ON MANIFOLDS WITH MANY GEODESIC LOOPS

Masanori KÔZAKI

(Received March 14, 1974)

1. Introduction.

Let M be a complete Riemannian manifold satisfying the following condition:

(*) There exists a point p in M such that all geodesics starting from p are simple geodesic loops and of same length 2l.

Bott [3] and Nakagawa [8] determined the cohomology structure of M. Is the assumption of same length in (*) superfluous ? (Berger [2]) In § 2, we shall show that this assumption is not necessarily required (cf. [7]).

On the other hand, Nakagawa [9] investigated the structure of M satisfying (*), $l \le \pi$ and with sectional curvature $K \le 1$. In § 3, we shall consider the structure of M satisfying (*), $\pi \le l < 3\pi/2$ and with $K \le 1$.

The author wishes to express his hearty thanks Prof. H. Nakagawa for his valuable advices.

Notations

K: the sectional curvature of M.

L(c): the length of geodesic c.

Ind c: the index of geodesic c.

d: the distance function of M.

C(p): the cut locus of a point p. Q(p): the first conjugate locus of p.

 $\dot{c}(t)$: the tangent vector of geodesic c at c(t).

Let us suppose that all geodesics are parameterized by arc length.

2. A generalization of Bott and Nakagawa's theorem.

In this section, we shall give a slight generalization of Bott and Naka-gawa's theorem. The proof is the analogous argument as in Nakagawa [8].

Let M be an $n(\geq 2)$ -dimensional complete Riemannian manifold satisfying the following condition: There exists a point p in M such that all geodesics

starting from p are non-trivial simple geodesic loops and the lengths of these loops depend differentiably on their initial tangent vectors at p. Then we have the following

THEOREM A. If M is simply connected, then M has the same integral cohomology ring as a symmetric space of compact type of rank one. If M is not simply connected, then the universal covering manifold of M is homeomorphic to a sphere.

In order to prove Theorem A, we state some lemmas.

LEMMA 2.1. M is simply connected or a fundamental group of M is of order 2.

LEMMA 2.2. For any geodesic loop c(t) at p, $0 \le t \le L(c)$, p = c(0) = c(L(c)) is a conjugate point of p along c and with multiplicity n-1.

A geodesic segment c in the loop space $\Omega(p,q)$ is said to be of order k, if there exist k real numbers s_1, \dots, s_k satisfying $0 < s_1 < \dots < s_k < L(c)$ and $c(s_i) = p$ for $i = 1, \dots, k$.

LEMMA 2.3. For any geodesic loop σ at p of index μ , there exists a non-degenerate point q in σ different from p such that, for any integer $k \geq 0$, there exist in $\Omega(p,q)$ two and only two geodesic segments σ_1 and σ_2 of order k, whose indices satisfy

Ind
$$\sigma_1 \ge k(n-1)$$
, Ind $\sigma_2 \ge k(n-1) + \mu$.

PROOF. It suffices to show the following: For any point q' sufficiently close to p, there exists no geodesic loop at p passing through q', whose subarcs joining p to q' meet C(p). Suppose that such geodesic loops at p exist. Set $\delta := d(p, C(p))$. For any number $\varepsilon_1 < \delta$, let $U(p, \varepsilon_1)$ be an open ball of center p and radius ε_1 . Then there exist such a geodesic loop c_1 at p and a point q_1 in $U(p, \varepsilon_1)$. Similarly for any number $\varepsilon_2 < d(p, q_1)$, there exist such a geodesic loop c_2 at p and a point q_2 in $U(p, \varepsilon_2)$. By continuing this process, we obtain two sequences $\{\varepsilon_j\}$ and $\{q_j\}$. Suppose that $\varepsilon_j \to 0$ as $j \to \infty$. For a sequence $\{\dot{c}_j(0)\}$, (if necessary, take its subsequence) there exists a geodesic loop p at p such that $c_j \to p$ and $\dot{c}_j(0) \to \dot{r}(0)$. From $q_j \to p$, p is the product of

two simple geodesic loops of length $\geq 2\delta$. This contradicts the continuity of loop lengths. Thus $\epsilon_j \rightarrow \epsilon > 0$, so there exists an open ball U of p such that any point in $U - \{p\}$ has the desired property. Therefore for any point q in $\sigma \cap U - \{p\}$, we obtain that $\Omega(p,q)$ is non-degenerate by using Lemma 2.2.

