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Preface

In this paper we study some approximate properties of a mixed finite
element scheme applied to a boundary value broblem arising in the analysis of
nonlinear bending of elastic plates.

The method presented here is an ultimate extension of the one which has
been analyzed in the author’s paper [3], and the outline of the theory was
already announced in [4]. The purpose of the present paper is thus to give the
details of the theory.

Especially, we want to give a rigorous proof about the existence and
convergence of the approximate solutions. Our scheme can be regarded also as
a generalized finite difference scheme more clearly than the usual finite element
approximation, so that the usual Hilbert space approach meets a considerable
difficulty for our scheme. One way to avoid this difficulty is to devide the analysis
into two steps. First we study the consistent mass scheme, which was the one
treated in [3], and then we regard our scheme as an approximate scheme to this.
In the last section we report a numerical example obtained by this method.

1. Approximate scheme

Consider a thin elastic plate of arbitrary shape subjected to a lateral load
g. Let 2 be a bounded region of x;, %2 — plane which represents the shape of the

plate. Then the system of equations
4 = — [w,w]
a.n { Zf
Lw=I[fiw]l+g

is known as a mathematical model of the nonlinear bending of this plate, where
w and f correspond to the normal deflection and Airy’s stress function respective-
ly. Here, [f,w] denotes the following quadratic term:

[fiw] =DufDpw + Dy fDyw — 2D12 f D1z

Our aim is to solve the system (1.1) under the boundary condition
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_dw _ ._ df _
W= =4 o008,

where 82 denotes the boundary of £, and # is the unit outward normal to 0£2.
We assume through the present paper that the boundary 82 and the load g are
sufficiently smooth, so that the equation (1.1) has a sufficiently smooth solution
(see, for instance, [1], [2] about the existence and the smoothness of the solution).

In order to set up our scheme we introduce two important spaces L, and H.
Let W(2) (k: positive integer, a>>1) be the Sobolev space of functions. Let
Vf’é(ﬂ) be the completion of the space of all C*—functions with support in £ in

the norm

luli =3 [|ID*u|"dxdz.

|| =1
L, is the product space Vf’;xLz(.Q) X Ly(82) X L,(2) with the norm

W%, =lwli + > W ill%,
i=;
and H is its subspace Vf’éx WixX Wix W but the norm is changed to

Wl =lwli + 217l

where W=(w, W, Wiz, Wa).
Let us define a bilinear form:

L(W,0) = E {(D;w, D;0;;),+ (W,j 0;)z,} + 2 (D,W ;5 D)1,
i=; 7
for W,0€H, where W= W, O1o=001.

DEFINITION. A pair (F, W) €H X H is called a weak solution of the equation
1.1, if

.2 { L(F,0)=(W,W1,¢);, forall 0cH,
' LW, 0) + ([F, W1,é)z, + (g,)z,=0  for all OEH.

This definition is, as stated in [3], based on the following inequality assured
by the Sobolev’s imbedding theorem.

[(LF, W1, ), | <c||Flll| Wlzldl:

An abstract representation of (1.2) introduced in [3] is as follows. Let -the
operators L,C and B be defined by
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L(W,0)=(LW,0y for all 0¢€H,
([F’ W]’¢)L2=(C(F, W); Q)H fOr all mEH,
(g,¢)L2=(Bg,{D)H for all QEH.

Since L is invertible on Hire= (Wi NWH X {0} X {0} X {0}(¢>0) and C (F, W)
belongs to Hi,, for any F, WEH, we have the following single operator equation
as an abstract version of (1.2).

(1.3 W+C(W)+ L'Bg=0,
where
C(W)=L1CL'CW, W), W).

In solving the equation (1.3), we give up to seek solutions at which singular
phenomena (like bifurcation, snap through) occur.

To define the singularity more precisely, take Wo, W1 €H and set Z=W,— Wo.
Then we can write

C(W) — CCW) =C' vy, Z+ D(Wo, 2D,
where
C'woZ= L'CLC(Wy, W), Z) + 2L *C(LYC(Wy, Z), Wo)

and D(W,,Z) is a nonlinear ferm of third order nonlinearlity in Z. The operator
C'w,, defined on H can be extended to whole L, as a compact operator [3]. In
what follows we fix a solution W, of (1.3) and assume that the equation

1.4 KZ=(+C ) Z=0

has no nontrivial solution. In this sense, the solution to be approximated by

our scheme is well behaved one.

