Kumamoto J. Sci. (Math.) Vol. 11, 9-14 (1974)

A NOTE ON THE ORTHOGONALITY RELATIONS FOR GROUP CHARACTERS

Atumi WATANABE

(Received Dec. 6, 1973)

Let \mathfrak{G} be a group of finite order g and p be a fixed prime number. Let \mathfrak{R}_1 , \mathfrak{R}_2 , \cdots , \mathfrak{R}_k be the classes of conjugate elements in \mathfrak{G} and G_1 , G_2 , \cdots , G_k be a complete system of representatives for the classes. \mathfrak{G} has k absolutely irreducible ordinary characters χ_1 , χ_2 , \cdots , χ_k , which are partitioned into p-blocks B_1, B_2 , \cdots , B_t . The following orthogonality relations are fundamental: If two elements G and H are not conjugate in \mathfrak{G} , then

$$\sum_{i=1}^{k} \chi_i(G) \chi_i(H^{-1}) = 0$$

holds. If two characters χ_i and χ_j are not equal, then

$$\sum_{G \in \mathcal{G}} \chi_i(G) \chi_j(G^{-1}) = 0$$

holds. To the former, R. Brauer added an important result: If two elements G and H belong to different p-sections, i.e., the p-part of G and that of H are not conjugate in \mathfrak{G} , then

$$\sum_{\chi_i \in B_7} \chi_i(G) \chi_i(H^{-1}) = 0$$

holds for each p-block B_{τ} ([1]). To the latter, R. Brauer and M. Osima added independently the following: If χ_i and χ_j belong to different p-blocks, then

$$\sum_{G \in \mathfrak{S}} \chi_i(G) \chi_i(G^{-1}) = 0$$

holds for each p-section \mathfrak{S} ([8]). Moreover, in [7], M. Osima gave the following theorem: If B is a set of characters χ_i such that for each pair of p-regular element R and p-singular element Q,

$$\sum_{\chi_i \in B} \chi_i(R) \chi_i(Q^{-1}) = 0$$

holds, then B is a union of p-blocks B_{τ} .

But p-sections are not best refined for p-blocks in the sense of the above theorem. The symmetric group S_4 and the Mathieu groups M_{22} , M_{23} , M_{24} give such examples for p=2. The purpose of this note is to give a refinement of p-sections where the orthogonality relations hold for p-blocks (§1). On the problem, confer with [4].

Let K be the field of g-th roots of unity, \mathfrak{p} be a prime ideal divisor of p in K, \mathfrak{o} be the ring of \mathfrak{p} -integers in K and $\mathfrak{o}^*=\mathfrak{o}/\mathfrak{p}$ be the residue class field of \mathfrak{o} by \mathfrak{p} . Let Z, Z_0 , Z^* be the centers of the group algebras $K\mathfrak{G}$, $\mathfrak{o}\mathfrak{G}$, $\mathfrak{o}^*\mathfrak{G}$ of \mathfrak{G} over K, \mathfrak{o} , \mathfrak{o}^* , respectively. Let K_1, K_2, \cdots, K_k be the class sums in $\mathfrak{o}\mathfrak{G}$ corresponding to $\mathfrak{R}_1, \mathfrak{R}_2, \cdots, \mathfrak{R}_k$ and $\mathfrak{n}_1, \mathfrak{n}_2, \cdots, \mathfrak{n}_t$ be the block idempotents of Z_0 corresponding to B_1, B_2, \cdots, B_t :

$$\eta_{\tau} = \frac{1}{g} \sum_{\nu} \sum_{\chi_{i} \in B_{\tau}} \chi_{i}(1) \chi_{i}(G_{\nu}^{-1}) K_{\nu},$$

$$K_{\mu} \eta_{\tau} = \frac{\left| \Re_{\mu} \right|}{g} \sum_{\nu} \sum_{\chi_{i} \in B_{\tau}} \chi_{i}(G_{\mu}) \chi_{i}(G_{\nu}^{-1}) K_{\nu}.$$

On account of (1), it seems to us that the study of the block idempotents η_{τ} is successful for our problem.

In §1 and §2, some results on η_{τ} will be given. In §3, for a certain normal subgroup \mathfrak{H} of \mathfrak{G} , we shall relate Proposition [1.2] to the blocks with regard to \mathfrak{H} , referred as " \mathfrak{H} -blocks" (Cf. [6], [2]).

§ 1

Let $\mathfrak D$ be the maximal normal p-subgroup of $\mathfrak G$ and $C(\mathfrak D)$ be the centralizer of $\mathfrak D$ in $\mathfrak G$.

[1.1] We set $\eta_{\tau} = \sum_{\nu} a_{\nu}^{\tau} K_{\nu}$. If a_{ν}^{τ} does not vanish, then \Re_{ν} is contained in $C(\mathfrak{D})$.

