AN APPLICATION OF FUHRKEN'S REDUCTION TECHNIQUE

Hiromitsu OKAZAKI (Received October 31, 1975)

In his paper [2] (cf. also Bell and Slomson [1]), G. Fuhrken obtained several results concerning the existence of models for sentences in first order languages with an additional quantifier. In this paper we concern ourselves with the language L_Q which is formed by adding, to first order language L with equality, an additional quantifier (Qx) with the interpretation "for almost all". We shall show that a Fuhrken type theorem holds for our L_Q as well.

§ 1. The language L_o

Consider the first order logic L with equality and countable lists of predicate symbols, of function symbols and of individual constant symbols. We form the language L_Q by adding to L a new quantifier (Qx) which is read "for almost all x". Thus L_Q has the three quantifiers $(\mathcal{I}x)$, $(\mathcal{V}x)$ and (Qx). The set of formulas of L_Q is the least \mathcal{O} which contains all atomic formulas of L and has the property: If $\phi, \psi \in \mathcal{O}$ and y is a variable, then $\neg \phi, \phi \lor \psi, \phi \lor \psi, (\mathcal{I}y)\phi, (\mathcal{V}y)\phi, (\mathcal{Q}y)\phi \in \mathcal{O}$. We make the convention that $\phi(v_1,\ldots,v_n)$ denotes a formula of L_Q whose free variables form a subset of $\{v_1,\ldots,v_n\}$. Sentences are formulas without free variables. By a weak model for L_Q (Keisler [3]) we mean a pair $(\mathfrak{A},\mathfrak{F})$ such that \mathfrak{A} is a model for the first order language L and \mathfrak{F} is a set of subsets of the universe $|\mathfrak{A}|$ of \mathfrak{A} , i.e. $F \subseteq S(|\mathfrak{A}|)$. The notion that an n-tuple $(\mathcal{A}_1,\ldots,\mathcal{A}_n)$, (\mathcal{A}_n) , (\mathcal{A}_n) is defined by induction on the complexity of (\mathcal{A}_n) , and denoted by

$$(\mathfrak{A},\mathfrak{F}) \models \phi [a_1, \ldots, a_n].$$

The (Qx) clause in the definition is:

$$(\mathfrak{A},\mathfrak{F}) \ \big| \equiv (Qv) \psi(v) \ [a_1, \ldots, a_n]$$

if and only if

$$\{b\in |\mathfrak{N}|\ \big|\, (\mathfrak{N},\mathfrak{F})\ \equiv\ \phi\ [b,a_1,\ \ldots,\ a_n]\}\in \mathfrak{F}.$$

The other cases in the definition are familiar ones for L.

§ 2. Fuhrken's reduction technique

We associate with each formula ϕ of L_Q a formula ϕ' of L_Q , defined by the following recursion:

- (A) If ϕ is atomic, $\phi' = \phi$ and $(\nearrow \phi)' = \nearrow \phi$;
- (B) $(77\phi)' = \phi'$;
- (C) $(\phi \wedge \phi)' = \phi' \wedge \phi';$
- (D) $(\mathcal{T}(\phi \wedge \psi))' = (\mathcal{T}\phi)' \vee (\mathcal{T}\psi)'$;
- (E) $(\phi \lor \phi)' = \phi' \lor \phi'$;
- (F) $(\angle (\phi \lor \psi))' = (\angle \phi)' \land (\angle \psi)';$
- (G) $((\mathcal{I}v)\phi(v))'=(\mathcal{I}v)(\phi(v))';$
- (I) $((\forall v)\phi(v))'=(\forall v)(\phi(v))';$
- (J) $(\nearrow(\forall v)\phi(v))'=(\exists v)(\nearrow\phi(v))';$
- (K) $((Qv)\phi(v))'=(Qv)(\phi(v))';$
- (L) $(\angle (Qv)\phi(v))' = (Qv)(\angle \phi(v))'.$

For each set Σ of sentences of $L_{\it Q}$, let

$$\Sigma' = \{ \sigma' \mid \sigma \in \Sigma \}.$$

The following lemma is trivial.