Finite element subspaces: Let 2,(2>0) be a triangulation of 2. We assume 2,
is a closed subregion of 2 satisfying the following conditions.

(1) Any vertex of a triangle does not lie part way along the side of an-
other.

(2) Adjecent nodes on 82, do not lie together in 2. If two adjecent nodes
on 8.2, are both on 02, then the boundary 82 must be nonconcave between them.
If p,q and 7 are serial nodes on 92s, being g in 2, then the boundary 02 must
contain a concave part between p and 7. The length of the perpendicular from
g to the line segment connecting the boundary nodes on 82 does not exceed O(A*)
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as ©—0, being % the largest side length of all triangles in 2.

(3) The ratio of the smallest and the largest sides of all triangles of 2 is
bounded below by a positive constant as h—0.

(4) There is a closed subregion 2; of £, which is composed of square meshes
of side length %, and the number of grids in 2s— (23 imerior is Of order O(A™) as
h—0. Each square in £; is triangulated by the diagonal of north-east direction.

Let {$,) be the piecewise linear finite element basis belonging to Wil2w)
and satisfying §,=1 at the node p and=0 at all other nodes. For rigorous theo-
retical treatment of our method, we extend @, to the skin 2— £, and regard it
as a function in the space Wi(2)—this extension is unnecessary for the actual
computation. If p lies in the interior of the domain £,, there is no problem. In
this case it is only necessary to define ¢,=0in 2—2,. When p is on 02, there
will be many ways of extension. One way, and possiblly most convenient one
will be such extension as to satisfy d¢/dv=0, being v the direction of the perpen-
dicular to the line segment connecting the two boundary nodes on 0£. In what
follows, {¢,} denotes the piecewise linear finite element basis extended to whole
2 in this way.

Corresponding to each $, we define a piecewise constant function 6, as
follows. Let T,,, (k=1,2,..., K,) be the set of all triangles in 2, with vertex p.
Let @, (C Ty, be the quadrilateral obtained by connecting the vertex p, middle
points of the two sides containing p and the center of the gravity of T,, Then

&, is the characteristic function of the region

Kp
Up= kZE Q.-

Let be defined

: subspace of WO’; (2 spanned by {$,; pE€L2,—02:),
: subspace of W} () spanned by {¢,; p €2},

: linear space spanned by {&,; » €2},

: =85, % 8% 5% 8, (subspace of H).

m, wl U U

Finite element schemes: Let us introduce the following bilinear form on

s

Hx H.
LW, 0) =3 (D;W, Dibydz,+ (Wi Be)1,)
=

+ ’LE] (DiWij, Dja)Lzs
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where W,; denotes the function which belongs to S and agrees with Wij at all
nodes in 2, (we define W,;;=0 outside of 2,)."
The approximating scheme analyzed in [ 3] is
oy { L(E, )= (W, W), 8z, for all € X,
LW, 8) + (LE,W1,8)z, + (g,8)2,=0 for all €A,
where (F,W) ¢Hx H.
The scheme proposed here is
‘L) { L(E,0) = (W, W1, Pz, for all d€H,
LW, ) + ([F, W1,8)z,+ (g,8)z,=0 for all deH.
where [F,W]=Fu W+ FouWu—2F W Note that this scheme is exactly the
13-points finite difference scheme in the interior of £;. Our problem in this paper
is to study whether this scheme can give reasonable solutions. Since this equation
can not be treated under the same frame work as for (C) — because L( , ) etc.

are not well defined in H —, we have to change the pdint of view in this case.
In [ 3] we represented the system (C) in the form

LW + PC(L*PC(W,W),W) + PBg=0,

where L= PLP, being P the projection H— H. Let us regard the equation (C)

as an original equation defined only on H, then we can write this as
1.5) LW+ CELCW, W), W)+ Bg=0.

In this expression, the operators L, C and B work, of course, only in the space
H, and have the same characters as the previous ones.

The bilinear form L( , ) is now well defined on H X H and, by the same
reason as for L, can be represented by a bounded operator, say by L:

L(F,0)=(LF, 0z  for all dEH.

In order to represent the nonlinear term, we have to prove the following ine-
quality.