PROOF. Let A be the subalgebra of Z_0 spanned by those K_α with $\Re_\alpha \subset C(\mathfrak{D})$ and B be the linear subspace spanned by the remaining class sums K_β . If we set

$$A^* = \{a + \mathfrak{p} Z_0 \in Z^* \mid a \in A\}, B^* = \{b + \mathfrak{p} Z_0 \in Z^* \mid b \in B\},$$

we have $Z^*=A^*\oplus B^*$. Since B^* is a nilpotent ideal in Z^* , the block idempo-

tents of Z^* are all in A^* . As is well known, there is a one to one correspondence between the block idempotents of Z_0 and those of Z^* . The same holds for A and A^* . Hence, the block idempotents of Z_0 coincide with those of A. If $\Re_{\alpha} \subset C(\mathfrak{D})$ then, by [1.1], we have

$$K_{\alpha}\eta_{\tau} = \frac{\left|\Re_{\alpha}\right|}{g} \sum_{\Re_{\gamma} \subset C(\Re)} \sum_{\chi_{i} \in B_{\tau}} \chi_{i}(G_{\alpha}) \chi_{i}(G_{\gamma}^{-1}) K_{\gamma}.$$

Hence, if further $\Re_{\beta} \subset C(\mathfrak{D})$, then

$$\sum_{\chi_i \in B_T} \chi_i(G_\alpha) \chi_i(G_\beta^{-1}) = 0$$

holds. Therefore, we obtain the following proposition:

[1.2] Let \mathfrak{N} be a normal subgroup of \mathfrak{G} containing $C(\mathfrak{D})$. If $\mathfrak{R}_{\alpha} \subset \mathfrak{N}$ and $\mathfrak{R}_{\beta} \subset \mathfrak{N}$, then we have

$$\sum_{\chi_i \in B_7} \chi_i(G_\alpha) \chi_i(G_\beta^{-1}) = 0$$

for each p-block B_{τ} .

In the symmetric group S_4 , [1.2] gives the best refinement of 2-sections for 2-blocks. But in the Mathieu groups M_{22} , M_{23} , M_{24} , the same does not remain valid. Applying Proposition [1.2] to the centralizer C(P) of a p-element P in \mathfrak{G} , by Theorem (6A) in [1] or Theorem 2 in [3], we may refine the p-section of P in \mathfrak{G} again.

§ 2

For an element x of Z_0 , we denote by x^* the element $x+pZ_0$ of Z^* .

[2.1] Let \Re_{ν} be a p-regular class such that K_{ν}^{*} is not nilpotent, then there exists at least one p-block B_{τ} such that $a_{\nu}^{*} \neq 0$, a_{ν}^{*} being in [1.1].

PROOF. We may set $K_{\nu} = \sum_{\rho} b_{\nu\rho} \gamma_{\rho} + r$, where r^* is an element of the radical of Z^* . Let s be the sum of all p-elements of \mathfrak{G} in \mathfrak{oG} . Since, by Lemma 3 in [5], the radical of Z^* is the annihilator ideal of s^* in Z^* , we have

$$K_{\nu}s \equiv \sum_{\rho} b_{\nu\rho} \eta_{\rho} s \not\equiv 0 \pmod{\mathfrak{p} Z_0}.$$

Hence, there is a p-block B_{τ} such that $b_{\nu\tau} \not\equiv 0 \pmod{\mathfrak{p}}$. Let \mathfrak{R}_{μ} be a class such that $a_{\mu}^{\tau} \not\equiv 0 \pmod{\mathfrak{p}}$ and that the defect of \mathfrak{R}_{μ} is equal to the defect of B_{τ} . We compare the coefficients of K_{μ} in both sides of the congruence

(2)
$$K_{\nu} s \eta_{\tau} \equiv b_{\nu \tau} \eta_{\tau} s \pmod{\mathfrak{p} Z_0}.$$

The coefficient of K_{μ} in the left side of (2) is

$$\begin{split} \sum_{\chi_i \in \mathcal{B}_7} \frac{\chi_i(s) \left| \Re_{\nu} \right| \chi_i(G_{\nu}) \chi_i(G_{\mu}^{-1})}{g \chi_i(1)} &= \sum_{\chi_i \in \mathcal{B}_7} \frac{\chi_i(s) \left| \Re_{\nu} \right| \chi_i(G_{\nu}) \left| \Re_{\mu} \right| \chi_i(G_{\mu}^{-1})}{g \left| \Re_{\mu} \right| \chi_i(1)} \\ &\equiv \omega_{i_0}(K_{\mu'}) \sum_{\chi_i \in \mathcal{B}_7} \frac{\chi_i(s) \chi_i(G_{\nu}) \left| \Re_{\nu} \right|}{g \left| \Re_{\mu} \right|} \pmod{\mathfrak{p}}, \end{split}$$

where $\Re_{\mu'}$ is the class containing G_{μ}^{-1} and ω_{i_0} is a linear character of Z which corresponds to a character χ_{i_0} belonging to B_{τ} . Since $\eta_{\tau}s$ is a sum of η_{τ} and a linear combination of those K_{λ} for which \Re_{λ} are p-singular classes, the coefficient of K_{μ} in the right side of (2) is $b_{\nu\tau}a_{\mu}^{\tau}$, which is not congruent to zero modulo \mathfrak{p} . Hence, we get

$$\sum_{\chi_i \in B_7} \chi_i(s) \chi_i(G_{\nu}) \neq 0.$$

Since G_{ν} is a p-regular element and s-1 is a sum of p-singular elements, we have

$$\sum_{\chi_i \in B_{\tau}} \chi_i(s) \chi_i(G_{\nu}) = \sum_{\chi_i \in B_{\tau}} \chi_i(1) \chi_i(G_{\nu}) = g a_{\nu}^{\tau},$$

hence $a_{\nu}^{\tau} \neq 0$.