By applying Morse's fundamental theorem to $\Omega(p,q)$, we have the following two lemmas (cf. Nakagawa [8]).

LEMMA 2.4. In the case $n \ge 3$, if there exists a geodesic loop at p of index 0, then M is not simply connected.

LEMMA 2.5. If M is simply connected, then the index of each geodesic loop c at p satisfies Ind $c \le n-1$. In particular, if $n \ge 3$, $0 < \text{Ind } c \le n-1$.

REMARK. In particular, if M satisfies (*), then the statements of Lemma 2.4 and Lemma 2.5 are true for n=2.

PROOF OF THEOREM A. The first assertion is proved by using Lemma 2.5, the theorem 2.2 of Nakagawa [8] and cohomology theory, and the index of each geodesic loop at p is same and 1,3,7(n=16) or n-1. If M is not simply connected and $n \ge 3$, then each geodesic loop at p is of index 0 by Lemma 2.5, and therefore the universal covering manifold of M is homeomorphic to a sphere (cf. [7]).

3. Restricted loop length.

Firstly we shall show the following

LEMMA 3.1. Let M be an $n(\geq 2)$ -dimensional complete Riemannian manifold satisfying (*). If M is simply connected, then C(p) and Q(p) intersect, and also the converse is true.

PROOF. There exists a point q in C(p) satisfying d(p,C(p))=d(p,q). Suppose that q is not contained in Q(p), then there exist two minimal geodesic segments c_1 and c_2 joining p to q, and $c_1 \circ c_2$ is a geodesic loop at p of length 2d(p,q)=2l. Thus p is the first conjugate point of p along $c_1 \circ c_2$ by Lemma 2.2. Therefore M is not simply connected by Lemma 2.4 and its remark. This is a contradiction.

Restricting loop length of M satisfying (*), we have the following

THEOREM B. Let M be an $n(\geq 2)$ -dimensional complete simply connected Riemannian manifold satisfying (*) and with $K \leq 1$. If $\pi \leq l < 3\pi/2$, then M satisfies $(\Sigma, n-1)$ or $(\Pi, \lambda; 1, 4l/3\pi, 2l/\pi, 4l/3\pi+1)$ in the sense of [5].

PROOF. Let λ be the index of each geodesic loop at p, then λ must be equal to 1,3,7(n=16) or n-1 by proof of Theorem A. By Morse and Schoenberg's theorem (cf. [4,p.176]) and Lemma 2.2, along each loop at p, there are no conjugate points of p in $[0,\pi)$ and there are λ conjugate points in $[\pi,2l-\pi]$. If $\lambda=n-1$, then M satisfies $(\Sigma,n-1)$. If $\lambda=1,3$ or 7(n=16), then M satisfies $(\Pi,\lambda;1,4l/3\pi,\ 2l/\pi,4l/3\pi+1)$. Moreover we have $d(p,C(p))\geq\pi$ from the proof of Lemma 3.1.

REMARK 1. Under the assumption of Theorem B, it seems to us that M is diffeomorphic to a symmetric space of compact type of rank one (cf. [6]). In particular, if $n \neq 4m, m \geq 2$, then M is a homotopical sphere or M has the same homotopy type as a complex projective space by Theorem B and Klingenberg's theorem [5].

Let M be a Kählerian manifold. Let σ be a plane section of M and X, Y an orthonormal pair of tangent vectors of σ . Set $\cos\theta := |\langle X,JY \rangle|$ and moreover $\bar{K}(\sigma) := (1+3\cos^2\theta)/4$, where J is the almost complex structure of M. Then we have the following

THEOREM C. Let M be a complete Kählerian manifold of complex dimension $n(\geq 2)$ satisfying (*) and with $K \leq 1$. If $\pi \leq l < 3\pi/2$, then M has the same homotopy type as a complex projective space. In particular, if $l = \pi$ and K satisfies $K(\sigma) \leq \overline{K}(\sigma)$ for any plane section σ of M, then M is isometric to a complex projective space with constant holomorphic sectional curvature 1.