LEMMA 1. Assume p>2, then for any # in S; holds

(1- 6) ”ﬁ”L,,(.a)S Cl”‘EHLp(Q)SCZIlaIle(g),

where ¢, ¢, are constants independent of i, 4, p.

PROOF. The first inequality follows from the facts that
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1
“ﬁ”Lp(Q‘;)é ch? ”ﬁ”Lp(ﬂh) (an=.Q'—‘.Qh),
ﬂf‘”Lp(ah) = C”ﬁﬂ Lp(ah)

for p>>1. To prove the second one, we recall the inverse inequality
. C i
A{[ilx lul = 7 ”u”Lz(e)s

where e is any triangular or curved element. Squaring the both sides and

integrating on ¢ we have
Seazé mes(e)pTTZ Ue]ﬁlﬂ%.
Substituting this result into the above inequality, we have
Msax |7|?<ch™? mes(e)pT—2 Selﬁlp
Zch™? S [%]?.
Therefore we have
Salﬁlpéc]\{ax!ﬂphzécSe]ﬁIp,
which proves the second inequality.

REMARK. More straight but not elemetally proof is the use of Sobolev’s
integral inequality. In this case, the condition p> 2 can be replaced by p>1.
Thanks to this lemma, we have the estimate for the nonlinear term:

|(CF, W1, B 1yl < el Pl IW x| 81

Therefore, just the same as in the consistent case, for fixed F and W there is a
unique C(F, W) € H such that

([F,W1,8).,=(CE,W),0)s  for all HEH.
Since the invertibility of L is easily proved, our equation (L) too can be express-
ed by the similar form as for (C):
.7 LW+ CL'COW, W), W) + Bg=0.

Once the discrete system is represented in this form, the analysis can be given
by the similar method for (C). In what follows we shall describe the details of
this process.
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2. Some results from linear problems

Let us consider the equation

@1 LW, 0)=(g.dz, for all d€H.

This equation is, of course, the lumped approximation to the original equation

" Aw=g. Now, first we want to prove the following theorem.

THEOREM 1. Let w be the exact solution of the Dirichlet problem of the
biharmonic equation for the loard term g € L,(2) and W the solution of (2.1).

Then we have the following error estimate.
lw— @], ”Dijw" Wij”Lgé ch? | gl z,.
PROOF. We use the notations wij,u‘3,u'3ij and ;; to express D, ;w, consistent
interpolate of w, consistent interpolate of D,w and lumped interpolate of D, ,w,

respectively.
We start from the following identities.

2 {(Djw, Diéij) + (ﬁij, @ij)}
7,7

(2.2) ot 2 {Cw,;, @ij) - (7707;1‘, @ij)}
i,J
for any ) EET,

(D, Dyb,) + (W5, D, D)
1,7

> ((Dsws;, D;8) + (g, 9))

(2.3) 3
=2{(D1W”,D1{5) + (g’ 5)} for any é ESO.
O¥]
Set e¥=w— 1,6 =w— 4 and E,;=W,; — ib,;. We have, by (2.2),

> {(Dye, D,b,))
+ zz] {(wij, éUD - (wfij’ d_)ij)}

=Z {(Djé’DiéiJ‘) + (Eij’ @ij)} for any (ﬁ EFI.
%7

Therefore, the error is the sum of the three quantities:

2 (Eij’E_ij>=E1 & Ez + Es,
2,7

where
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E,=>\(D,e*,D,E,),
%7
E=3 {(w,;, E;)) — ;5 E; ),
2,7
E;=—>1(D;4,DE;)).
2,7

Estimate of E;: This quantity is just the «, in [ 3], and we have obtained

|Ey | = ch? | gllo,| B,

Estimate of E;: Let p be a grid point in 2,—08%2, and S, be the square
centered at p and of side lenth 2%. Then by the Lemma 4 in [ 3], we have

2.9 |Dyw, 3 — w, (P, )| < chzlmlgs] 1Dz

On the other hand, for any basis ¢, the following estimate holds.

