A REMARK ON THE INDUDTION THEOREM FOR MODULAR CHARACTERS

Atumi WATANABE

(Received October 31, 1975)

Let G be a finite group and $\mathfrak{E}(G)$ be the family of elementary subgroups of G. Brauer's induction theorem with its converse given by Green [3] reads as: Let \mathfrak{F} be a family of subgroups of G. Then the followings are equivalent to each other.

- (A) For any $E \in \mathfrak{G}(G)$, some member $H \in \mathfrak{H}$ contains a subgroup which is conjugate (in G) to E.
- (B) Any character of G can be expressed as a linear combination of characters induced from characters of the subgroups $H \in \mathfrak{F}$ with rational integral coefficients.
- (C) A class function ψ on G is a generalized character of G if the restriction $\psi_{|_H}$ of ψ to H is a generalized character, for every $H \in \mathfrak{F}$. Further, an analogue of the induction theorem was established for modular characters for p, p a prime number (R. Brauer [1], Theorem 5 and J. P. Serre [5], Theorem 39).

Recently, W. F. Reynolds, in § 7 of [4], has worked relating to the above. We shall describe the outline of his results in order to show our aim exactly. Let \mathscr{V}_G be the character ring of G over the field C of comlex numbers and \mathscr{I}_G be the character ring of G over the ring G of rational integers. For a subset \mathscr{U}_G of \mathscr{V}_G and for a subset G of G, we denote $\{\theta \in \mathscr{U} | \theta(g) = 0 \text{ if } g \notin S\}$ by $\mathscr{U}_G(S)$. Let G be a fixed set of prime numbers. We put G be put G be a fixed set of prime numbers. We put G be a fixed set of all G be and G and G be a fixed set of all G be a fixed set of all G be a fixed set of all G be an anomaly G be an anomaly G be an anomaly G be a fixed set of all G be a fixed set of all G be an anomaly G be an anomaly G be a fixed set of all G be a fixed set of G and where G be a fixed set of all G be a fixed set of G and where G be a fixed set of G and where G be a fixed set of G and G be a fixed set of G and G be a fixed set of G and where G be a fixed set of G and G a

I₀ (Theorem 7.3 in [4]) Let $\mathfrak{E}_0(G,\pi)$ be the subfamily of $\mathfrak{E}(G)$ which consists of all $E=< x> \times Q$ with $x\in G_{\pi'}$. If \mathfrak{F} is a family of subgroups of G, the followings are equivalent.

 (a_0) $\mathfrak{E}_0(G,\pi) \underset{G}{\leqslant} \mathfrak{H}$, that is, any $E \in \mathfrak{E}_0(G,\pi)$ is conjugate to a subgroup contained in some $H \in \mathfrak{H}$.

$$(b_0)$$
 $\{\sum_{H \in \mathfrak{G}} (\zeta_H)^G \mid \zeta_H \in M_H\} = M_{G_{\bullet}}$

(c₀)
$$\{\theta \in V_G \mid \theta|_H \in P_H \text{ for all } H \in \mathfrak{H}\} = P_G$$
.

 Π_0 (Theorem 7.4 in [4] Let $\mathfrak{F}_0(G,\pi)$ be a subfamily of $\mathfrak{F}_0(G,\pi)$, which consists of all $E \in \mathfrak{F}(G)$ with $E \subseteq G_{\pi'}$, and let \mathfrak{F} be a family of subgroups of G such that

$$(d_0)$$
 $\mathfrak{F}_0(G,\pi) \leqslant \mathfrak{F}_0$.

Then

$$(e_0)$$
 $\left\{\sum_{H\in\mathfrak{H}}(\theta_H)^G \middle| \theta_H\in P_H\right\} = P_{G\bullet}$

$$(f_0) \ \{\zeta \in V_G \, \big| \, \zeta_{\big|_H} \in M_H \ \textit{for all} \ H \in \mathfrak{H}\} = M_G.$$

Let x be a π -element of G and $i_{x,G}^{\pi}$ be the bijection of $V_{C_G(x)}$ onto $\mathscr{V}_G(S(x))$ defined by $(i_{x,G}^{\pi}\alpha)$ $(xy)=\alpha(y)$, $\alpha\in V_{C_G(x)}$, $y\in (C_G(x))_{\pi'}$, where S(x) is the π -section containing x. For a complete system of representatives x_1 , x_2 , \cdots for the conjugate classes of π -elements in G, we put

$$\mathcal{P}_{\mathcal{G}} = \oplus \mathop{\textstyle \sum}_{\mathfrak{m}} i^{\scriptscriptstyle \pi}_{z_{\mathfrak{m}},\,\mathcal{G}}(P_{\mathcal{C}_{\mathcal{G}}(x_{\mathfrak{m}})}), \quad \mathcal{M}_{\mathcal{G}} = \oplus \mathop{\textstyle \sum}_{\mathfrak{m}} i^{\scriptscriptstyle \pi}_{z,\,\mathcal{G}}(M_{\mathcal{C}_{\mathcal{G}}(x_{\mathfrak{m}})}).$$

I (Theorem 7.1 in [4]) If \mathfrak{H} is a family of subgroups of G, the followings are equivalent.

