),y)
=a(x,yR(w, 2)) for x,y,w,z in T.

PPOOF. Let [ , J denote the multiplication in L* and B be the Killing
form of L*. Then we have: a(xR(z,w),y)=a([xzw],y)=%B([xzw],y) (by Lem-
ma 1.1) =2%6([[x, 2], w],»)=%B([x,2],[w,y]) (by the associativity of B[1,p.
71D =% B(x, [z, [w,y]]D =26, [[y, w], 2]) =24B(x, [ywz]) = alx,yR(w, 2)) (again
by Lemma 1.1).

An immediate consequence of Lemma 1.2 is the fact that the a-orthogonal
complement B*={xET|alx,y)=0 for all y in B} of an ideal B of T is again
an ideal of 7. One can, in fact, define a symmetric bilinear form A(x,y) on
an L.t.s. 7 to be an invariant or associative form if A(xR(z, w),y)=2A(x,yR
(w,2)) and note that an associative form on a Lie algebra L is also associative
as a form on the L.t.s. T;. The A-orthocomplement of an ideal of 7 will
again be an ideal of 7. In this setting we can easily prove the following
analogue of the classical Dieudonne’s Lemma [1,p.71], along the same lines
as the cited result.

LEMMA 1.3. Let T be a finite dimensional L.t.s. over a field F such that
(1) T has a nondegenerate associative form A and (i1) T has no nonzero ideals
B with [TBB]=0. Then T is a direct sum of ideals T; which are simple as
L.t.s. .

Now let B be an ideal of an L.t.s. T such that [TBBJ]=0. Then, clearly
[BTB]=0 and hence also [BBT]=0. For xin B and y in T, (R(x,y)+R(y,x))*
=0 on 7T so that trace (R(x,y)+R(y,x))=0 or a(x,y)=0. In particular, if the
Killing form « of T is nondegenerate, such a nonzero ideal B can’t exist.

We have in fact proved (in view of Lemmas 1.2 and 1.3)

THEOREM 1.4. If the Killing form of an L.t.s. T over a field F of
characteristic # 2 is nondegenerate then T is a direct sum of simple ideals T;.

-REMARK. It is clear that the ideals 7T; of Theorem 1.4 would themselves
have nondegenerate Killing forms.
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2. The structure of a Lie triple system with nondegenerate Killing form
is completely determined by that of the simple ones of the same type (by
Theorem 1.4). The study of the latter class can be related to that of their
associated Lie algebras (standard imbedding). An important step in this

direction is the

THEOREM 2.1. Let T be an L.t.s. and L*=T@2,(T)=T®LT,T] be the
Lie algebra obtained from T by standard imbedding. Then the Killing form
a of T is nondegenerate if and only if the Killing form B of L* is nondegen-

erate.

PROOF. (A proof similar to that of [6, Theorem 3.1] can be given here
also, we give the details again for completeness.)

Let B be nondegenerate and let a(x,z)=0 for some x and all z in T. By
the remark just preceding Lemma 1.1, we have B(x,[T,7])=0; by Lemma 1.1
itself one has B(x,2z)=0 for all z in 7. Thus B(x, T+[T,T1=0; B(x, L*)=0.
Nondegeneracy of § implies that ¥=0 or that a« is nondegenerate.

Conversely, let @ be nondegenerate. Let B(z+D,L*)=0, for an z+D in L*
with z in T and D in [7,7T]. In particular B(z+D,T)=0, B(z,7)=0; by
Lemma 1.1 a(z,7)=0 and hence z=0. Thus B(D,L*)=0; B(D,[x,y1)=0 for
all x,y in T. By the associativity of B8,B8([D,x],»)=0; by the multiplication
rule in L* B(xD,y)=0. xD belongs to T and so by Lemma 1.1 again a(xD,y)
=0 for all y in 7. xD=0 by the nondegeneracy of a. x being arbitrary in
T,D=0. Q.E.D.