(2.5) | (Dijw’ 931)) —w,;;(p)(, 517) |<ch?lg ”Lz-

Denoting by > and >1® the sums over the node points in 2, — 82, and in 2,—
(2, —092,) respectively, we have

EAEDY | 3P er | wllw tesp E,; (I
+ SISkl gl By (B
= ch | gz, Bl
In this calculation we used the relation
0 (DE, (87" 1) =0 iyl 10, = O U By lyeay),

which is an obvious consequence of the definitions of the basis functions.
Estimate of E;: By (2.3) we have

| Es| =] 12 (D, Eu;zj - wij]: Djé)+ (g, 00— (g,8)

(2.6) i
= 1Zj_IT".’U"‘ZUijll [éli+chlglz,lél:.

To estimate |é]|; we give attention to the identity.
(D;w, Di@n*) * (Ww d_)ii> =0.

Subtracting (D, D,d,,) + (i0,;,®;;) from the both sides of this identity we have
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(D8,D,8) + (Ey:,®
= g{(ﬁm, 0. (P + (Diu-;:Di@)ii(p))}ep-
1
<ch? | gllz,lél:.
Therefore we have
1 _
.7 leli<ch® | gllz, + ¢l E|L,.
Substituting this result into (2.6) we get
3 _
|Es| <ch? | g2, + chlglzl E | L.

By these three estimates on E; we finally get the following quadratic inequality
about ||E|.

b3 (Eip Eip< ekl gl Els,+ ch? g,

The second estimate of the theorem is obtained by solving this inequality and’

considering that the lumped mass interpolate has the accuracy of O(k). The first

one follows from (2.7)
Let us rewrite the equation (1.7), by operating L™, as follows.
(2.8) W+ C(W)+L'Bg=0.
Let be defined
ClynZ=L'C(LC W, W),2)+2L'C(L*CW,2), W).
Then we can write
2.9 CW) — C(Wo)=Clarg (Wi— Wo) + D(Wo, W1 — W),
where D(Wo,2) is a nonlinear operator of third order defined by
(2100 DWW 2)=2L* C(L* CWo,2),2)+ L C(L C(Z,2),Wo+ 2.

Let C’(W) be the linear operator derived from C‘(W) and has the same form
as for C'gin. Let W, be a solution of (1.3)—exact solution of our problem—and

Wo€ H be its interpolate.
A fundamental theorem in [ 3] is that if % is sufficiently small then the

operator I+ CI(WO) is invertible on H and holds

(2.11)  supllI+ Care) W LZ/“W” el as h—0.

WweH
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In what follows we want to show this is the case for the operator I+ é/(m),
that is, that if the equation (1.4) has no nontrivial solution, then the equation

2.12) KZ=U+CwpZ2=G G¢cH
has a unique solution. In order to prove this we shaﬂ prepare the following
lemma.
LEMMA 2.
(1) Let w be a function in Wj. Then holds
| (i — &, ), < chll gl wlw -
(2) Let U=LC(V,W) and 0<e<1 (V,W€H).  Then holds
a. IIUIILZéCEIIEV,W]IIL1+g,
b [Ols<c P12V,
c. N0z <clVlmaal Wz,
do NV Z a2 b V1205, (ZELD,

where |V | mae=max (max|v|, max|V;;|) and c. is a constant dependent of e but

not on % and the functions.

PROOF. (1) We first prove that the inequality is valid for any @ € Si. Let p
be any node in 2, and T, and @,,, be any triangle and quadrilateral associated

with . Expandnig # in each T, and using the fact
> (8= 9 Drpi=0,
we have the following estimate.
|y~ Fpr @) 2 33 (S Dibllry it [ llr 0.
Therefore,
|8 — @ @) | =] 33 #2(8p — G D))
Zenlalzl@lw:,

which is our assertion in the case of finite element function @w. Let w be a function
in W.. Then approximation theory assures that there is a finite element function

w€S; such that
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lw—dlz,<chllwlw:, @ llw: <cllwlw:.

(we have to always take care of the extension of the finite element basis in
applying the results of approximation theory. However, as pointed out in [ 3],
this extension does not disturb the basic character of the approximation or
interpolation.)
Combining this result with the above one we have
@ —aw|<la—alllw—wl,+ @3 )]

= chllal gl wlws,
which completes the proof of (1).
(2). The equation L0 =C(V,W) is equivalent to

VD8, Dib: )1, + Uiy 8301 + 3 (DU, D),
1,7

i=;

=V, W1, 6z, for all d€H.
Therefore, by Lemma 1 and the Sobolev’s imbedding theorem we have
ZJ i Ui D0, =AUV, WL, < cellLV, W lzssel ]
At the same time we have |@|;<c[|U] z,. (a) is thus proved.
To prove (b) we have to show
@19 NV W lee 2l V1217 1.