(a)
$$\mathfrak{E}(G) \leqslant \mathfrak{H}$$
.

(b)
$$\left\{\sum_{H\in\mathfrak{H}}(\zeta_H)^G\,\middle|\,\zeta_H\in\mathscr{M}_H\right\}=\mathscr{M}_G.$$

(c)
$$\{\theta \in \mathscr{V}_G \mid \theta \mid_H \in \mathscr{P}_H \text{ for all } H \in \mathfrak{H}\} = \mathscr{P}_G$$
.

II (Theorem 7.2 in [4]) Let $\mathfrak{F}(G,\pi)$ be a subfamlly of $\mathfrak{F}(G)$, which consists of all $E=\langle x\rangle\times Q$ with $Q\subseteq G_{\pi'}$ and let \mathfrak{F} be a family of subgroups of G such that

$$(d)$$
 $\mathfrak{F}(G,\pi) \leqslant \mathfrak{F}.$

Then

(e)
$$\left\{\sum_{H\in\mathfrak{H}}(\theta_H)^G\middle|\theta_H\in\mathscr{P}_H\right\}=\mathscr{P}_G,$$

$$(f) \quad \{\zeta \in \mathscr{V}_G \, \big| \, \zeta_{\big|_H} \in \mathscr{M}_H \text{ for all } H \in \mathfrak{H}\} = \mathscr{M}_G.$$

Our aim is to give an improvement of II_0 and II, which has the same form as I_0 and I:

 Π_0' Let $\mathfrak F$ be a family of subgroups of G. The followings are equivalent.

- (d_0) $\mathfrak{F}_0(G,\pi) \leqslant \mathfrak{F}$.
- $(e_0) \left\{ \sum_{H \in \mathfrak{H}} (\theta_H)^G \middle| \theta_H \in P_H \right\} = P_G.$
- (f₀) $\{\zeta \in V_G \mid \zeta_{\mid_H} \in M_H \text{ for all } H \in \mathfrak{H}\} = M_G.$

 II' Let $\mathfrak F$ be a family of subgroups of G. The followings are equivalent.

- (d) $\mathfrak{F}(G,\pi) \leqslant \mathfrak{H}$.
- (e) $\left\{\sum_{H\in\mathfrak{H}}(\theta_H)^G\,\middle|\,\,\theta_H\in\mathscr{P}_H\right\}=\mathscr{P}_G.$
- $(f) \ \{\zeta \in \mathscr{V}_G \big| \ \zeta_{|_H} \in \mathscr{M}_H \ for \ all \ H \in \mathfrak{H}\} = \mathscr{M}_G.$

Some preliminaly results

For the completeness, we refer some results. Let ε_G^{π} be the characteristic function of the subset $G_{\pi'}$ of G. It is easy to see from Frobenius' theorem (C. W. Curtis and I. Reiner [2], Corollary (41.9)) that $|G|_{\pi} \varepsilon_G^{\pi} \in P_G$, where $|G|_{\pi}$ is the π -part of the order |G| of G. Since $|G|_{\pi} \mathscr{F}_G \varepsilon_G^{\pi} \subseteq P_G \subseteq \mathscr{F}_G \varepsilon_G^{\pi}$, the \mathbb{Z} -rank of P_G is equal to that of $\mathscr{F}_G \varepsilon_G^{\pi}$. We have

$$\mathscr{V}_G = C \otimes_Q (Q \otimes_Z \mathscr{I}_G) = C \otimes_Q \big[(Q \otimes_Z \mathscr{I}_G) \ \varepsilon_G^{\pi} \big] \oplus C \otimes_Q \big[(Q \otimes_Z \mathscr{I}_G) (1 - \varepsilon_G^{\pi}) \big].$$

Since $C \otimes_Q [(Q \otimes_Z \mathscr{I}_G) \varepsilon_G^{\pi}]$ and $C \otimes_Q [(Q \otimes_Z \mathscr{I}_G) (1-\varepsilon_G^{\pi})]$ are contained in $\mathscr{V}_G \varepsilon_G^{\pi}$ and $\mathscr{V}_G (1-\varepsilon_G^{\pi})$, respectively, we have $V_G = \mathscr{V}_G \varepsilon_G^{\pi} = C \otimes_Q [(Q \otimes_Z \mathscr{I}_G) \varepsilon_G^{\pi}]$. Hence we obtain the following: P_G is an algebra and a free Z-module of rank $I(G,\pi)$, where $I(G,\pi)$ is the number of conjugate classes of π' -elements in G. Any Z-basis $\{\emptyset_j \mid 1 \le j \le l \ (G,\pi)\}$ of P_G is a C-basis of V_G . (M. Suzuki [6], Theorem 2) Therefore, for each $j(1 \le j \le l \ (G,\pi))$, there exists $\phi_j \in V_G$ such that $(\phi_j,\emptyset_h)_G = \delta_{jh} \ (1 \le h \le l \ (G,\pi))$, and $\{\phi_j \mid 1 \le j \le l \ (G,\pi)\}$ form a Z-basis of M_G . For a family \mathfrak{P}_G of subgroups of G, we put $P_{\mathfrak{P}}^G = \{\sum_{H \in \mathfrak{P}} (\theta_H)^G \mid \theta_H \in P_H\}$ and put $GM_{\mathfrak{P}} = \{\zeta \in V_G \mid \zeta_{\mid H} \in M_H \text{ for all } H \in \mathfrak{P}_{\mathfrak{P}}\}$, then we have $\{\zeta \in V_G \mid (\zeta,\theta)_G \in Z \text{ for all } \theta \in P_{\mathfrak{P}}^G\} = GM_{\mathfrak{P}}$. From the above and the invariant factor theorem for modules we can see that (e_0) and (f_0) (e) and (f) are equivalent.