REMARK. For the first part of the above proof, it suffices that T=L._
for a Lie algebra L with an involutory automorphism x and B, the Killing
form of L. For the second part of the proof it suffices that L, acts faithfully
on L_ by the adjoint action. Howevér this latter condition essentially amounts
to our own hypothesis; indeed L. will be isomorphic to [T,T]1=2,(T), in this
case: when L, acts faithfully on L_=T, elements of L, can be identified with
ad t|;_ (ad denoting the adjoint in the Lie algebra L); ad t|z_ can be
considered as a derivation D, of the L.t.s. T=L_; thus L, can be identified
with a subalgebra of the Lie algebra 2(T) of all derivations of T (through
the isomorphism ¢—D,,¢ in L,). For x,y in T,[x,y] belongs to L, and the
associated Dy, ,; is nothing but the inner derivation D(x,y) of 7. Thus L, is
a subalgebra of 2(T) containing 2,(T). It is also clear that the multiplica-
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‘tion in L after this identification is the same as the one defined for L* the
standard Lie algebra of 7. When the Killing form of T(=L_) is nondegene-
rate, every derivation of 7 is inner (as we shall see presently); L, indeed
becomes 2,(T"), i.e. L is effectively the same as L* associated with T=L_.

REMARK 2. The above situation essentially corresponds to the situation
obtaining in the case of involutive Lie algebras (considered by Koh [2], in
connection with his study of affine symmetric spaces).

COROLLARY 2.2. The Killing form of a semisimple L.t.s. T over a field
of characteristic zero is nondegenerate.

PROOF. Let T be semisimple. Then L* is known to be semisimple [3,
Theorem 2.7]. Consequently the Killing form of L* is nondegenerate. The
corollary now follows from Theorem 2.1.

From Corollary 2.2 and Theorem 1.4 one immediately has

COROLLARY 2.3. ([3, Theorem 2.9]). A semisimple L.t.s. over a field
of characteristic zero is a direct sum of simple ideals.

REMARK 3. If a be the Killing form of an L.t.s. T over a field of
characteristic zero, then the radical of 7 (maximal solvable ideal of T =
{x€T|alx,[TTTI) =0} (see [6, Section 3, Remark 3]). Also 7 will be solvable
if and only if a(x,2)=0 for all x in [T7TT] (cf. [1, p.69]). An immediate
consequence of the first assertion is that the radical of an L.t.s. over a field
of characteristic zero is a characteristic ideal (see [4, Lemma 5D.

The following result extends to Lie triple systems a well-known result of
Zassenhaus for Lie algebras ([1, p.74]).

THEOREM 2.4. If the Killing form of an L.t.s. T over a field of char-
acteristic#2 is nondegenerate, then every devivation of T is inner.

PROOF. The Killing form of L* is nondegenerate (by Theorem 2.1). Then
every derivation of L* is inner, by the cited theorem of Zassenhaus. The
result now follows in the same way as in the proof of [6, Theorem 4.1].

REMARK 4. Let L be a Lie algebra with a nondegenerate Killing form.
Then the associated L.t.s. T, also has the same property (by Remark 1 of
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Section 1). If D be a derivation of L then D is also a derivation of 7. so
that D=XD(x;,y;) for some x;y; in L, by the above Theorem. By the defini-
tion of Lie triple composition in 7Tz, we have D=2} ad [x;,y:1=ad (L%, 30,
[, ] being the bracket operation in L. D is thus an inner derivation of L.
In other words, we have qualified our statement that Theorem 2.4 is an exte-

nsion of the corresponding result for Lie algebras.

REMARK 5. The above remark could be construed as an instance of
terming the results for L.t.s. as extensions of the results for Lie algebras or
more generally those of Malcev algebras. Here we recall that a Malcev
algebra (of characteristic #2,3) is an algebra satisfying (i) xy=—yx (D (xy)
(x2) =((x )5+ ((y2)x)x+ ((zx)x)y and that A forms an L.t.s. T, relative to
the composition [xyz]=2(xy)z—(y2)x—(zx)y. If R, denotes the right multipli-
cation in A, the bilinear form 6(x,y)=trace R.R, is called the Killing form
of A and if « denotes the Killing form of 7, then 30(x,y)=a(x,y). This fact
along with the fact that R, is a derivation of T, implies, in view of the
observations following Definition 1.1, that 6 is an associative form on A.
Many results on the structure of Malcev algebras can be obtained from the
results on L.t.s.. We skip the details and just refer to [4] and [6].

