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§ 1. Introduction

Let 2 be a bounded convex domain in two dimensional Euclidian space R?
and its boundary, say 82, be of a class Cs,. (see p. 7[7TD.

We consider the Dirichlet problem for the quasi-linear degenerate elliptic
equation

Lu = f(x,3,u,Du)uyy + 6, + a(x, y,u,Du) =0 (1)

with boundary condition

#|:0=0, 2)
ou Ou . ‘
where f>0, Du = (E, 5—y> and the equation (1) has been obtained by the
equation
0 0 . /
E ao(xyy1 u:Du) + —67 511(x,y, u’Du) + b(x’y’ u:-Du) =0 ( 1 ) .

For the equation
ymuyy + Uz — F(x,y, #,Du) = 0 (gg [yZ op

the interesting results have been given by M. V. Keldysh, M. L. Aliev and many
authors. Our concern here is with the case two dimensional Lebesgue measure
of {(%,3): f(x,3,u(x,3),Du(x,9)) = 0} is non-negative. In fact, in our theorem,
the above set which we denote by A will have no restriction neither AC 82 nor
mes A =0 (cf. Dubinski [47, [5 ).

Our aim is to show the existence of Lipschitz continuous solutions of the
Dirichlet problem (1), (2) in Sobolev space Wé (2 (see p.4[7]). A central
position in the discussion is a construction of barrier function to obtain the
bound of the solutions and their derivatives for elliptic regularized equations
of (1). These procedures are greatly indebted to J. Serrin, O. A. Ladyzhens-
kaya, N. N. Ural’tseva, A. M. II'in, O. A. Oleinik and so many authors. "
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§ 2. Assumptions and theorem

Throughout this paper we assume that the functions f(x,y,%,p:,0.), a(x,
y, %, p1, p,) are continuously differentiable with their arguments, their derivat-
ives satisfy Holder condition with exponent a with respect to (x,%) in OXR?,
and that f=0.

We set the following conditions for f and a.

(1) [ 05 150, S Cuf (%, y,u, 01, p2)
for some positive constant C; and 7= 1,2.
(2) for=0(f(x 3w b0, 0 (|p| =VpI+p3— )
(3) au(%y, % 01,0,) < —C,<0 for some positive constant C,.
(4) ap, ap, = OCIPD ([PI — o) and Iayléﬁl Cz'p Ir ]azléﬁzczlp[ for
some positive constants C; and 0<6, <1
(5) a=0o(p]D (p|>o
Furthermore, there exists some neighborhood of any closed boundary
portion consisting from the points satisfying (%, (0,1)) &+ 1, » being a unit
inner normal of 0.£2, such that
(6) f(% 9% P10 = o([p]) (|p] — o).
On the other hand, near the boundary points (7,(0,1)) =+1
one of the two conditions, (7), (7)" is valid.
7 a(x,y, %, 1> P2) = 0(f(x,y, ”’Pl:pz) Ip]2>
f 9,0 01,092 > C >0
for sufficiently large |p| and for some positive constant C,
(7)Y —100,1)) ap, (%, y,u, p1; ps) > Cs
@y, (% 3, %, D1, D) <— (1, (0, 1)) Coap, (%, y, %, 1, D)
for positive constants Cs and Cs and for sufficiently large |p].

REMARK The conditions (1), (2), (4), (5), (6) and (7) should be understood
as they hold for any compact set 2 X [— K, K], K being arbitrary, namely they
hold uniformly for («,y) but for # uniformly in the wide sence.

THEOREM Under the above conditions there exists Lipschitz continuous (on
9) weak solution for the problem (1), (2) in the Sobolev space Wi (2.

To prove the theorem we make the elliptic regularization of the problem

@®, @.

Let us consider the equations

LEuE = {f(x’y) u!‘; u!z:y u!y) + 6} usyy + uE.rx + a(xry, ue’ uez, u!z/) = 0 (3)
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with boundary condition
ugl a2 = 0

for any sufficiently small positive e. For the solution u., apriori estimates,
the bounds of #., Du, on the boundary and Dwu. on whole domain, being inde-
pendent of ¢ and of the solutions #., will be given in §84,5 and 6, respectively.
Consequently there will exist {ugn} such that {usn} converges weakly the so-
lution of (1) in W} (2) satisfying the Lipschitz condition (e, — 0). A precise
procedure of the above will be given in §7.