Proof of \mathbf{H}_0' To prove \mathbf{H}_0' , we have to show (e_0) yields (d_0) . We assume (e_0) for a family $\mathfrak H$ of subgroups of G. We can write $|G|_\pi \varepsilon_G^\pi = \sum\limits_{H \in \mathfrak H} (\theta_H)^G$, $\theta_H \in P_H$. Let $E(\mathfrak H_0)(G,\pi)$ and $E=\langle x \rangle \times Q$, where Q is a q-group and $\langle x \rangle$ is q'-group for some prime number q, $q \not = \pi$. Since $|G|_\pi \varepsilon_G^\pi(x) = |G|_\pi$, a π -number, and every $(\theta_H)^G(x)$ is an algebraic integer, there exists $H \in \mathfrak H$ such that $(\theta_H)^G(x)$ is not divisible by q. Let y_1, y_2, \cdots be a complete system of representatives for the double cosets of G with respect to $C_G(x)$, H. We have $(\theta_H)^G(x) = \sum\limits_{x^{y_j} \in H} |C_G(x)|/|C_G(x) \cap H^{y_j^{-1}}| \theta_H(x^{y_j})$. Since every $\theta_H(x^{y_j})$ is an algebraic integer, there exists y_j such that $x^{y_j} \in H$ and that $|C_G(x)|/|C_G(x) \cap H^{y_j^{-1}}|$ is not divisible by q. Hence, some conjugate of any q-Sylow subgroup of $C_G(x)$ is contained in $C_G(x) \cap H^{y_j^{-1}}$, so Q^u is contained in $H^{y_j^{-1}}$ for some $u \in C_G(x)$. Thus we see $(\langle x \rangle \times Q)^u = \langle x \rangle \times Q^u \subseteq H^{y_j^{-1}}$. This completes the proof.

Proof of II' Let x be an arbitrarily given π -element of G. For $\widetilde{H} \in \mathfrak{F}_0$ $(C_G(x), \pi)$ and for $\alpha_{\widetilde{H}} \in P_{\widetilde{H}}$, we have $\alpha_{\widetilde{H}}^{< x > \times \widetilde{H}} \in P_{< x > \times \widetilde{H}}$ and

$$(1) i_{x,G}^{\pi}(\alpha_{\tilde{H}}^{C_{G(x)}}) = (i_{x,\langle x \rangle \times \tilde{H}}^{\pi}(\alpha_{\tilde{H}}^{\langle x \rangle \times \tilde{H}}))^{G}.$$

Let H be a subgroup of G which contains x. For $\alpha_H \in P_{C_H(x)}$, we have

(2)
$$(i_{x,H}^{\pi}(\alpha_{H}))^{G} = i_{x,G}^{\pi}((\alpha_{H})^{C_{G}(x)}).$$

We put $P_G(x)=i\frac{\pi}{x}$, $_G(P_{C_G(x)})$, $P_{\mathfrak{F}}^G(x)=\{\sum\limits_{H\in\mathfrak{F}}(\theta_H)^G\big|\ \theta_H\in P_H(x)\}$ for a family \mathfrak{F} of subgroups of G which contains x. From (1) and (2) and Π_0' we obtain the following: Let \mathfrak{F} be a family of subgroups of G which contains x. The followings are equivalent.

$$(d_x) \quad \{\langle x \rangle \times \tilde{H} \mid \tilde{H} \in \mathfrak{F}_0(C_G(x), \pi)\} \leqslant \mathfrak{F}.$$

$$(e_x) \quad P_{\mathfrak{P}}^{G}(x) = P_{G}(x).$$

From this we can see easily that (d) and (e) are equivalent. This finishes the proof of Π' .

References

- [1] R. Brauer, Applications of induced characters, Amer. J. Math. 69(1947),709-716.
- [2] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Wiley-Interscience, New York, 1962.
- [3] J. A. Green, On the converse to a theorem of R. Brauer, Proc. Camb. Phil. Soc. 51 (1959), 237-239.
- [4] W. F. Reynolds, Character rings of finite groups and related rings, Instituto Nazionale di alta Mathematica Symposia Mathematica XIII (1974).
- [5] J. P. Serre, Representations lineaires des groups finis, 2nd ed., Hermann, Paris, 1971.
- [6] M. Suzuki, Applications of group characters, in finite groups, Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, I(1959), 88-99.