LEMMA 1. If $\neg \phi$ is a subformula of a sentence of Σ' , ϕ is an atomic formula.

LEMMA 2. Let $(\mathfrak{A},\mathfrak{F})$ be a weak model and \mathfrak{F} be an ultrafilter over $|\mathfrak{A}|$. Then

$$(\mathfrak{A},\mathfrak{F}) \models \Sigma \text{ iff } (\mathfrak{A},\mathfrak{F}) \models \Sigma'.$$

PROOF. Let $\phi(v_1, \ldots, v_n)$ be a subformula of a sentence of Σ and a_1, \ldots, a_n be elements of $|\mathfrak{A}|$. We shall show

(1)
$$(\mathfrak{A},\mathfrak{F}) \models \phi [a_1, \ldots, a_n] \text{ iff } (\mathfrak{A},\mathfrak{F}) \models \phi' [a_1, \ldots, a_n]$$

by induction on the construction of ϕ . The only non-trivial step is (L). Assume that (1) holds for the formula $\nabla \phi(v,v_1,\ldots,v_n)$ and $a_1,\ldots,a_n\in |\mathfrak{A}|$. Let

$$(2) T = \{c \in |\mathfrak{A}| \mid (\mathfrak{A}, \mathfrak{F}) \models \neg \psi[c, a_1, \ldots, a_n]\}.$$

Then by the induction hypothesis

$$T = \{c \in |\mathfrak{N}| \mid (\mathfrak{N}, \mathfrak{F}) \models (\neg \psi)' [c, a_1, \ldots, a_n]\}.$$

By the definition of satisfaction

$$(\mathfrak{A},\mathfrak{F}) \models (Qv) (\not \neg \psi(v))' [a_1, \ldots, a_n] \text{ iff } T \in \mathfrak{F}.$$

On the other hand,

$$(\mathfrak{A},\mathfrak{F}) \models \mathbb{Z} (Qv)\psi(v) [a_1, \ldots, a_n]$$

if and only if

$$\{c \in |\mathfrak{A}| \mid (\mathfrak{A}, \mathfrak{F}) \models \phi[c, a_1, \ldots, a_n]\} \notin \mathfrak{F}.$$

This means by (2)

$$(\mathfrak{N},\mathfrak{F}) \models \mathbb{Z}(Qv)\phi(v) [a_1, \ldots, a_n] \text{ iff } T \in \mathfrak{F}.$$

Therefore by the definition of (L) and above results

$$(\mathfrak{A},\mathfrak{F}) \models \mathbb{Z}(Qv)\psi(v) [a_1, \ldots, a_n]$$

if and only if

$$(\mathfrak{A},\mathfrak{F}) \models (\mathbb{Z}(Qv)\phi(v))'[a_1,\ldots,a_n].$$
 q. e. d.

We let L^* be the language obtained from L by adding a new binary predicate letter H. We associate with each formula ϕ of L_Q a formula ϕ^* of L^* , defined by the following recursion:

- (1°) If ϕ is an atomic formula, $\phi^* = \phi$;
- $(2^{\circ}) (7\phi)^* = 7\phi^*;$
- (3°) $(\phi \wedge \phi)^* = \phi^* \wedge \phi^*$;
- (4°) $(\phi \lor \psi)^* = \phi^* \lor \psi^*$;
- (5°) $((\mathcal{I}v)\phi(v))^* = (\mathcal{I}v)(\phi(v))^*$;
- (6°) $((\forall v)\phi(v))^* = (\forall v) (\phi(v))^*;$
- $(7^{\circ}) \quad ((Qv)\phi(v))^* = (\Im u) (\forall v) \{H(v,u) \rightarrow (\phi(v))^*\},$

where u is the first variable occurring after all those variable in $(\phi(v))^*$ in the list of the variables.

Next we associate with each Σ of sentences L_Q a set Σ^* of sentences of L^* . Σ^* consists of all the following sentences:

- (a) All the sentences σ^* for $\sigma \in \Sigma$;
- (b) $(\forall v_0) (\exists v_1) H(v_1, v_0);$
- $(c) \quad (\forall v_0)(\forall v_1)(\exists v_2)(\forall v_3) \quad \{H(v_3,v_0) \land H(v_3,v_1) \leftrightarrow H(v_3,v_2)\}.$

LEMMA 3. Let Σ be a countable set of sentences of L_Q and N be an infinite structure. The following conditions are equivalent.

