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1. Introduction.

Let M be a complete Riemannian manifold satisfying the following condi-
tion: '
(*) There exists a point p in M such that all geodesics starting from p are
simple geodesic loops and of same length 2I.

Bott [3] and Nakagawa [8] determined the cohomology structure of M.
Is the assumption of same length in (*) superfluous ? (Berger [2]) In § 2,
we shall show that this assumption is not necessarily required (cf. [7]).

On the other hand, Nakagawa [9] investigated the structure of M sati-
sfying (%), /<x and with sectional curvature K<1. In § 3, we shall ‘consider
the structure of M satisfying (%), #<I<37z/2 and with K<1.

The author wishes to express his hearty thanks Prof. H. Nakagawa for
his valuable advices.

Notations

K : the sectional curvature of M.

L(c) : the length of geodesic c.

Ind ¢ : the index of geodesic c.

d : the distance function of M.

C(p) : the cut locus of a point p.

Q(p) : the first conjugate locus of p.

c(?) : the tangent vector of geodesic ¢ at c¢(2).

Let us suppose that all geodesics are parameterized by arc length.

2. A generalization of Bott and Nakagawa’s theorem.

In this section, we shall give a slight generalization of Bott and Naka-
gawa’s theorem. The proof is the analogous argument as in Nakagawa [8].
Let M be an n(=2)-dimensional complete Riemannian manifold satisfying
the following condition: There exists a point p in M such that all geodesics
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starting from p are non-trivial simple geodesic loops and the lengths of these
loops depend differentiably on their initial tangent vectors at p. Then we
have the following

THEOREM A. If M is simply connected, then M has the same integral
cohomology ring as a Symmetric space of compact type of rank one. If M is
not simply conmected, then the universal covering manifold of M is homeomo-
rphic to a sphere.

In order to prove Theorem A, we state some lemmas.

LEMMA 2.1. M is simply connected or a Fundamental group Of M is of
order 2.

LEMMA 2.2. For any geodesic loop c(®) at p, 0Lt =<L(c), p=c(0)=c(L(c))
is a conjugate point of p along c and with multiplicity n—1.

A geodesic segment ¢ in the loop space 2(p,q) is said to be of order &,
if there exist 2 real numbers $, ***°°*, Sk satisfying 0< 5 e oo <5 L(O)
and c¢(s;))=p for i=1, e=>=--, k.

LEMMA 2.3. For any geodesic [00p o at p of index p, there exists a non-
degenerate point q in o different from p such that, for any inlegey E(=0),
“there exist in 2(p,q) two and only two geodesic segments o1 and o, of order k,

whose indices satisfy
Ind o;= k(n—1), Ind g, = E(n—1D+ 1.

PROOF. It suffices to show the following: For any point q' sufficiently
close to p, there exists no geodesic loop at p passing through q', whose subarcs
joining p to g’ meet C(p). Suppose that such geodesic loops at p exist. Set
§:=d(p,C(p)). For any number ;< 8, let U(p,e) be an open ball of center
p and radius &. Then there exist such a geodesic loop ¢ at p and a point
g, in U(p,e). Similarly for any number e, <d (p,qy), there exist such a
geodesic loop ¢, at p and a point ¢: in U(p,e). By continuing this process,
we obtain two sequences {e;} and {g,}. Suppose that ¢;—0 as j—o. For a
sequence {éj(())}, (if necessary, take its subsequence) there exists a geodesic

loop 7 at p such that ¢;,—7 and éj(O)——n'f(O). From ¢q,—p, 7 is the product of
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two simple geodesic loops of length >25. This contradicts the continuity of
loop lengths. Thus e;—¢>>0, so there exists an open ball U of p such that
any point in U-{p} has the desired property. Therefore for any point ¢ in
oN\U-{p}, we obtain that 2(p,q) is non-degenerate by using Lemma 2.2.

By applying Morse’s fundamental theorem to 2(p,q), we have the fol-
lowing two lemmas (cf. Nakagawa [8]).

LEMMA 2.4. In the case n=3, if there exists a geodesic loop at p of index
0, then M is not simply connected.

LEMMA 2.5. If M is simply connected, then the index of each geodesic loop
¢ at p satisfies Ind c<n—1. In particular, if n=3, 0<Ind c<n—1.

REMARK. In particular, if M satisfies (%), then the statements of Lemma
2.4 and Lemma 2.5 are true for n=2.

PROOF OF THEOREM A. The first assertion is proved by using Lemma
2.5, the theorem 2.2 of Nakagawa [8] and cohomology theory, and the index
of each geodesic loop at p is same and 1,3,7(n=16) or n—1. If M is not
simply connected and #>=3, then each geodesic loop at p is of index 0 by
Lemma 2.5, and therefore the universal covering manifold of M is homeomo-
rphic to a sphere (cf. [7]).

3. Restricted loop length.
Firstly we shall show the following

LEMMA 3.1. Let M be an n(=2)-dimensional complete Riemannian wmani-
fold satisfying (x). If M is simply connected, then C(p) and Q(p) intersect,
and also the converse is true.