By Horder’s inequality,
2 - 1+¢ 2 _1-¢
flasie= [[qalo]= [[dao=] T,
Therefore, again by Lemma 1 and the Sobolev’s theorem, we have

200 20se < cellllz,] 9]

from which inequality (2.13) and thus (b) follows.
Since (c) will be evident, let us prove (d). By the inverse relation we have,

as the Lemma 10 in [ 3],
” u “L1+g’ = Ch—E'/(2+E’)” v ”Lz’

where 24+¢ =2(1+&)/(1—e). Therefore, by Lemma 1

—g/

1LV, Z M 2rse € e N Vil 2oner | Zii | 2, £ cB*+ 1V 2,12l 2,5
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which completes the proof.
Now by making use of this lemma we have

THEOREM 2. Assume that the equation (1.4) has no nontrivial solution.
Then if % is sufficiently small, there is a function A* for any G €H such that
1B*]z,<cllGlz, and

(2.1 |KH*—=Glz,<4qlGl,,  (0<g<D

where ¢ is independent of %~ and G. Therefore K is invertible for such small %

and the norm of its inverse is uniformly bounded as % tends to 0.

PROOF. We shall show that the inequality is satisfied by the function
.ﬁ*= (I+ C/(WU))_IG.

First we note that this function is well defined for sufficiently small %~ and the
operator defining this function is uniformly bounded. In fact, this was one of
the main theorem of the previous paper [ 3]. Furthermore, the existence of ¢
satisfying the inequality (2.14) implies not only the existence of a solution of
(2.12), but also the uniqueness of the solution, because the operator is working
in a finite dimensional space.

Rewrite

KA*—G=Cuy H*— C@pH*=S:+R.+ S: + R,

where
S, =L 'C(LIC(Wo,Wo), H*) — LT*C(L™C(W,, Wo), H*),
Ri=L7'C(L™'C(Wy, Wo), H*) — L*C(L7C(Wo, Wo), H®,
S, =2L-1C(L1C(W*, B*), W) — 2L *C(L*C(W,, B*), Wy),
Ry=2L"C(L™'C(Wo, B*), Wy) — 2L C(L™C(Wo, H®),Wo).

The quantities B, and R, are exactly those estimated in [ 3], and they satisfy
IR < e ™5 | ¥,

|Rall < B | B* |15,

where ¢ is an arbitraly positive constant and ¢, is a constant depending on e but

not on % and H* .
Estimate of S.. Let us define
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V=L7C(Wo, 8%, V=L"'C(Wo,H"

In order to estimate the difference of these functions, we introduce the functions
Zy=L"'"C(W,, H®), Zz=L’1C(Wo, %),

By (1) of Lemma 2, we have . ; %
IV —Zillz, < ch| B* ||,

Therefore it is easy to prove

|V —Z.llz,< chl ﬁ*”Lg-

Now it is evident that V is the approximate solution to Z, Therefore, by the

error estimate in the linear problem we have
12—V Lz, < ch* | H* s,

and thus
IV =7l et | B* .

Since S;=2L"'C(V,W,) —2L*C(V, W), we have

ISollz,< 2| L C(V,Wo) —L*C(V, Wz,
+2|L7'C(V, W) —L'CV, Wz,
< chE | B,

Estimate S;. The difference of the two functions
V=L7C(WoWo) V=L'CWo,Wo
is easily estimated and we have
N 1
[V —=V,<che.

Let V be the interpolate of V. Then by the error estimate in the linear problem
we have
|L*C(V, B*)—L*C(V, A9,
1 -~
< ch? | H*||z,,

On the other hand, by (2) of Lemma 2, it holds
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ILC WV, B*) — L' CV, B,
|V —7V, B 1,..
2o W | T =Ty B¥,
2o | B,

Therefore we get

1

2
[|Sillz,< cch® " Tve | B* Iz,

Summarizing all results we finally get

pa i3
S = IFE

I|KB*—G |y, < cch? "¢ Gly,.

for sufficiently small 2 Taking e sufficiently small, and then also %, we have

1 28

ceh? T T,

which is the desired inequality. The second half of the theorem follows from the
Theorem 8 in [3].