The following fact is seen from [2.1] also.

[2.2] If \mathfrak{G} has a normal Sylow p-subgroup or has a normal p-complement, then the union of all p-regular classes \mathfrak{R}_{ν} with $\mathfrak{R}_{\nu} \subset C(\mathfrak{D})$ is not refined for p-blocks.

§ 3

Let \mathfrak{F} be a normal subgroup of \mathfrak{F} and $\chi_i | \mathfrak{F}$ be the restriction of χ_i to \mathfrak{F} . By Clifford's theorem, we may set

$$\chi_i \mid \mathfrak{H} = e_i \Psi_{\sigma}$$

where Ψ_{σ} is the sum of all irreducible characters $\psi_{\sigma i}$, $\psi_{\sigma 2}$, \cdots of \mathfrak{F} belonging to a class of associated irreducible characters of \mathfrak{F} in \mathfrak{G} . After Osima [8], we say that two characters χ_i and χ_j belong to the same \mathfrak{F} -block if and only if they correspond to the same Ψ_{σ} . χ_i and χ_j belong to the same \mathfrak{F} -block if and only if

$$\chi_i(H)/\chi_i(1) = \chi_i(H)/\chi_i(1)$$

holds for every $H \in \mathfrak{H}$ ([6], Theorem 7).

For each \mathfrak{F} -block \mathfrak{B}_{σ} , denote by E_{σ} the sum of all primitive idempotents of Z corresponding to those χ_i which belong to \mathfrak{B}_{σ} .

[3.1] We set $E_{\sigma} = \sum_{\nu} \alpha_{\nu}^{\sigma} K_{\nu}$. If $\alpha_{\nu}^{\sigma} \neq 0$, then \Re_{ν} is contained in \Im . Hence, if \Re_{α} is contained in \Im and \Re_{β} is not contained in \Im , then

$$\sum_{\chi_i \in \mathfrak{V}_{\sigma}} \chi_i(G_{\alpha}) \chi_i(G_{\beta}^{-1}) = 0$$

holds for each \mathfrak{H} -block \mathfrak{B}_{σ} . ([2])

If \Re_{ν} is a class contained in \mathfrak{H} , then α_{ν}^{σ} does not vanish for some \mathfrak{B}_{σ} , in fact, for the \mathfrak{H} -block \mathfrak{B}_{σ} which contains the principal character of \mathfrak{G} . Hence, we see that \mathfrak{H} is not refined for \mathfrak{H} -blocks. In the analogous way as in the proof of Theorem 3 in [7], we obtain

[3.2] If $\mathfrak B$ is a set of characters χ_i such that for each element G outside of a normal subgroup $\mathfrak F$ of $\mathfrak G$

$$\sum_{\chi_i \in \mathfrak{B}} \chi_i(1) \chi_i(G^{-1}) = 0$$

holds, then $\mathfrak B$ is a union of $\mathfrak H$ -blocks $\mathfrak B_{\sigma}$.

On account of [1.1] and [3.2], we have

[3.3] If \mathfrak{H} is a normal subgroup of \mathfrak{W} which contains the centralizer of the maximal normal p-subgroup of \mathfrak{W} , then every p-block B_{τ} is a union of \mathfrak{H} -blocks \mathfrak{H}_{σ} .

Proposition [1.2] follows from [3.3] and [3.1] also.

REMARK. Proposition [1.2] and [3.1] correspond to Brauer's orthogonality relations. We have, of course, propositions corresponding to Brauer-Osima's orthogonality relations.

References

- [1] R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung II, Math. Zeitschr. 72 (1959), 25-46.
- [2] K. IIZUKA, Some studies on the orthogonality relations for group characters, Kumamoto J. Sci. Ser. A 5 (1961), 111-118.
- [3] ——, On Brauer's theorem on sections in the theory of blocks of group characters, Math, Zeitschr. 75 (1961), 299-304.
- [4] K. IIZUKA and T. NAKAYAMA, A remark on orthogonality relations in finite groups, Nagoya Math. J. 20 (1962), 185-194.
- [5] K. IIZUKA and A. WATANABE, On the number of blocks of irreducible characters of a finite group with a given defect group, Kumamoto J. Sci. (Math.) 9 (1973), 55-61.
- [6] M. Osima, On the representations of groups of finite order, Math. J. Okayama Univ. 1 (1952), 33-61.
- [7] —, Notes on blocks of group characters, Math. J. Okayama Univ. 4 (1955), 175-188.
- [8] —, On some properties of group characters, Proc. Japan Acad. 36 (1960), 18-21.

Department of Mathematics, Faculty of Science, Kumamoto University