PROOF. There exists a point ¢ in C(p) satisfying d(p, C(p))=d(p,q).
Suppose that g is not contained in Q(p), then there exist two minimal geo-
desic segments ¢; and ¢, joining p to g, and c¢oc, is a geodesic loop at p of
length 2d(p,q)=2l. Thus p is the first conjugate point of p along cyoc; by
Lemma 2.2. Therefore M is not simply connected by Lemma 2.4 and its
remark. This is a contradiction.
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Restricting loop length of M satisfying (%), we have the following

THEOREM B. Let M be an n(= 2)-dimensional complete simply connected
Riemannian manifold satisfying (¥) and with K<1. If =<1<3n/2, then M
satisfies (3,n—1) or (I, 4, 1,41/3m, 21/, 41/3n+1) in the sense of [5].

PROOF. Let 2 be the index of each geodesic loop at p, then 2 must be equal
to 1,3,7(n=16) or n—1 by proof of Theorem A. By Morse and Schoenberg’s
theorem (cf. [4,p.176]) and Lemma 2.2, along each loop at p, there are no
conjugate points of p in [0,7) and there are 2 conjugate points in [r, 2] — «l.
If 2=n—1, then M satisfies (J,n—1). If 2=1,3 or 7(n=16), then M satisfies
(I, 2;1,41/3r, 21/7,41/3z+1). Moreover we have d(p, C(p))=r from the proof
of Lemma 3.1

REMARK 1. Under the assumption of Theorem B, it seems to us that
M is diffeomorphic to a symmetric space of compact type of rank one (cf.
[6]). In particular, if n¥4m,m=2, then M is a homotopical sphere or M
has the same homotopy type as a complex projective space by Theorem B
and Klingenberg’s theorem [5].

Let M be a Kihlerian manifold. Let ¢ be a plane section of M and X,
Y an orthonormal pair of tangent vectors of o. Set cos0:=|<X,]Y>I and
moreover K(o):=(1+3cos®0)/4, where J is the almost complex structure of

M. Then we have the following

THEOREM C. Let M be a complete Kihlerian manifold of complex dimen-
sion n(=2) satisfying (%) and with K1 If 7<1<3n/2, then M has the same
homotopy type as a complex projective space. In particular, if l==n and K
satisfies K()ZK(o) for any plane section o of M, then M is isomelric to a

complex projective space with constant holomorphic sectional curvature 1.

PROOF. From the proof of Theorem A, M is simply connected and the
index of each geodesic loop at p is equal to 1. Therefore the first assertion
is proved by remark 1.

We prove the second assertion. Along any geodesic loop at 2, the first
conjugate point of p is the midpoint of the loop from the proof of Lemma
3.1. For any unit vector X to M at p, take a geodesic c(?) satisfying c(0)=
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$,6(0)=X and then there exists a Jacobi field Y (&) (£0,0<¢t<n) along ¢
satisfying Y (0)=Y (z)=0. By the same argument as in Nakagawa [9], we
obtain that the sectional curvature for the plane section o(¢#) spanned by ¢(£)
and Y (¢) is equal to 1. By the assumption K<K, o¢(¢) must be the holomorphic
plane section and then we have Y (@) =A(sint)Jc(®) (A: constant). The holo-
morphic sectional curvature for X is equal to 1 by the continuity of curva
ture. Thus by using the proof of [4, p.132]; we obtain that all geodesics
starting from p in a direction contained in the holomorphic plane section
spanned by X and JX form a totally geodesic 2-dimensional sphere with
constant curvature 1. This holds for each holomorphic plane section in the
tangent space to M at p, and therefore the second assertion is proved.

REMARK 2. Nakagawa [9] conjectured that an even dimensional complete
simply connected manifold M satisfying (%), I=r and with K<1 is isometric
to a symmetric space of compact type of rank one. Theorem C states that
the Kahlerian analogue of this conjecture is true under the curvature condition
K<K.

Finally for manifolds with positive curvature we have the following

THEOREM D. Let M be an n(=2)-dimensional complete Riemannian mani-
fold satisfying (¥) and with K=k>0, where k is a constant. If /27 E<I<
x/v/ &, then M is a homotopical spheve. In particular, if I==n/v k, then M is

isometric to a sphere with constant curvature k.

PROOF. If n/2y/ k<I<n/v E, by using Morse and Schoenberg’s theorem
(cf. [4, p.176]), we have Ind c¢=#%n—1 for any geodesic loop ¢ at p. Thus
combining Lemma 2.5 we have Ind c¢=n—1, from which it follows that M is
simply connected. Suppose that M is not a homotopical sphere. By the
result of Berger [1], there exists a non-trivial geodesic loop at p whose length
is not greater than =n/3/%. This contradicts the assumption of loop length.
Therefore M is a homotopical sphere.

If I=n/vy %, then the midpoint of any geodesic loop at p is the first con-
jugate point. By the proof of Lemma 3.1, My.ers’ theorem (cf. [4, p.212])
and Toponogov’s theorem (cf. [4, p.213]), M is isometric to a sphere with

constant curvature k.
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