3. Maximum principle

We present in this section a number of maximum principle.

LEMMA 1. (E. Hopf) Let G be a domain in R™ and

Lu= X2 a,;(0Dusz; + 2 b,(Duy, — c(Du in G,
4,5=1 Z=1
W here the coefficients are all continuous in G and x = (X5 wsms s

Assume that
2 a;(a)€,6; =20 for any real vector £ = (&, ..., £)=+0, c(x) =0
2, 7=1 3

and that Lu > 0 for u€C*G), then u(x) does not atiain to positive maximum at
the interior point of G.

LEMMA 2. (Serrin [11]) Let G be a domain in R™ and

L(x,u,Du) = >} a,;(x, 1, Du) Usiz; — a(x,u,Du) in G,
2,7=1

where the coefficients are continuous and continuously differentiable with their

arguments except x.

Furthermore assume that
21 aij(x’ u’ply ceey pn)ﬁé] > 0
i, j=1

for any x,u,p,, ..., p, and real vector &==0,

and that u€C*G). Let w(x) be a function in C*G) such that
"Lw+b)=Lx,w+ b,Dw) (w+8)<0in G

for all constant b>0 and lim sup (u — w) <0 as one approaches any point of

the boundary. Then u<w in G.
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By a slight modification of the lemma, for L in lemma 2 we have

LEMMA 3. Let u,w € CHG)NCYAG)

L(w + ) >0 for any constant b (|b] <mgx]w[ + mgx]uD,
L(u) =0

then the funcion w—uwu doen’t attain to positive maximum at the interior point
of G.

PROOF OF LEMMA 3. The proof is a slight modification of [11] p. 426.

Now by hypothesis
2 a, (%, w+ b, Dw)wxixj — a(x,w + b,Dw) >0,

this inequality being valid for all x in G and all real b(|b| <max|w| + max
G @

|%]). Consequently it will hold for any function #(x). Choosing b= u — w,
we have

23 a;(%, %, Dwdws o; — alx, u, Dw) > 0.

Subtracting the above inequality from L(%) = O,

we obtain
>3 a;;(x, u, Du) (w—u)zixj + linear combination of D(w—wu) > 0.

This means that w — # does not attain to positive maximum at an interior
point of G by virtue of lemma 1.

4. A bound of |ue].

We consider the Dirichlet problem
Loy, = {f(x,y, %e, Dug) + €) Ueyy T Uezz T a(x:y: %, Dug) = 0 (3)

uel =0 (4)

aQ

LEMMA 4. Let the function a(x,y,u,p.,p,) satisfy the condition (3), then
the solutions u., belong to C,(2) N\ C,(D), of the Dirichlet problem (3), (4)
satisfy the following inequality

I ue(x: y) | g Male a(xi y’ 0: 0) O) ] /C2
(z,»)€Q

PROOF. By M; denote the right hand side of the above inequality. Let

ey




QUASI-LINEAR DEGENERATE EQUATIONS 5

w(x,y) = M,. By the use of the mean value theorem
LM, = a(x,y,M,,0,0) = M, a,(x, y,0M,,0,0) + a(x,,0,0,0)
holds for some §(0<6# < 1). By virtue of the condition (3)
LM< -MC,+ M%zx | a(x,3,0,0,0) | <o,

Applying lemma 2, we have #%<M, Similarly we obtain — Uy =— M.
This completes the proof.

5. Boundary estimates of | Du, |
Here we state, on the boundary of 2, the bound of the derivatives of the
solutions #, for the Dirichlet problem (3),(4).

LEMMA 5. Let the functions f and a. satisfy the conditions (3),(5),(6) and
one of the conditions (7) or (7) and the solution ue € C,(2) N Ci(D), then

Max |Du.| < M,

(z,¥)€0Q

where M, is some positive constant independent of u, and .

PROOF. Let S be a closed small portion of the boundary 8..
i) First assume that S doesn’t contain the point (#%,(0,1)) = +1. Further-
more assume that S is represented by the equation

x=¢(y), h<y<kr.