REMARK 6. In view of Theorem 1.4 and the remark following it, the
structure of L.t.s.” with nondegenerate Killing forms is completely determined
by that of the simple ones of the same type. If T is a simple L.t.s. over a
field of characteristic zero, nondegeneracy is a superfluous assumption (by
Corollary 2.2) and the structure of such an L.t.s. is known [3, Section IV].
If T is simple over a field of characteristic #2 with nondegenerate Killing
form, the associated Lie algebra L* has nondegenerate Killing form. One then
notes that arguments similar to those of Lister [3] can be given in this
situation also so that T will be one of the following two types: (1) the L.t.s.
T, associated with a simple Lie algebra L with a nondegenerate Killing form
(ii) the simple L.t.s. of skew elements relative to an involutory automorphism
of a simple Lie algebra with a nondegenerate Killing form. The simple Lie
algebras with nondegenerate Killing forms over an algebraically closed field
of characteristic # 2,3,5 have already been classified (see [7, Chapter II, p.47
especially]); they are analogues of the classical simple Lie algebras over
the complex field (with a few excepted). The automorphisms of these alge-
bras have been completely determined by Seligman [8] and they are again-
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found to be the exact analogues of the characteristic zero case (see [1, Chapter
IX, Section 5]). As such an analysis similar to one carried out by Lister
leads to a similar characterization of the simple L.t.s.” with nondegenerate
Killing forms.

REMARK 7. Let L be an involutive Lie algebra, i.e. L is a Lie algebra
with an involutive automorphism ¢ such that L, acts faithfully on L_=T.
Then T is an L.t.s. associated with the ilLa L (see [2]). Conversely, if T
be any L.t.s. and L' be an iLa whose associated L.t.s. is 7, then L, can be
identified with a subalgebra of the derivation algebra 2 (7) containing the
inner derivation algebra 2o(7T) of T (in view of Remark 1). Thus if L' is
an ila with 7 as the associated L.t.s., ay(T)<L.c<2(T), after suitable
identification. In particular, the Lie algebra L* (standard imbedding) as-
sociated with an L.t.s. 7 is determined uniquely (up to isomorphism) as the
iLla L with L_=T and [L_,L_J=L,. Also if the Killing form of T is nonde-
generate, 7T is the associated L.t.s. of an unique iLa, namely L*.

REMARK 8. The study of iLa’s is closely related to that of the affine
symmetric spaces (see [2]): Let G be a connected Lie group with an involutive
automorphism ¢. The totality of fixed points H, of s is a closed subgroup
of G. If H be a closed subgroup of G lying between H, and its identity
component, then the homogeneous space G/H is called a symmetric space
([51). Let also G act effectively on G/H as a transformation group. We
denote again by ¢ the automorphism induced by ¢ on the associated Lie
algebra g of G. Let m=g_ and § be the subalgebra of g corresponding to
the identity component H, of H. Then g=m+§;m=g_ and h=gq.. The effective
action of G on G/H just means that g is an ilLa relative to . G/H is said
to be irreducible if ad(f) is irreducible on m. In this set up, if g is semisim-
ple, then by the preceding Remark [m,m]=}f (see (16.2) of [5]). If G/H
is irreducible then the radical of the L.t.s. m being ad(f)-invariant (by Re-
mark 3) it is either 0 or the whole of m. In the former case m is semisimple;
hence g is semisimple (by the above Remark and Theorem 2.1); in fact m
has to be simple and g will be itself simple or a direct sum of two simple
ideals (see [3, Theorem 2.13]). In the latter case m is a solvable L.t.s.;
[mmm] being again an ad(§)-invariant subspace of m properly contained in m,
[mmm]=0; faithful action of §) on m implies thatfmm]=0 and this is precisely
the assertion of [5, (16.2)]. In other words, the algebraic study of L.t.s.
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may be useful in the geometric study of symmetric spaces.

ADDED 29TH MAY 1974: Professor Yamaguti has kindly pointed out to the
author that there is a certain overlap of material between the present paper
and a paper of Professor J. A. Wolf entitled “On the geometry and clas-
sification of absolute parallellisms I, II”’, appearing in the Journal of differen-
tial geometry (Vol.6: 317-334; Vol.7: 19-44). The author himself since finds
that similar ideas are also developed partly in the lectures on algebras and
triple systems delivered by K. Meyberg at the University of Virginia in 1972.

The author takes this opportunity to record an acknowledgement. Theorem
2.4 of this paper was proved earlier by the author (see [6, Theorem 4. 1) for
Malcev algebras with the assumption of characteristic of the base field F
being#2,3. Dr. Renate Carlsson of Hamburg kindly points out to me that
this result is valid even when the characteristic of F is #2, and that this
follows easily from a result of Meyberg. This is also recofded as Satz 24 in
the Habilitationschrift of Dr. Renate Carlsson submitted to the Hamburg
University in 1966.
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