PROOF. From the proof of Theorem A, M is simply connected and the index of each geodesic loop at p is equal to 1. Therefore the first assertion is proved by remark 1.

We prove the second assertion. Along any geodesic loop at p, the first conjugate point of p is the midpoint of the loop from the proof of Lemma 3.1. For any unit vector X to M at p, take a geodesic c(t) satisfying c(0) = c(t)

 $p, \dot{c}(0) = X$ and then there exists a Jacobi field Y(t) $(\pm 0, 0 < t < \pi)$ along c satisfying $Y(0) = Y(\pi) = 0$. By the same argument as in Nakagawa [9], we obtain that the sectional curvature for the plane section $\sigma(t)$ spanned by $\dot{c}(t)$ and Y(t) is equal to 1. By the assumption $K \leq K$, $\sigma(t)$ must be the holomorphic plane section and then we have $Y(t) = A(\sin t)J\dot{c}(t)$ (A: constant). The holomorphic sectional curvature for X is equal to 1 by the continuity of curvature. Thus by using the proof of [4, p.132], we obtain that all geodesics starting from p in a direction contained in the holomorphic plane section spanned by X and JX form a totally geodesic 2-dimensional sphere with constant curvature 1. This holds for each holomorphic plane section in the tangent space to M at p, and therefore the second assertion is proved.

REMARK 2. Nakagawa [9] conjectured that an even dimensional complete simply connected manifold M satisfying (*), $l=\pi$ and with $K \le 1$ is isometric to a symmetric space of compact type of rank one. Theorem C states that the Kählerian analogue of this conjecture is true under the curvature condition $K \le \overline{K}$.

Finally for manifolds with positive curvature we have the following

THEOREM D. Let M be an $n(\geq 2)$ -dimensional complete Riemannian manifold satisfying (*) and with $K\geq k>0$, where k is a constant. If $\pi/2\sqrt{k}< l\leq \pi/\sqrt{k}$, then M is a homotopical sphere. In particular, if $l=\pi/\sqrt{k}$, then M is isometric to a sphere with constant curvature k.

PROOF. If $\pi/2\sqrt{k} < l \le \pi/\sqrt{k}$, by using Morse and Schoenberg's theorem (cf. [4, p.176]), we have Ind $c \ge n-1$ for any geodesic loop c at p. Thus combining Lemma 2.5 we have Ind c=n-1, from which it follows that M is simply connected. Suppose that M is not a homotopical sphere. By the result of Berger [1], there exists a non-trivial geodesic loop at p whose length is not greater than π/\sqrt{k} . This contradicts the assumption of loop length. Therefore M is a homotopical sphere.

If $l=\pi/\sqrt{k}$, then the midpoint of any geodesic loop at p is the first conjugate point. By the proof of Lemma 3.1, Myers' theorem (cf. [4, p.212]) and Toponogov's theorem (cf. [4, p.213]), M is isometric to a sphere with constant curvature k.

20

References

- [1] M. Berger, On the diameter of some Riemannian manifolds, Technical report, Univ. of California, 1962.
- [2] M. Berger, Lectures on geodesics in Riemannian geometry, Tata Institute, Bombay, 1965, p.134.
- [3] R. Bott, On manifolds all of whose geodesics are closed, Ann. of Math., 60 (1954), 375-382.
- [4] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Springer-Verlag. Lecture note 55, 1968.
- [5] W. Klingenberg, Manifolds with restricted conjugate locus, Ann. of Math., 78 (1963), 527-547
- [6] S. Kobayashi and J. Eells, Problems in differential geometry, Proc. U.S.- Japan Sem. Diff. Geom., Kyoto (1965), p. 169.
- [7] M. Kôzaki, On Riemannian manifolds with certain geodesic loops, to appear in Tamkang J. Math.
- [8] H. Nakagawa, A note on theorems of Bott and Samelson, J. Math. Kyoto Univ., 7 (1967), 205-220.
- [9] H. Nakagawa, Riemannian manifolds with many geodesic loops, J. Math. Soc. Japan, 20 (1968), 648-654.

Saga University