Let ¢(y) be a non-negative twice continuously differentiable function such
that

(9 =PB: h+6=y<k— 34, ¢(3) =0: y<h or y >k,

where & is a sufficiently small positive constant and £>0.
For the function w = e*™**¥®*¢W) and for any constant b, |o]| <M, + 2,
M, being a constant which appeared in the proof of lemma 4, we have

Le(w + b) = {f(x,9,w + b,Dw) + ¢} wyy + wyy + a(x, y,w + b, Dw)
= {f(x;y; w+ b, — aw, aw(go,, =+ Ql’y)) + ¢} a2w<¢y + (l’y)z
— (f + Dawloyy + ¢yy) + *w + alx, y,w + b, — aw, aw(oy + ¢,)).

Let e = M, + 2.
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By the use of conditions (5) and (6), we obtain
L(w + b)>0(a®) + & + ao(a) + 0(a®)>0 (.1
for sufficiently large a.

By G and S*™ we denote the set {(x,y): ¢(3»)<x<o(y) + ¢(»)} and the
portion of S corresponds to x = ¢(y) (A + 0<y<k — ¢), respectively.

Furthermore, by ¢ we denote the part of the boundary of G represented
by x= ¢(y) + ¢(y).

On S* w—u,=e¥ =DM +2, and on o,

w—u| Sw| + max [u.(x)|=1+ qu]us(x)lgl + M, < e
G G

By the inequality (5.1) one can apply lemma 3 to obtain that the function
w — % doesn’t attain to positive maximum in G. With the aid of the above
consideration it reaches to the maximum on all point of S* because of

w—u| =e*<e® and w — u|<e®.
S-8+ a

ow Ou. . ow 0u,
i} - <
Hence o o < 0. Similarly o + on <0 holds. Consequently, on

014,
on

ii) Second, consider the case S contains the points (7, (0,1)) = +1.

Without loss of generality we may consider in the case S doesn’t contain
the points (#,(0,1)) =— 1. Assume that S: y = ¢(x), A<x=E.

Let ¢ be a non-negative twice continuously differentiable function such that

5% |

< constant being independent of u. and e.

(%) =B, h + 0Zx=<k—6,0(x) =0, x<h or x>k,
0 and B being the same as in i).

By G and S* denote the set {(x,y)]¢(x)<y<ga(x) + ¢(x)} and the portion
of S corresponds to y = ¢(x), A + 6=<x<k—4, respectively. And by ¢ we denote
the part of the boundary of G represented by y = ¢(x) + ¢(¥).

Let wls, y) = g® ¥4, then

L(w+0) = {f(x,y,w + b, w(p; + ¢2), — aw) + e}dw + Zwlp, + ¢.)°
+ au)(‘pzz + (L'xx) + a(x, y:w + b, - CZW((DJ; + gz’.r)a_ dlU).

If we assume the all conditions of this lemma except (7)/, we can obtain
L.(w + b)>0 for sufficiently large « similarly to the case i).
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In the case the condition (7)’ is assumed, it holds

L.(w+b) = (f+€)a,2w+a2w(¢x+¢$)2+aw(¢2x+¢xx)+a(x, B0}
—ap,(%, y, w+b, 0 Dw) ae* -V e+ 9
+a, (%, 9, w+b,0Dw)ac™V+**Y (g, +¢.)

for some 60, 0<9<1. Here we have used the mean value theorem.
For sufficiently small ¢;, we can assume that

,Wx"' (/le; ¢xr’< 61-

In fact, the above is obtained for sufficiently small S and B. Thus we obtain,
by the conditions,

L(w + b)>—ae® 7%+ 5 _ positive const.
+ae® 1D (G ClCa >0

for sufficiently large a and small §,. Here we used tha fact that 62 is convex.

Ou-
011
into small pieces to apply the conclusions in i) and ii), we assert that du,/0n

Similarly to i), we obtain , Igconst. on S* Dividing the boundary

are bounded on 0£2. As the derivatives of u. for tangential direction to 02
are zero, the proof is end.

6. Estimates of |Du.| on whole domain

Here we show that the derivatives of the solutions #. for the problem
(3),(4) are bounded by a constant independent of %, and .

L.u, = {(fx, V> Ug, Uz, uzy) ~+e} utyy+uezz+a<x’ Vs U, Uers uey) =0 (3)
Ue| ;0 = 0 (4)
for small ¢>0.