- (i) There exists an ultrafilter \mathfrak{F} over $|\mathfrak{A}|$ such that $(\mathfrak{A},\mathfrak{F}) \models \Sigma'$.
- (ii) There exists a binary relation R on $|\mathfrak{A}|$ such that $(\mathfrak{A},R) \equiv \Sigma'^*$.

PROOF. (i) \Rightarrow (ii). Suppose that \mathfrak{F} is an ultrafilter over $|\mathfrak{A}|$ such that $(\mathfrak{A},\mathfrak{F}) \models \Sigma'$. Let \mathscr{A} be the collection of all those set $S \in \mathfrak{F}$ such that

$$S = \{b \in |\mathfrak{A}| \mid (\mathfrak{A}, \mathfrak{F}) \models \psi[b, a_1, \ldots, a_n]\}$$

for some subformula $(Qv)\phi(v,v_1,\ldots,v_n)$ of a sentence in Σ' and some sequence $a_1,\ldots,a_n\in |\mathfrak{A}|$. Let \mathscr{B} be the set of all finite intersections of the elements of \mathscr{A} . \mathscr{B} is a subset of \mathfrak{F} since \mathfrak{F} is a lifter. Clearly $\overline{\overline{\mathscr{B}}} \leq |\overline{\mathfrak{A}}|$. Let f be a map of $|\mathfrak{A}|$ onto \mathscr{B} and R be the binary relation defined on $|\mathfrak{A}|$ by

$$\langle b, a \rangle \in R$$
 if $b \in f(a)$.

From the construction of R it is clear that (\mathfrak{A},R) is a model of sentences (b) and (c) above. We shall show that (\mathfrak{A},R) is a model of other sentences of Σ'^* by proving that for all subformula $\phi(v_1,\ldots,v_n)$ of sentences in Σ' and all $a_1,\ldots,a_n\in |\mathfrak{A}|$,

(3)
$$(\mathfrak{A}, \mathfrak{F}) \models \phi[a_1, \ldots, a_n] \text{ iff } (\mathfrak{A}, R) \models \phi^*[a_1, \ldots, a_n].$$

The proof is by induction on the number of longical symbols in $\phi(v_1, \ldots, v_n)$. Cleary (3) holds for the atomic formulas and for the formula $\nearrow \phi, \phi \land \psi, \phi \lor \psi$, $(\not\exists v)\phi$ and $(\not\forall v)\phi$ whenever (3) holds for ϕ and ψ . Assume that (3) holds for $\psi(v,v_1,\ldots,v_n)$ and $(\mathfrak{A},\mathfrak{F})\models (Qv)\psi(v)[a_1,\ldots,a_n]$. Let

$$(4) S = \{a \in |\mathfrak{A}| \mid (\mathfrak{A}, \mathfrak{F}) \models \psi[a, a_1, \ldots, a_n]\},$$

then $S \in \mathfrak{F}$. There exists $\alpha \in |\mathfrak{A}|$ such that

$$(5) S=f(a)=R''\{a\}.$$

On the other hand by the hypothesis, for $c \in S$

(6)
$$(\mathfrak{A},\mathfrak{F}) \models \psi [c,a_1,\ldots,a_n] \text{ iff } (\mathfrak{A},R) \models \psi^*[c,a_1,\ldots,a_n].$$

By (4), (5) and (6), it follows that

$$(\mathfrak{A}, R) \models (\mathfrak{F}u) (\mathfrak{F}v) \{ H(v, u) \rightarrow (\phi(v))^* \} [a_1, \ldots, a_n],$$

that is

$$(\mathfrak{A}, R) \models ((Qv)\phi(v))^* [a_1, \ldots, a_n].$$

The converse direction of (3) is proved similarly.