3. Existence and convergence of the approximate solutions.

The operator C'gy is the derivative of C(W). Theorem 2 thus assures the
applicability of the Newton’s iteration which starts from Wg, interpolate of the
exact solution W,. We shall employ an iterative process as follows.

Let us rewrite (2.8) as

(3.1) W=RW
EWU -+ C/(Wo))_l [E—l‘ D_(Wo, Z)],

where E is the residual given by substituting Wu into (2.8), D is the nonlinear
term defined by (2.10) and 2=W—Wo. The next lemma may be proved easily by
introducing the function

L7IC(L7C (W, Wo), Wo).

LEMMA 3. Let W,€H be a solution of the original problem and Wo€H be its
interpolate. Then holds, for any ¢ >0

5 PR — . 1_ 2
B.2)  NE|,=IWo+CW)+ L7 Bp|,<cch? T+,
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Now we can prove the next concluding theorem. For the proof of this theorem it
is only necessary to repeat the ones given for Theorem 14 and 15 in [ 3 ], because
we have proved the Lemma 2, Theorem 2 and Lemma 3 which corresponds to the
Lemma 9 and 10, Theorem 11 and 12, and Lemma 13 of [ 3], which were essential
for the proof of the Theorem 14 and 15.

THEOREM 3. Let W, be a solution of (1.3). Assume that the linear, homo-
geneous equation (1.4) has no nontrivial solution at W,. Consider the iteration

Wn=RWn—1 (n=1,2,..),

where Wo is the interpolate of W,. Then, if % is sufficiently small there is a
closed ball

Ss={W6ﬁ; ]|W—WO[IL245}, 6=h%_%1(n> 11, integer)
such that
(A)  |RW —=W,l;,<56  for all WES,,
(B)  |IRW1—RWalz,<q|Wi=Walz,  (0<q<D

for all Wl, WzESs. Therefore, the iteration (3.3) defines a function which is a
solution of the discrete equation (1.5).
This solution is unique in the d-neighbourhood of Wu.

REMARK. We may assert, pure-theoretically, that the order of convergence
of this method is almost the same as in the biharmonic case. However, the
numerical constants appearing in the proofs of Theorem 2 and 3 depend on the
choise of the number z of Theorem 3 (this #z reflects the ¢ in Lemma 2), and if
we want large » then we have to make % small inevitablly. This means that the
actual accuracy of the approximate solution obtained may not be better than that
of biharmonic case. In fact, numerical experience shows that this is the case.
Of course, if we use more complicated elements, then the convergence rate will
increase corresponding to its degree. In fact, it is very interesting problem
whether the elements of degree % can give the approximate solution of O(A*™17%)
in the error, since O(%*™) is the rate in the biharmonic problem.

APPENDIX. Numerical examples

Let 2 be a square plate of side length 1, thickness #, Poisson’s ratio y, and
flexural rigidity D. Let f and w be the stress function and normal deflection,
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respectively. Then the functions F=(¢/D)f and W=uw/t satisfy the following

equations.
{ LF=—601—A[W, W]
AL W=[F,W]+g/Dt,

where g denotes given lateral force. We solved this system under the boundary
condition F=dF/dn=W=dW/dn=0 to test the accuracy of the approximate
solutions.  The following table shows the values of W for various mesh size &
(we devide the region into congruent right-angled equilateral triangles). For
comparison, the table includes the values obtained by the Galerkin’s method in
the conforming trial functions (1 —cos 2mnx) (1—cos 2nxy).

The solutions has been obtained as the limit state of the non-linear vibration
by adding the inertia term and damping term to the original equation. The dis-
cretizations of these terms are both by the central difference. The time mesh
is taken small enough to ensure the stability of the Ilinear scheme. This is
effective for the small load, but for the large load the scheme becomes unstable

unless the time mesh is made small.

(nonlinear) (linear)
(author)

h=1/6 .71 2. 54
h=1/8 1. 63 2. 28
=1/16 1. 55 2. 09

(Galerkin’s method)
1 term 1. 46 2. 05
3 term 1. 43 1. 95

(Deflection at the center of the plate. g/Df=1600, v=0.3)
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