LEMMA 6. Let us assume the conditions of §2 and that the solulions u. of
our problem belong to class CX(2)NCY(D).
Then we have

max |Du,| <M,
(z,y)€d

where M, is some constant independent of u. and e, but it depends on M, M,
appearing in lemmas 5,86.
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PROOF. i) First we show the estimate
max|u.,(x,9)| < M, (6.1)
Q

For brevity, throughout this section, we shall denote #. by =.
Differentiating the equation (3) with respect to y, we obtain

(fy+fu“y+fp1uxy+fp2uw)“w+(f+ ttyyy +bazy
= —(aytauiey+ay vzy+ayuy,). (6.2)

Denote uj by v, namely v=u«2. Multiplying (6.2) by 2u,, we have

Ly = (f+e)vyy+ves
= 2(f+e)uyy2+2uxy2-—(fpluw+ap1)vx—(fp2uw+ap2)uv
_(fﬂvv+fuuyvy) —2(ayuy+auv)

where the argument of f,a and their derivatives is (%,y,%, %, %,). Now we
estimate the last term of the above. By the use of conditions (3) and (4)
and of |u.|<M,

—2(ayuyt+aw) = 2v (—au — ;z” D
)

gzv<c2_ ";v{>>czv
Y

holds for »>G,, where G, is a sufficiently large constant. Hence

Lv=Lv+ (S tbyyt+ap D02+ (fp by +ap vy +fvy+ futtyv, >0
for v>G,.
Applying lemma 1, we see that max v < G, or, that max v is less than mgzgx v
a a
whose estimate has been obtained by lemma 5. This implies (6.1).

ii) Next, we shall estimate max |u.,(x, ).
a
Define w=u," Similarly to i) we obtain
Lw=(f+w,,+w,,

= 2(f+5)uxz/2+2uxr2—‘(fpluyy+apl)wz (6.3
—(Fpytbyyt+ap )Wy —2u1y,(fot futts) —2u(az+auu,)

where the argument of f,e and their derivatives is (x,y,%, %, %,).
Furthermore, we see that
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L(vw) = wLv + vLw + 2{(f+&)v,w,+v,w,}

.4
L#® = 2{(f+e)v+w) —2ua & )

Let d be a constant such that 1/x2+y2§d for all (x,y)EQ. And define

h(x, ) =vw+ kjw+ kgl + "3+,

where ki, k, and k; are positive constant determined later on.
For 2 we have

Lh= (f+edhyy+h,,
= L(vw)+ &, Lw+ k,Lu*+ L3 +®
= 2w{(f+euy +uzy)” + 20 f+ &ty + 4.7
+ 2k ((fteduzy*+ 022"} + 2k, ((f+ v+ w)
+ eSO — fp gyt ap Yoo — (o gy +ap Dy
— 2wu,(ay+ayu,) —2vu.(az+auu,) (6.5)
— 2kius(az+ayu) +2{(f+ev,w, +v,w,}
— 20yt y Fry— 2000, fo—Avwrt,, I,
— 2Rttty (fot fure:) —2k,ua
+ 2kpuv;(fp by, +ay) +2kuty (fp,thyy +as,)
+ ke (fp g, +ay).

Here we used (6.3) and (6.4).
Our aim is to obtain

L'h=Lh+(fpttyy+ap Dbzt fppuyy+ap b, >0.

For this purpose let us estimate the terms of the above.
With the aid of the conditions (3), (4) and in mind that |#,| is bounded
having been already shown, it follows that

]

—2wu,(ay+ay,) —2vu,(a,+ayu,) —2ku,(a, +ayu,)

(6.6)
=2—C|p|*+k.C,|p|*1—6,)>0

for w>G, where %, and G, are sufficietly large constant.
Furthermore, using the conditions (1), (2) and (4), and remembering that
|#| and |wu,| are bounded, an easy computation shows that

[20f+vyw, | < p(f+edwuy,*+v,(f+u,,?
| 20,0, | < prawie, ®+ vyt °

[ 2w 0y, | < psfwn,,*+vsw

| 200,00, Fo | < pafwre,,*+v,
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| dvwu,, fu| < psfwn,,*+vsw