(ii) \Rightarrow (i). Assume that R is a binary relation on $|\mathfrak{A}|$ such that $(\mathfrak{A},R) \models \Sigma'^*$. Since (\mathfrak{A},R) is a model of the sentences (b) and (c), $\{R''\{a\} \mid a \in |\mathfrak{A}|\}$ has the finite intersection property. Let \mathfrak{F} be an ultrafilter containing it. We shall prove that $(\mathfrak{A},\mathfrak{F}) \models \Sigma'$ by showing that

(7)
$$(\mathfrak{A}, \mathfrak{F}) \models \phi[a_1, \ldots, a_n] \text{ if } (\mathfrak{A}, R) \models \phi^*[a_1, \ldots a_n]$$

for any subformula $\phi(v_1, \ldots, v_n)$ of some sentence in Σ' and $a, \ldots, a_n \in |\mathfrak{A}|$. Again the proof will be curried out by induction on the number of the logical symbols in ϕ . If ϕ is an atomic formula, clearly we have

$$(\mathfrak{A},\mathfrak{F}) \models \phi[a_1, \ldots, a_n] \text{ iff } (\mathfrak{A}, R) \models \phi^*[a_1, \ldots, a_n].$$

If $\neg \psi(v_1, \ldots, v_n)$ is a subformula of a sentence of Σ' , ψ is an atomic formula by the lemma 1. Therefore

$$(\mathfrak{A},\mathfrak{F}) \models \mathbb{Z} \psi[a_1, \ldots, a_n]$$
 iff $(\mathfrak{A}, R) \models (\mathbb{Z} \psi)^* [a_1, \ldots, a_n]$.

We shall show that (7) holds also for $(Qv)\phi(v,v_1,\ldots,v_n)$. Suppose that

$$(\mathfrak{A}, R) \models ((Qv)\phi(v))^* [a_1, \ldots, a_n].$$

This means

$$(\mathfrak{A}, R) \models (\mathfrak{F}u) (\forall v) \{H(v, u) \rightarrow (\psi(v))^*\} [a_1, \ldots, a_n].$$

Then there exists $a \in |\mathfrak{A}|$ such that

$$R''\{a\} \subseteq \{c \mid (\mathfrak{A}, R) \models \phi^* [c, a_1, \ldots, a_n]\}.$$

By the induction hypothesis,

$$R''\{a\} \subseteq \{c \mid (\mathfrak{A}, \mathfrak{F}) \models \phi[c, a_1, \ldots, a_n]\}.$$

From the definition of the ultrafilter $\mathfrak{F}, R''\{a\} \in \mathfrak{F}$. Therefore

$$(\mathfrak{A},\mathfrak{F}) \models (Qv)\psi[a_1,\ldots,a_n].$$

The other cases are trivial. This complete the proof of (7) and hence that

of the lemma 3. q.e.d.

By the lemma 2 and the lemma 3, we have the following theorem.

THEOREM 1. Let Σ be a countable set of sentences of L_Q and $\mathfrak A$ be an infinite structure. There exists an ultrafilter $\mathfrak F$ over $|\mathfrak A|$ such that $(\mathfrak A,\mathfrak F) \models \Sigma$ iff there exists a binary relation R on $|\mathfrak A|$ such that $(\mathfrak A,R) \models \Sigma'^*$.

The following theorem is proved similarly.

THEOREM 2. Let Σ be a countable set of sentences of L_Q and $\mathfrak A$ be an infinite structure. There exists a filter $\mathfrak B$ over $|\mathfrak A|$ such that $(\mathfrak A,\mathfrak B) \models \Sigma$ iff there exists a binary relation P on $|\mathfrak A|$ such that $(\mathfrak A,P) \models \Sigma^*$.

References

- [1] Bell, J. L. and Slomson, A. B.; Models and Ultraproducts, North-Holland, Amsterdam, 1969.
- [2] Fuhrken, G.; Skolem-type normal forms for first order languages with a generalized quantifier, Fund. Math., 54, 1964, pp. 291-302.
- [3] Keisler, H. Jerome; Logic with the quantifier "there exist uncountably many", Annals of mathematical logic, 1, 1970, pp. 1-93.

Department of Mathematics, Faculty of Education, Kumamoto University