IZkluJ:uyyfx I = k1/lsfwuyy2+k11’s

|2k wttyy Fu| < Fapnfwey,*+ kyaw

|2k2ual = .k,0( lplz)

| 2By0t0,00,, Fp, | < psSfrwtey,20(1) +Ejvs (6.7)
lzkzuuxapll = kzodplz)

| 2k 000, 10y o, | < 120 fr0nt,,+ B v

IZkzm‘yapzl = k0(|p|®

|ksek3(u'0+d)‘zle l — ksek3(r+d)o( ’p

)

for large w, where we used Cauchy-Schwarz's inequality and g; u are the
positive constants determined later on and y; depends only on. g,.
In addition to the above, we obtain also

k3(z+d) _1_ k3cz+d) 2 l k3(z+d)
| kse Fothyy| < o kae Y fpwuy, + 5 ke

, ; (6.8)
— 5 Ese™ D funy P01+ Bse D

here we have used the conditions (1), (2). Recalling
L'h=Lh+(fpttyy~+ap b+ (fp,teyy+ap,)hy,
and inserting (6.6), (6.7), (6.8) into (6.5), we have

L'h =z 20{(f4edhyy* + )"} + 2k {(fF Dthoy*+ 10257
+ 2kaw+ k2" (Ftwu,,?
— Qust put ps+ By pgt B+ 1) fwuy,*
— Cug+ —;— 1:336"3"“"1’)fwuyyzo(l)—,azwux,,,2

&= Vl(f+5>uzy2—'l¢2uxzz—(V3+P5+ k1V7)w
— (8Bt ke PYo(|p|®

— Guthwet k22V8+ k22V9'|' % kseks(x+d)>.

Now we shall determine the constants. First, determine gy, #3, sy, s and
Mg @S

1
ﬂ1+ﬂ3+ﬂ4+#5+#9<'2“ and #,<J,

and k&, as 2k, >vq, v,
Hence, the coefficients of wu,,? fu,.* and u,,” become positive.
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Next, determine gz and u, as kl,ue—l—kl,u7<%,
then

(1—Crt s+t ps+lyps+ by} foney 2 2 0
Furthermore, determine %, as

k2>V3+V5+k1V7, ]
ss as uz<<l, and k; as

z 1
kszeks( +d)>V4+k1Vs+k32Vs+k22V9+ E k3ek3(x+d>,

so that the coefficients of w is larger than %, and constant term become

positive.
Finally choose G; sufficiently large, then for w>G,

fwuyyzg <% k38k3(1+d)+ﬂs) fwuy_y20(1>
and

why—(3k,+ k3™ ) 0 (| p|D>0,

because of |p|°=u,?+u,*wu,*+const. Let G,=max(G,G,), then L'A>0 for

w>G4.
Applying lemma 1 for L'k, we have the estimate

max h(x, y)gnamxh(x, »+G,.
a Q

Remembering the definition of % and that » is less than some constant,

we completes the proof.

7. The proof of the theorem and examplse

Consider the problem (3), (4).
Leue=)(f(%, y, the, Dtte) +e} Ueyy+they o +a(x, y, e, Dug)=0 in 2 (3)
uzlag =0 . (4 )

To guarantee the existence of the solutions for the above problem it is
sufficient that some growth condition of the equation and that d(x,y,u,o, 0,0
u —bu?+b,([ 7], 'p. 373) hold for some constants b, and b,. Apriori estimates
of u. have been obtained in lemmas 4, 5 and 6, so that there is no necessity
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to consider the growth condition. On the other hand, by the condition (3)
and mean value theorem '

a(%,9,%,0,0,Du=a,(x,y,0u,0,0,0)2*<—Cu? 0<0<1,

is valid.
Hence, applying the theorem of Ladyzhenskaya and Ural’tseva [ 7] p. 373, we
obtain the solution %, belonging to C***(2).
By the well-known regularity theorem for elliptic equations, %, €C***(2).
Next, consider the sequence {w} in Wi(2), here

e,—0 as m—soo,

In virtue of lemmas 4 and 6, ||%/;< const. where || |[|; is the norm of the
Sobolev space Wi(2). Hence the sequence {#, } has a weak convergent subse-
quence in the space, whose limit we denote by . It is easily seen that # is
a weak solution of the original problem (1), (2) and it satisfies the Lipschitz

condition on ©. This completes the proof of the theorem.
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